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Abstract

Least squares regression is a basic approach for sta-
tistical analysis. However, its simplicity has often led
to researchers overlooking it for complex recognition
problems. In this paper, we present a nonlinear regres-
sion framework on manifolds for gesture recognition.
Our method is developed based upon two key attributes:
underlying geometry and least squares fitting. The for-
mer attribute is vital since geometry characterizes the
space for classification while the latter exhibits a sim-
ple estimation model. Considering geometric proper-
ties, we formulate least squares regression as a com-
posite function. This gives a natural extension from
Euclidean space to manifolds. Our experiments show
that the proposed framework achieves state-of-the-art
results on the standard hand gesture and body gesture
datasets. Our method also generalizes well on the one-
shot-learning CHALEARN gesture challenge.

1. Introduction

Human gestures are useful media for communica-
tion. We use gestures to depict sign language to deaf
people, convey messages in noisy environments, and in-
terface with computer games. Having human-machine
gesture-based communication enriches our daily lives
and makes mundane work effective. In recent years,
many gesture recognition algorithms have been pro-
posed [20, 4]. Despite these efforts, gesture recognition
remains a challenging area due in part to the complex-
ity of human movements. To champion the recogni-
tion performance, models are often complicated, caus-
ing difficulty for generalization. Consequently, heavy-
duty models may not have substantial gains in overall
gesture recognition problems.

Linear regression is one of the fundamental tech-
niques in statistical analysis. It is simple and often

outperforms complicated models when the number of
training samples is small [9]. In this paper, we revisit
least squares regression and emphasize the important
aspect of underlying geometry [17]. Particularly for
gesture recognition, patterns are collected from videos
and intrinsically reside in non-Euclidean space. Our
work is built upon the product manifold representa-
tion [18] by which an action is characterized as a point
on a product manifold.

While product manifold representation has shown
promising results, the classification is solely based on
nearest neighbors. Thus, it has high variance and may
be unstable in some cases. To balance the weight be-
tween variance and bias, we employ least squares re-
gression as a statistical model yielding a smooth deci-
sion boundary [9]. The key element of our regression
framework is that it accounts for underlying geometry
on manifolds. In doing so, we formulate least squares
regression as a composite function. As such, we ensure
that both the domain values and the range values re-
side on a manifold through the regression process. The
least squares fitted elements from a training set can
then be exploited for pattern recognition, particularly
for gesture recognition.

We demonstrate the proficiency of our framework
on three gesture recognition problems including hand
gestures, body gestures, and gestures collected from
Kinect for the one-shot-learning CHALEARN gesture
challenge. Our experimental results reveal that our
method is competitive to the state-of-the-art methods,
yet based on a simple statistical model.

The key contributions of the proposed work are 1)
introducing a novel formulation for least squares re-
gression on manifolds; 2) relating the proposed frame-
work to gesture recognition; 3) achieving competitive
performance; 4) using a simple pixel-based representa-
tion (no silhouette and no skeleton extraction); 5) no
explicit assumption on data.

The remainder of this paper is organized as follows:
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Related work is reviewed in Section 2. The framework
on regression in non-Euclidean space is introduced in
Section 3. Experimental results are reported in Sec-
tion 4. Finally, we conclude this paper in Section 5.

2. Related Work

Regression techniques have been widely used in sta-
tistical analysis as well as computer vision. Here, we
review some related work.

Human detection is a crucial element for human ac-
tion recognition. Schwartz et al . [22] combined HOG,
color frequency, and co-occurrence matrices as a fea-
ture and employed Partial Least Squares (PLS) fitting
for dimension reduction. As a consequence, low dimen-
sional features were classified using quadratic discrimi-
nant analysis. Unlike PCA, PLS takes class labels into
account while providing dimension reduction.

Group activities can be effectively identified from
trajectories. Cheng et al . [6] applied Gaussian process
regression and motion analysis for activity recognition.
The fitted trajectories and motion patterns were char-
acterized by a bag-of-feature model. The features were
then grouped using multi-kernel learning followed by a
support vector machine.

Liu et al . [16] proposed the use of ordinal regression
via manifold learning. The ordinal regression learns the
rating of data by maximizing the margin between two
consecutive ranks. As such, the order information from
a neighborhood graph is optimized. This framework is
extended to a multilinear representation and applied
to face and digit classification using a k-NN classifier.

Pham and Venkatesh [21] studied the use of mul-
tivariate lasso regression on Stiefel manifolds for face
recognition. This method employed dual projections
for dimension reduction and data fitting. Because of
the orthogonality constraint of the projection matrix,
the steepest descent method was applied to find the
optimal projection on a Stiefel manifold.

Recently, Meyer et al . [19] have addressed a regres-
sion model under fixed-rank constraints. Since fixed-
rank matrices do not reside on Euclidean space, quo-
tient geometry is considered. Matrices were first fac-
torized using balanced and polar factorizations. Line-
search algorithms were then employed to seek the op-
timal projection matrices. This work was applied to
collaborative filtering.

3. Regression in Non-Euclidean Spaces

Linear regression is one of the fundamental tech-
niques in data analysis. The aim of this paper is to
formulate a least squares regression model on mani-
folds.

3.1. Linear and Nonlinear Least Squares Regres-
sions

Perhaps the most straightforward data prediction
technique is least squares regression. In this paper, we
demonstrate this by considering the underlying geom-
etry and show its applicability on gesture recognition.
Before we discuss the geometric extension, we will first
review the standard form of least squares fitting.

Consider a regression problem y = Aβ where y ∈
Rn is the regression value, A([a1|a2| · · · |ak]) ∈ Rn×k is
the training set, and β ∈ Rk is the fitting parameter.
The residual sum-of-squares can be written as

R(β) =‖ y −Aβ ‖2 (1)

and the fitting parameter β can be obtained by mini-
mizing the residual sum-of-squares error from Eq. (1).
Then, we have

β̂ = (ATA)−1AT y. (2)

The fitted pattern from the training set has the follow-
ing form

ŷ = Aβ̂ = A(ATA)−1AT y. (3)

We can further extend the linear least squares regres-
sion from Eq. (3) to a nonlinear form by incorporating
a kernel function shown in the following

A(A ? A)−1(A ? y) (4)

where ? is a nonlinear similarity operator. Obviously,
? is equal to xT y in the linear case. In this paper, we
employ the RBF kernel given as

x ? y = exp(−‖ · ‖
σ

) (5)

where ‖ · ‖ is a distance measure associated with a par-
ticular manifold discussed in the following subsection.

3.2. Nonlinear Least Squares Regression on Mani-
folds

The key contribution of this work is the character-
ization of least squares fitting on manifolds. In tradi-
tional applications, the patterns A from Eq. (4) gen-
erally represents a data matrix from a training set,
i.e. a set of training instances. In gesture recognition,
video data consist of spatio-temporal information usu-
ally represented by a high dimensional data structure.
Particularly, in this work, we characterize a video as a
third order tensor and a collection of videos as a set of
third order tensors.
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Figure 1. Factorized elements of HOSVD from a gesture
video. (Left: appearance, Middle: horizontal motion,
Right: vertical motion)

Data tensors are multi-dimensional data objects
equipped with mathematical tools making multiple fac-
tor analysis possible. Considering a video represented
as a third order tensor A, we can apply HOSVD [13]
to factorize the data tensor as

A = S ×1 V
(1)
appearance ×2 V

(2)
h-motion ×3 V

(3)
v-motion (6)

where ×k denotes the mode-k multiplication, S is the
core tensor, and V (k) is the orthogonal matrix spanning
the row space of the unfolded matrix A(k) associated
with nonzero singular values. An example of the fac-
torized elements from a hand gesture video is given in
Figure 1.

Using HOSVD, the nonlinear regression given in
Eq. (4) can operate on unfolded matrices; thus the re-
gression model becomes three separate estimations as

ψ(k)(y) = A(k)(A(k) ? A(k))−1(A(k) ? y(k)) (7)

where k denotes the mode of unfolding, A(k) is a set of
orthogonal matrices factorized from HOSVD, and y(k)

is an orthogonal matrix from the unfolded matrix.
We now take a closer look at what the computation

of a similarity map gives us from Eq. (7). Given p
training videos, (A(k) ?A(k))−1 produces a p×p matrix
from the training set and (A(k) ? y(k)) would create a
p× 1 vector. Therefore, this similarity map provides a
weighting vector characterizing the training data on a
factor manifold as

w = (A(k) ? A(k))−1(A(k) ? y(k)) (8)

where the weighting vector is in a vector space, i,e, w
∈ V.

To incorporate the weighting vector with the least
squares fitting given in Eq. (7) , we make a simple
modification and reformulate the regression as follows

Ψ(k)(y) = A(k) • (A(k) ? A(k))−1(A(k) ? y(k)) (9)

where • is an operator mapping points from a vec-
tor space back to a factor manifold. By introducing
an additional operator, we ensure that both the do-
main values y(k) and the range values Ψk(y) reside
on a manifold. From a function composition point of

Algorithm 1 Weighted Karcher Mean Computation
1: Initialize a base point on a manifold
2: while not converged do
3: Apply the logarithmic map to the training

samples to the base point
4: Compute the weighted average on the tangent

space at the base point
5: Update the base point by applying the expo-

nential map on the weighted average
6: end while

Figure 2. The residual values of tangent vectors.

view, the proposed regression technique can be viewed
as a composition map G ◦ H where H : M −→ V and
G : V −→M where M is a manifold and V is a vector
space.

One possible way to accomplish the mapping G :
V −→ M is to modify the Karcher mean [10]. The
computation of Karcher mean considers the intrinsic
geometry and iteratively minimizes the distance be-
tween the updated mean and all data samples. Since
w is the weighting vector, it naturally produces the
weight between training samples. All we need is to use
the weighting vector to weight the training samples on
a factor manifold. This is equivalent to computing the
weighted Karcher mean, which is an element of a man-
ifold.

Until now, the formulation of our least squares re-
gression is very general. To make it specific for ges-
ture recognition, we impose rotation invariance to the
factorized element V (k) such that they are elements
on a Grassmann manifold and the computation of the
weighted Karcher mean can be realized. Here, we
sketch the pseudo-code in Algorithm 1. As Algorithm
1 illustrates, the first step is to initialize a base point
on a manifold. To do so, we compute the weighted
average from the training samples in Euclidean space
and project it back to the Grassmann manifold using
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QR factorization. Then, we iteratively update the base
point on the Grassmann manifold. The update pro-
cedure involves the standard logarithmic map and the
exponential map on Grassmann manifolds [7] described
as follows

logµ(Yi) = U1Θ1V
T
1 (10)

where µ is the base point, Yi is a training
instance factorized on the Grassmann manifold,
µ⊥µ

T
⊥Yi(µ

TYi)−1 = U1Σ1V
T
1 , Θ1 = arctan(Σ1), and

µ⊥ is the orthogonal complement to µ.

expµ(∆) = µV2 cos(Σ2) + U2 sin(Σ2) (11)

where ∆ is the weighted tangent vector at µ and
∆ = U2Σ2V

T
2 . In addition, the weighted Karcher mean

exhibits fast convergence [3]. A sample run is depicted
in Figure 2. Typically, convergence can be reached
within 10 iterations.

Now, let us get back to the construction of a ker-
nel function. Since the factor manifold V (k) is Grass-
mannian, the similarity map should also relate to the
geodesic distance on Grassmann manifolds. As such,
the RBF kernel function is defined as

x ? y = exp(−
∑
k θk
σ

) (12)

where x and y are the elements on the factor manifold,
θk is the canonical angle [5], and σ is set to 2 in all our
experiments.

To perform gesture recognition, a set of training
videos is collected. All videos are normalized to a stan-
dard size. During the test phase, the category of a
query video is determined by

j∗ = argmin
j
D(Y,Ψj(Y )) (13)

where Y is a query video, Ψj is the regression instance
for the class j, and D is a geodesic distance measure.
Because the query gesture Y and the regression in-
stance are realized as elements on a product mani-
fold [18], we employ the chordal distance for classifi-
cation.

In summary, the least squares regression model ap-
plies HOSVD on a query gesture Y and factorizes it to
three sub-regression models (Ψ(1)

j , Ψ(2)
j , Ψ(3)

j ) on three
Grassmann manifolds where regressions are performed.
The distance between the regression output and query
is then characterized on a product manifold; gesture
recognition is achieved using the chordal distance.

4. Experiments

This section summarizes our empirical results and
demonstrates the proficiency of our framework on ges-
ture recognition. We evaluate our method using two

Figure 3. Hand gesture samples. Flat-Leftward,
Flat-Rightward, Flat-Contract, Spread-Leftward, Spread-
Rightward, Spread-Contract, V-Shape-Leftward, V-Shape-
Rightward, and V-Shape-Contract.

Figure 4. Body gesture samples. First row: Turn Left, Turn
Right, Attention Left, Attention Right, Attention Both,
Stop Left, and Stop Right. Second row: Stop Both, Flap,
Start, Go Back, Close Distance, Speed Up, and Come Near.

publicly available gesture datasets namely Cambridge
Hand-Gesture [12] and UMD Keck Body-Gesture [15].
We further extend our method to the one-shot-learning
CHALEARN gesture challenge [1]. Our experiments
reveal that not only does our method achieve state-of-
the-art performance on the benchmark datasets, but
also it generalizes well on the one-shot-learning.

4.1. Cambridge Hand-Gesture Dataset

Our first experiment is conducted using the Cam-
bridge Hand-Gesture dataset which has 900 video se-
quences with nine different hand gestures (100 video
sequences per gesture class). The gesture data are fur-
ther divided into five different illumination sets labeled
as Set1, Set2, Set3, Set4, and Set5. Example gestures
are shown in Figure 3.

We follow the experimental protocol in [12] where
Set5 is the target set, and Set1, Set2, Set3, and Set4
are the query sets. The target Set5 is further parti-
tioned into a training set and validation set (90 video
sequences in the training set and 90 video sequences in
the validation set). We employ five random trials in se-
lecting the training and validation videos in Set5. The
recognition results are summarized in Table 1 where
the classification rates are the average accuracy ob-
tained from five trial runs followed by the standard de-
viation. As Table 1 shows, our method performs very
well across four different illumination sets. In partic-
ular, the least squares regression further improves the
accuracy of the product manifold representation.

4.2. UMD Keck Body-Gesture Dataset

The UMD Keck body gesture dataset consists of
14 naval body gestures acquired from both static and
dynamic backgrounds. In the static background, the
subjects remain stationary whereas the subjects are
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Table 1. Classification results on the Cambridge Hand-
Gesture dataset (Five trial runs).

Method Set1 Set2 Set3 Set4 Total
Graph Embedding [23] - - - - 82%

TCCA [12] 81% 81% 78% 86% 82±3.5%
DCCA+SIFT [11] - - - - 85±2.8%

RLPP [8] 86% 86% 85% 88% 86.3±1.3%
Product Manifold [18] 89% 86% 89% 87% 88±2.1%

Our Method 93% 89% 91% 94% 91.7±2.3%

Table 2. Classification results on the UMD Body-Gesture
dataset (Static background and Dynamic background).

Method Static-Bg Dynamic-Bg
HOG3D [4] - 53.6%

Shape Manifold [2] 82% -
Prototype-Tree [15] 95.2% 91.1%

Product Manifold [18] 92.9% 92.3%
Our Method 94.4% 92.3%

moving in the dynamic environment during the perfor-
mance of the gesture. There are 126 videos collected
from the static background and 168 videos taken from
the dynamic background. Example gestures are given
in Figure 4.

We follow the experimental protocol in [15] for both
static and dynamic settings. In the static background,
the protocol is leave-one-subject-out (LOSO) cross-
validation. The gestures acquired from the static scene
are used for training while the gestures collected from
the dynamic background are employed as test videos.
The recognition results for both static and dynamic
backgrounds are reported in Table 2. We can see that
our method is competitive to the current state-of-the-
art methods. Unlike the prototype-tree approach de-
pending on the extraction of silhouette images, our
method works directly on the raw pixels making our
method more generic.

4.3. One-Shot-Learning Gesture Challenge

Microsoft Kinect has recently revolutionized gesture
recognition by providing both RGB and depth images.
To facilitate the adaptation to new gestures, Kaggle
is organizing a one-shot-learning challenge for gesture
recognition.

The key aspect of one-shot-learning is to perform
training with a single training example. We extend
our least squares framework by synthesizing training
examples from the original training instance. Conse-
quently, we are able to apply the same algorithm for
the one-shot-learning CHALEARN gesture challenge.

Figure 5. Gesture samples on the one-shot-learning gesture
challenge (devel03, devel10, and devel19).

Table 3. Results on the development data for the one-shot-
learning challenge where TeLev is the sum of the Leven-
shtein distance divided by the true number of gestures and
TeLen is the average error made on the number of gestures.

Baseline Our Method
Batch TeLev% TeLen% TeLev% TeLen%

devel01 53.33 12.22 13.33 4.44
devel02 68.89 16.67 35.56 14.44
devel03 77.17 5.43 71.74 20.65
devel04 52.22 30.00 10.00 2.22
devel05 43.48 10.87 9.78 7.61
devel06 66.67 17.78 37.78 14.44
devel07 81.32 19.78 18.68 3.30
devel08 58.43 12.36 8.99 5.62
devel09 38.46 9.89 13.19 1.10
devel10 75.82 21.98 50.55 1.10
devel11 67.39 18.48 35.87 2.17
devel12 52.81 5.62 22.47 4.49
devel13 50.00 17.05 9.09 2.27
devel14 73.91 22.83 28.26 3.26
devel15 50.00 8.70 21.74 0.00
devel16 57.47 17.24 31.03 6.90
devel17 66.30 32.61 30.43 4.35
devel18 70.00 28.89 40.00 11.11
devel19 71.43 15.38 49.45 3.30
devel20 70.33 36.26 35.16 12.09
Average 62.32 18.01 28.73 6.24

We note that our method does not depend on any third
party computer vision software other than some stan-
dard MATLAB functions.

We assess the effectiveness of the proposed frame-
work on the development dataset for the one-shot-
learning CHALEARN gesture challenge. The develop-
ment dataset consists of 20 batches of gestures. Each
batch is made of 47 gesture videos and split into a
training set and a test set. The training set includes a
small set of vocabulary spanning from 8 to 15 gestures.
Every test video contains gestures from 0 to 5 gestures.

The recognition performance is evaluated using the
Levenshtein distance [14]. Table 3 shows the average
errors over 20 batches. As Table 3 reveals, our method
significantly outperforms the baseline algorithm [1] and
achieves 28.73% average Levenshtein distance per ges-
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ture. This illustrates that our method can be effectively
adopted for one-shot-learning from the traditional su-
pervised learning scheme.

While our method performs well on the one-shot-
learning CHALEARN gesture challenge, it is not a
complete system yet. There are three particular
batches that cause difficulties on our algorithm. These
batches are devel03, devel10, and devel19 where the
example frames are shown in Figure 5. These three
batches share a common characteristic that the ges-
ture is only distinguishable by identifying the hand po-
sitions. Since we do not have a hand detector, the
gross motion dominates the whole action causing it to
be confused with other similar gestures.

Another source of errors is made by the sequence
segmentation. It is supposed that the actor will return
to the rest position before performing a new gesture.
However, this rule has not always been observed result-
ing in a mismatch between the micro-gesture and the
target gesture. Currently, the large error in devel03
is caused by the need for hand positions and sequence
segmentation.

Nevertheless, our method is encouraging since we
are capable of recognizing both hand gestures and body
gestures. Once we have a reliable hand detector, we
expect to further improve gesture recognition from a
single training example.

5. Conclusions

We have presented a least squares regression frame-
work on manifolds and underscored its applicability
on gesture recognition. The principle of our regres-
sion framework is based upon latent geometry in the
data. Taking geometric properties in the least squares
regression framework, we formulate it as a composite
function. Consequently, least squares regression is per-
formed on a manifold. Experimental results demon-
strate that our method is effective for gesture recogni-
tion and generalizes well in one-shot-learning.

Our proposed framework is not limited to gesture
recognition. Future work will focus on exploring other
visual applications and regression models on manifolds.
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