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Abstract

We present an augmented reality system based on Kinect
for on-line handbag shopping. The users can virtually try
on different handbags on a TV screen at home. They can in-
teract with the virtual handbags naturally, such as sliding a
handbag to different positions on their arms and rotating a
handbag to see it from different angles. The users can also
see how the handbags fit them in different virtual environ-
ments other than the current real background . We describe
the technical details for building such a system and demon-
strate the experimental results.

1. Introduction
With the advance in high speed Internet, network se-

curity and privacy, on-line e-commerce market is growing
rapidly in the last decade, including Internet fashion shop-
ping. Over a third of consumers in US bought some of their
apparel, footwear and accessories over the Internet in 2011.
For customers, they usually would like to try on the prod-
ucts before placing an order; for retailers, giving the cus-
tomers a way to try their products before shipping is impor-
tant to minimize the return rate and reduce cost. Therefore,
the technologies, often called virtual fitting room, that allow
customers virtually try on different fashion products in front
of a TV screen or a computer monitor become very impor-
tant and have attracted intensive interests from researchers.

These technologies can be divided into two kinds: vir-
tual reality [6, 10, 11] and augmented reality [7]. In the first
kind, 3D body models of users are created beforehand and
are loaded into computer memory as rigid 3D objects. Vir-
tual garments and accessories are displayed on top of the 3D
body models, and the users can see the wearing effects from
different angles by rotating the 3D models with a mouse or
a keyboard. In some approaches, the 3D body models are
created from a 3D mannequin adjusted to fit the body mea-
surements of the users. More advanced techniques, such as
structured light and 3D laser scanners, can be used to con-
struct more accurate 3D body models, but they are usually

too expensive to be used at home.
Compared to virtual reality, the approaches based on

augmented reality in which virtual garments are directly
displayed on the body of the users in real videos are more
realistic and convenient. However, they require accurate
real-time 3D body tracking and pose estimation, which is
typically the bottleneck of these augmented reality systems.

The Kinect sensor [5] introduced by Microsoft in 2010
is evidently a breakthrough that brings low-cost 3D depth
sensing and human body pose estimation technologies to
the general public. Since its launch date, it has been ex-
ploited in all kinds of computer gaming and augmented re-
ality applications including those for virtual fitting room.
Bodymetrics [1] created a system in which a 3D avatar
is generated for each user whose body shape and size are
measured with Kinect. The user can control the 3D avatar
through Kinect and see how the virtual clothes look on the
avatar in different poses. Fitnect [2] also provides a sys-
tem for users to try on different clothes, but instead of using
an avatar, the virtual clothes are directly displayed on the
user’s body in augmented videos. Facecake [3] gives a sim-
ilar augmented reality system called Swivel in which users
can virtually try on a variety of fashion products including
handbags, clothes, necklace and sunglasses.

We present an augmented reality system for on-line
handbag shopping by using Kinect with the OpenNI API
[4]. We call it Magic Mirror. Compared to the Swivel sys-
tem of Facecake, with our system the users can not only
hold the virtual handbags in their hands but also can move
the handbags to different positions on their arms and see
how the handbags look on their elbows or shoulders. To
implement this, we need to explicitly handle the physical
interaction between the human body and the 3D models of
virtual handbags.

In addition, our system has a teleportation function in
which the background of the video can be switched from
the real room to a virtual environment, such as a runway or
a hall, so that the users can see how the handbags fit them
in different situations. To do this, an important issue is to
obtain the accurate segmentation of human body from the
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real image in order to insert it into a virtual background
image. Although OpenNI gives a segmentation of human
body from the background, the boundary is usually not ac-
curate due to several possible reasons such as the limitation
of the quality of the depth map and the slight delay between
the generation of the depth map and the color image. We
present a novel approach designed for Kinect applications
that can refine the coarse segmentation to obtain more ac-
curate boundaries.

The rest of the paper is organized as follows: Section 2
gives the details on implementing the handbag sliding con-
trol. Section 3 describes how to compute the pose of a vir-
tual handbag given the current kinect readings so that its
rendering looks real. The segmentation algorithm to obtain
accurate human body boundaries for teleportation is pre-
sented in Section 4. Some experimental results are demon-
strated in Section 5, and the paper is concluded in Section
6.

2. Handbag sliding control
Our system requires a Kinect sensor. To start, a user

stands in the initial calibration pose defined in OpenNI [4]
for a couple of seconds. Once the user is detected, he (or
she) can select virtual handbags on a screen with gestures.
The selected virtual handbag will initially be displayed in
one of his hands. When the user raises his arm, the virtual
handbag will slide to his elbow or shoulder depending on
the slope of his forearm and upper arm (the part between
shoulder and elbow); and when the user lows his arm, the
handbag can slide back to his hand.

There are 3 stable positions of the handbag: hand, el-
bow and shoulder. Figure 1 shows an example of the stick
figure of an arm. The angles from the upper arm AB and
the forearm BC to the gravity direction are α and β, and
A, B and C represent the shoulder, elbow and hand respec-
tively. The position of the handbag is determined based on
the following rules:

1. If the handbag is at C, then it will start sliding towards
B with a fixed velocity if β > 150 degree; otherwise
it will stay at C.

2. If the handbag is at B, then it will start sliding towards
C is β < 30 and sliding towards A if α > 150; other-
wise it stays at B.

3. If the handbag is at A, then it will start sliding towards
B if α < 30; otherwise it stays at A.

4. If the handbag is between BC, then it will slide to-
wards B if β > 90; otherwise slide towards C.

5. If the handbag is between AB, then it will slide to-
wards A if α > 90; otherwise slide towards B.

Figure 1. Stick figure of an arm.

3. Handbag pose computation

Based on the rules in Section 2, we can compute the 3D
position of the handbag on the stick figure of the arm from
the 3D positions of the hand, elbow and shoulder given by
OpenNI. We call it the stick position of the handbag. To
render the virtual handbag, its 6-DOF pose should be cal-
culated in the world frame. To simplify the problem, each
handbag is treated as a rigid object. As shown in Figure 2a,
we can define the origin of the body frame of a handbag to
be the tip O of its handle, and the Y axis as its vertical sym-
metry axis and the X axis as the direction vertical to Y on
its symmetry plane π.

(a) (b)

Figure 2. (a)The body frame of a virtual handbag. (b) O is the
handbag position on the arm surface if P is its stick position.

We assume the tipO is always on the surface of the user’s
arm. Given the stick position P of the handbag, the corre-
sponding position of O is calculated in the way illustrated
in Figure 2b. PO is on the surface formed by the gravity
vector G and BC, and is perpendicular to BC. The length
|PO| is determined from the shape of the arm. For simpli-
fication, we assume the upper arm is a cylinder while the
forearm is a cone with the elbow as the base. The radius
of the upper arm and the forearm are estimated from the
calibration pose of the user during the system initialization.
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Therefore the position O is computed with:

O = P + |PO|(G×
−−→
BC ×

−−→
BC), (1)

where G is the unit gravity vector and
−−→
BC is the unit vector

of direction BC. At any moment, gravity forces the Y axis
of the handbag frame to be parallel to G, and the XY plane
is perpendicular to the surface formed byG and the forearm
stick (or upper arm depending on the current stick position).
The rotation R from the handbag frame to the world frame
is hence fully determined:

R =
[−−→
BC ×G,G,

−−→
BC ×G×G

]
. (2)

However, with the above pose, the virtual handbag may
have intersection with the human body. Therefore, we need
a collision detection algorithm and an approach to adjust
the handbag away from collision. In our system, we sim-
ply apply two additional rotations to the handbag frame:Rx

around its X axis and Ry around its Y axis, and search the
angles of the two rotations with adaptive step size to find a
pose with which the handbag has not intersection with the
human body. To check if there is an intersection, we sample
the 3D handbag model with a set of 3D points and project
them onto the image plane of the Kinect camera. If the
depth values of the 3D points are all smaller than the cor-
responding values in the depth map generated by Kinect,
the handbag has not intersection with the human body. The
final rotation from the handbag frame to the world will be:

R =
[−−→
BC ×G,G,

−−→
BC ×G×G

]
RyRx. (3)

In practice, the occlusion relationship between the hand-
bag, the trunk of the human body and the arms can be very
complicated so that sometimes the above approach cannot
find reasonable Rx and Ry to avoid the intersection judged
by the simple Z buffer checking. This happens often when
the handbag is at the shoulder position where the handbag
is occluded by arms and the trunk of the body is occluded
by the handbag. In our system, if reasonable Rx and Ry

cannot be found, they will be set to the identity matrix.

4. Image segmentation for teleportation
In our system, the users can change the background of

the augmented video from its real environment to a virtual
background such as a beautiful hall or a red carpet runway,
etc. We call this function teleportation that lets the users
see how the handbags fit them in different backgrounds and
circumstances.

To implement it, we need to segment the user’s body
from the real image and paste it into a virtual background
to obtain a synthesized image. OpenNI gives a coarse seg-
mentation of the user’s body based on depth map but the

boundary is not accurate. An example is shown in Figure 3
where the green contour is the original output from Kinect.
In order to get better visual effects, we need an image seg-
mentation approach to refine the coarse boundary. We pro-
pose a novel approach based on background modeling and
graph cut that will be described in the following sections.

Figure 3. The green boundary is the initial output of Kinect. The
pixels on the red and blue contours belong to the foreground and
the background respectively.

4.1. Edge-based background modeling

In the application, the Kinect sensor is usually fixed so
background modeling can help the segmentation of moving
objects. Background modeling has been extensively studied
in computer vision. The most popular approach estimates a
GMM color model for each pixel [15]. However, due to
the illumination change induced by moving objects, mis-
classification of pixels on the boundary of moving objects
is quite often. A lot of approaches based on edges have also
been proposed since edges are usually less sensitive to il-
lumination change than color values or gradient magnitude.
Some approaches compare individual edge pixels [12, 9],
which is prone to noise and small variation of edge pixel
locations. Some approaches [8, 13] detect moving objects
by matching edge segments in the current image to those in
the background image.

Our approach also exploits edge segments, but there are
several major differences to the approaches in [8, 13]. First,
the segment matching in [8, 13] does not fully enforce con-
nectivity so that a connected segment in the current im-
age can be matched to a set of disconnected edge pixels
in the background image, which increases the chance of
false matching. Second, in order to reduce false alarm, the
edge pixels can be labeled as rather than only foreground
or background. Third, the foreground and background edge
segments will be given confidence values, and the final bi-
nary labeling will be calculated with graph cut by integrat-
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ing them with other cues.
With moving objects out of the view, several images of

the background are captured with the Kinect camera and
their average image is computed. The edge map of the aver-
age image is obtained by using non-maximal suppression on
its gradient map calculated with a 3x3 Sobel operator. In-
stead of using the hysteresis thresholding of Canny detector
as in [8, 13], we only set a very low threshold (30 in our ex-
periments) on gradient magnitude to remove the edges that
are most likely caused by noise. Given a new image with
moving objects, its edge map is computed in the same way.

Ideally, an edge pixel p in the current image will be clas-
sified as a background pixel if there is an edge pixel p′ in the
background edge map at the corresponding position whose
gradient orientation is similar to that of p; otherwise p is
a foreground pixel. However, in practice, the location of
background edge pixels may have small deviation due to
illumination change and noise. Therefore, if there is no cor-
responding edge pixel in the background edge map at the
exact location of p but there is one in its 8-connected neigh-
borhood, we are not sure if this edge pixel is new or a back-
ground edge pixel after a small drift. In this case, instead of
making a possibly wrong classification, we prefer to label it
as unknown and leave it for the graph cut to make the final
decision. To put this formally, the label α of an edge pixel
p in the current image is determined with:

α =

 background if ∃p′ | |p′ − p| = 0 and (p, p′) < θ;
unknown if ∃p′ | p′ ∈ N(p) and (p, p′) < θ;
foreground otherwise,

(4)
where p′ is an edge pixel in the background edge map,N(p)
is the 8-connected neighborhood of p, and (p, p′) is the an-
gle between the gradient orientation of p and p′. The thresh-
old θ = 45 degree in our experiments.

In addition, the confidence value of being foreground or
background should not be determined based on individual
pixels. The labeling will be much more confident if a set
of edge pixels with the same label can be linked into a long
curve segment compared to the case in which they are dis-
connected. Therefore, the edge pixels with the same fore-
ground/background labels are linked into segments with an
edge tracing algorithm. To reduce noise, we remove the
segments shorter than 3 pixels. Figure 4 displays the fore-
ground segments (red) and the background segments (blue)
of Figure 3. The green pixels are labeled unknown, and we
can see some of them are on the background objects such as
those on the trash can whereas some are on the foreground
object such as those on the left arm of the user.

The confidence value Cf of a pixel p being a foreground
pixel is calculated with:

Cf (p) =

{ √
|g|L if p ∈ foreground segment;

0 otherwise,
(5)

where L is the length of the segment and |g| is the gradient
magnitude of this edge pixel.

Similarly, the confidence value Cg of a pixel p being a
background pixel is computed with:

Cg(p) =

{ √
min(|g|, |g′|)L if p ∈ background segment;

0 otherwise,
(6)

where L is the length of the segment, and |g| and |g′| are the
gradient magnitude of the pixel and its corresponding pixel
in the background edge map.

Therefore, based on the above two equations we obtain
two confidence maps. In practice, in order to avoid the sit-
uation in which the following graph cut optimization can
choose a boundary right next to some background segments
due to their high color contrast, we dilate the background
confidence map with the following approach. For each pixel
p with Cg(p) = 0,

Cg(p) = max
q∈N(p)

Cg(q), (7)

where N(p) is the 8-connected neighborhood of p.

Figure 4. The blue and red segments are classified as background
and foreground segments respectively. The green pixels are un-
known pixels.

4.2. Graph cut segmentation

We use graph cut [14] to refine the coarse object bound-
ary output by Kinect. As shown in Figure 3, the green con-
tour is the initial boundary, and the pixels on the blue and
red contours are assumed to be from background and fore-
ground respectively. The pixels in the band between the
blue contour and the red contour are the pixels that need to
be classified as background or foreground. In our experi-
ments the width of the band is 10 pixels on each side of
the initial boundary. The optimization based on graph cut
is to assign foreground/background labels to the pixels in
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the band area so that the following energy function is mini-
mized:

E(α) = U(α) + V (α), (8)

Where α represents the label assignment (α = 0 for back-
ground and α = 1 for foreground), U(α) is a data term that
measures the likelihood of the pixels coming from back-
ground or foreground, and V (α) is a smoothness term that
enforces smoothness of the labeling between neighboring
pixels .

In our approach U(α) is computed with the following
equation:

U(α) = w1

∑
n

B(αn) + w2

∑
n

F (αn) + w3

∑
n

D(αn)

(9)
The first item B(αn) is the foreground/background confi-
dence value based on the background modeling in the pre-
vious section, and for each pixel pn:

B(αn) =

{
Cf (n) if αn = 0;
Cg(n) if αn = 1

(10)

where Cf and Cg are computed with Equation 5 and Equa-
tion 6 respectively. Note that the optimization is to mini-
mize the energy function.

The item F (αn) is used to keep the final boundary close
to the initial boundary given by Kinect. This is because
although the initial boundary is not accurate, it is not too
far from the truth. This constraint brings the information
of the Kinect depth map to help the situation when the color
contrast between the foreground and the background is very
weak. The F (αn) for a pixel pn is computed with:

F (αn) =

 dn if α = 0 and pn ∈ I;
dn if α = 1 and pn ∈ O;
0 otherwise,

(11)

where dn is the distance of pn to the initial boundary (the
green contour in Figure 3), I is the region between the initial
boundary and the inner boundary (red), and O is the region
between the initial boundary and the outer boundary (blue)
in Figure 3. It is easy to see that if the final boundary equals
the initial boundary F (α) will be 0.

The last item D(αn) is calculated in the same way as the
data term in [14], which measures the color similarity to the
foreground and background color models. In our case, the
foreground GMM model is estimated from the pixels of the
initial segmentation given by Kinect except those between
the green boundary and red boundary in Figure 3. The back-
ground color model is estimated for each pixel during the
background modeling phase.

The weights w1, w2 and w3 (w1 = 0.11, w2 = 0.53 and
w3 = 0.36) are learnt with a logistic regression classifier
from a set of training samples. The training samples are

obtained by using interactive image segment [14] to obtain
the ground-truth boundaries of moving objects. Finally, the
smoothness term V (α) in Equation 8 is also the same as the
smoothness term in [14] which reflects the color contrast
between neighboring pixels. Please refer to [14] for details.

5. Experiments
In this section we present some experimental results of

our system. Figure 5 shows several screen shots of an aug-
mented video in which a virtual handbag is inserted at dif-
ferent positions including hand, elbow, shoulder and fore-
arm. Figure 6 demonstrates the teleportation function in
which the user is inserted into a virtual background in real-
time. Figure 6a is the result with the original segmentation
generated by Kinect. Figure 6b shows significant improve-
ment after the boundary refinement with our approach, es-
pecially in the hair and shoe areas.

The rendering all looks realistic and gives the user the
feeling of carrying a real handbag. However, we can also
notice that the position of the handbag handle on the arm
surface is not perfect. This is because the stick figure out-
put by Kinect is not perfect, and the estimation of the arm
width (used in Equation 1) from the calibration pose during
initialization is also not very accurate.

In Figure 7, we compare the image segmentation result
of different approaches. For Figure 7a-b, the initial bound-
ary given by Kinect is shown as the green contour in Fig-
ure 3. Figure 7a gives the result if the data term U(α) of
the graph cut in Equation 8 only includes D(α) that mea-
sures the color similarity. Figure 7b is the result with our
approach that is significantly better than Figure 7a.

Figure 7c-d demonstrate the effect of adding F (α) in the
data term. Figure 7c is the output without F (α), and we
can see that the boundary along the left shoulder and arm
is off a lot due to the low color contrast between the back-
ground and the foreground. By adding F (α) that incorpo-
rates the information of the depth map given by Kinect, the
final boundary in Figure 7d is much more accurate.

6. Conclusion
In this paper, we described the implementation of an aug-

mented reality system that allows the users virtually try on
different handbags at home in front of a TV screen. The
users can naturally slide virtual handbags to different posi-
tions on their arms and see the effects of carrying the hand-
bags in different poses. We also presented a novel image
segmentation algorithm based on the initial moving object
boundaries giving by Kinect for the teleportation function in
which the users can try handbags in different virtual back-
ground. The algorithm is designed based on the properties
of the Kinect sensor.

In future work, we plan to integrate the depth map gen-
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erated by Kinect with its color image and a general human
body model to increase the accuracy of the estimation of the
handbag position on the arm surface. In addition, we also
want to use the temporal constraints between video frames
to reduce jittering of the handbag rendering and further im-
prove the image segmentation.

(a) (b)

(c) (d)

Figure 5. Screen shots of an augmented video with a virtual hand-
bag inserted at different positions.

(a) (b)

Figure 6. Teleportation with the original body boundary (a) and
with the refined boundary with our approach(b).
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