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Abstract

We present a system to classify the gesture from only one
learning example. The inputs are duo-modality, i.e. RGB
and depth sensor from Kinect. Our system performs mor-
phological denoising on depth images and automatically
segments the temporal boundaries. Features are extracted
based on Extended-Motion-History-Image (Extended-MHI)
and the Multi-view Spectral Embedding (MSE) algorithm is
used to fuse duo modalities in a physically meaningful man-
ner. Our approach achieves less than 0.3 in Levenshtein dis-
tance in CHALEARN Gesture Challenge validation batch-
es [1].

1. Introduction
In this paper, we focus on the CHALEARN Gesture

Challenge [1]. There are some unique distinctions in
this dataset from other action/gesture recognition datasets
[17, 2]. We reinstate the major easy/difficult aspects of
the dataset and present our analysis and reasoning to
solve/circumvent the problems as follows:

1.Availability of depth camera: depth cameras sig-
nificantly reduce the huge color and texture variability
induced by clothing, hair and skin. However, some imper-
fection/noise of various sources still exists [15] in current
depth sensors: e.g. reflectance and mismatched patterns.
c.f . to Figure 1, strong existence of salt and pepper noise is
detected as real motion information. A spatial filtering and
a morphological preprocessing step are adopted for noise
reduction in Section 2.1.1.

2.Multiple gestures in testing set: temporally unseg-
mented action sequences are real-world scenario. However,
present action/gesture recognition datasets almost univer-
sally dodge this difficulty by providing training/testing
sequences in a manually segmented manner. In the dataset
of [1], however, the number of gestures contained in a
testing video sequence varies from 1 to 5. Therefore,

Figure 1. Noise in depth image

temporal segmentation is a precondition for gesture recog-
nition. We argue that because of the unique property of this
dataset, i.e. hands return to a resting position between each
pair of neighboring gestures, the temporal segmentation
as a preprocessing step is more effective than the action
localization [16] approach. [24] presents a semi-supervised
action recognition system that breaks down action se-
quences into primitive actions based on a motion history
volume descriptor and automatically discovers the action
taxonomies. Similarly as suggested by [1] that because
hands return to a resting position between each pair of
neighboring gestures, segmentation points occur near the
peaks of hand motions in the lower part of an image. In
our system, instead of using motion information for action
segmentation, we adopt the appearance-based approach as
in Section 2.1.2 and achieve 5% error in the metrics of Lev-
enshtein distance for the verification of segmentation. Also
note that the accuracy for our whole gesture recognition
system is upper bounded by this temporal segmentation
performance.

3.One-shot-learning: only one training example of
each class is considered as the unique trait of this challenge
whilst using more examples per sign typically improves
accuracy (see, e.g. [9, 27]). The standard tools of statistical
machine learning, e.g. classification and regression, have a
chance to be equally matched to modeling purposeful be-
havior in a poor manner; an agent’s goals often succinctly,
but implicitly, encode a strategy that would require tremen-
dous amounts of data to learn. Consequently, in the case of
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insufficient training data being available, complex models
that have the demand of extensive parameters to learn are
very likely to encounter with the over-fitting problem. To
avoid such over-fitting problem in the one-shot-learning s-
cenario, we experimentally find the Maximum Correlations
Coefficient approach most suitable to be applied.

4.Depth & RGB camera decision fusion: how to ef-
fectively utilize multiple inputs to generate an informed
decision is sometimes under-appreciated. Currently, the
most commonly adopted approach when encountering
different types/spectra of features is to concatenate mul-
tiple features into a long vector before the classification
stage and feed this long feature vector into a classifi-
er [12, 23, 20]. Mostly, for the sake of simplification,
different view features are treated independently and have
been ignored by their intrinsic relationships [13]. We argue
that the interleaving relationship between different feature
vectors is lost during this brute-concatenation process, and
the interdependent relationship between different feature
decisions could be better incorporated in an ensemble
system. Moreover, the benefit of multi-spectrum video
fusion always comes with a certain cost and complexity
in the analysis process due to the fact that the involved
modalities have different characteristics. On one hand, the
more pronounced the independence between difference
modalities, the more complementary information can be
gleaned from each of them. On the other hand, there need
to be a sufficient amount of correlations in order to be able
to link features in one modality. We study the Multiview
Spectral Embedding (MSE) in [26] and its derivative of
spectral clustering. Then we present our discovery of the
intrinsic property during the embedding process. With the
brief theoretical analysis in Section 2.1.4, we demonstrate
the effectiveness of the proposed approach by embedding
information acquired from both depth and RGB cameras to
further improve the recognition rate.

2. Experiments
In this section we detail our approach towards solving

the general four issues in Section 1 and present both quan-
titative results and qualitative evaluations of our method on
the CHALEARN dataset [1].

2.1. Methods

Error Metrics: We quantify our recognition rate by
computing the Levenshtein distance between the list of pre-
dicted labels R and the corresponding list of true labels T ,
that is the minimum number of edit operations (substitution,
insertion or deletion) that one has to perform to go from R
to T (or vice versa). This error metrics measurement is also
in accordance with the Leaderboard in [1] and we refer this
error metrics as LD from now on.

Figure 2. Top left: background segmentation; top right: depth im-
age after noising; Bottom row: HOG descriptor for temporal seg-
mentation. As it can be seen that the starting frame(bottom left)
and the ending frame(bottom right) are quite similar to each other
whereas in the midst of action (bottom middle), there is a substan-
tially spatial difference.

2.1.1 Preprocessing: Background Separation and
Noise Reduction for Depth Images

Taking advantage of the unique property of the depth sensor,
from which human silhouettes can be easily segmented, we
firstly segment human bodies from the background using
Otsu’s method of global image threshold [14] as shown in
Figure 2 (top left). The resulting noise pattern in depth im-
ages resembles salt and pepper noise. We then use a spatial
filtering and a morphological process for noise reduction. A
median filter provides excellent salt and pepper noise reduc-
tion with considerably less blurring. As in [15], we adopt
a 5 × 5 aperture median filter. Then, morphological pro-
cess is used for further noise reduction. Specifically, we
use opening operation which consists of erosion followed
by dilation to smooth the outers, split the narrow region and
remove the thine perimeter. Thus, the opening operation
removes randomly generated noise and smooths the origi-
nal image. The resulting depth image is shown in Figure
2 (top right). When the noise reduction method is applied
to the motion image generated from the depth sensor, the
resulting motion description is less prone to faulty defects
from the depth sensor. These operations are highly effective
for the depth image noise reduction especially if the action
descriptor is motion-based as in our system. Experimental
result shows that the noise reduction method can improve
the performance in terms of LD as much as 9%.

2.1.2 Temporal Segmentation

For temporal segmentation, we adopt the appearance based
approach. Because hands return to a resting position be-
tween each pair of neighboring gestures, we aspire to find
the frames that are similar to the beginning and ending
frame in the unsegmented testing video sequence and define
them as the interval frames between two gestures in a video
sequence. A simple but effective option to retrieve simi-
lar frames is to divide a single frame into a N × N lattice
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and use the histogram of oriented gradients (HOG) [7] as
the cell descriptor with B number of bins. Hence, a single
frame can be represented as a feature vector of N ×N ×B
dimension. Then we use the k nearest neighbor approach to
search for frames that are similar to the beginning and end-
ing frame. Some implementation details worth mentioning
here: first is how many similar frames should we search in
this unsegmented video? Our solution is to first store the
training example’s average frame number L and when there
is a test sequence, we make an rough estimation of gesture
number as the quotient Q of test sequence frame number F
and the average training tokens’ frame number L. Then, the
estimated frame number to retrieve isNr×Q. In our imple-
mentation, Nr is chosen as 8 by cross validation. After the
similar frames being retrieved, a max pooling approach [18]
is used to aggregate interval frames. We then merge mini-
mal segmented sequences if the total action tokens segment-
ed exceed the number of 5, which is the maximum gesture
number for one test sequence in this dataset. Generally, the
more lattices that one frame picture is divided into, the more
accurate it is to segment action sequence. However, through
our experiments, the varying of HOG grid size has little im-
pact on temporal segmentation performance. Consequently,
taking the computational cost into consideration, there is no
significant point to set the size of the HOG grid into small
values. In our experiment, bin number B is 9 and two lat-
tice types were tested, i.e. 8× 8 and 16× 16. In the case of
8× 8, LD is 6.764% and for 16× 16 is 5.235%. Note that
as we mentioned in Section 2, accuracy for our whole ges-
ture recognition system is upper bounded by this temporal
segmentation performance.

2.1.3 Motion Descriptors and Scheme for Classifier

We experiment extensively on different motion descriptors
and classifiers and via comparison we discuss our method-
ological insights. Our final adopted approach is Extended-
MHI for action descriptor and Maximum Correlation Coef-
ficient for classifier. The results are reported on the first 20
development batches unless otherwise we explicitly state on
the validation dataset.
Cons for local method: Spatio-temporal features [8, 11]
have shown success for many recognition tasks where pre-
processing methods such as foreground segmentation and
tracking are not possible. However, their computational
complexity hinders their applicability in real-time appli-
cations. Wang et al. [23] showed that the average time
for spatio-temporal feature extraction varies from 0.9 F-
PS to 4.6 FPS, which makes the STIP features too time-
consuming in computation. Another major limitation of the
local feature based methods is that the sparse representation
such as bag-of-visual-words (BoVW) discards geometric
relationship of the features and hence is less discriminative.

Figure 3. Spatial temporal interest points in white bounding box
of three different gesture tokens.

We experiment on depth image using Dollar’s method [8]
for STIP detection, HOG3D [10] for cuboid descriptor, ker-
nel codebook [21] for encoding and SVM [4, 6] for classify-
ing BoVW model. The result shows that the LD is merely
0.7232 and is even worse than the baseline of 0.5998. We
argue that the reasons behind local BoVW method’s inef-
fectiveness in gesture recognition lie in the following two
aspects: 1) low interclass variation between different ges-
tures makes local methods and their corresponding descrip-
tors less discriminative. c.f . Figure 3, although motion in-
terest points have been successfully detected around arms
and hands area, similarity of interest points around bend-
ing elbows could hinder the discriminative power of local
patch; 2) one-shot-learning renders it difficult to distinguish
the most informative local patch in a BoVW model, espe-
cially temporal sequence has been discarded through the
construction process of histogram. Insufficient training ex-
ample would be very likely to lead to the failure in this his-
togram based approach.
Cons for generative models and others: Under the one-
shot-learning configuration, traditional generative model-
s, e.g. HMM, would be very likely to fail due to lack of
training data and the consequently caused overfitting prob-
lem. In the meanwhile, for some discriminative models,
one-shot-learning also restrains their discriminative power:
e.g., for SVM, a single training example can not effective-
ly define its hyperplane for discriminating multi-class; for
Adaboost, certain quantity of positive and negative exam-
ples are needed to train the weak classifiers; the decision
trees methods, e.g. Random Forest [5], require hundreds
of thousands of training samples to avoids overfitting [19].
Comparatively, nonparametric methods, e.g. nearest neigh-
bor, maximum correlation coefficient, etc. work surprising-
ly well for one-shot-learning because they are intrinsically
template matching metrics and will not suffer from overfit-
ting problems.

Our approach: Extended-MHI and Maximum Correla-
tion Coefficient
Motion Templates: motion energy images (MEI) and mo-
tion history images (MHI) proposed by Davis and Bobick
[3] are used to represent the motions of an object in video.
All frames in a video sequence are projected onto one im-
age across the temporal axis. As where and how motion
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happens are recorded in the images, MHI captures the tem-
poral information of the motion in a sequence. Assume
It = (I1, I2, . . . , InFrames) ∈ <3 is a gray scale image se-
quence and letBt = (B1, B2, . . . , BnFrames−1) ∈ <3 be a
binary image sequence indicating regions of motion, which
can be obtained from image differencing and thresholding:

Bt =

{
1 if (It+1 − It) > Threshold,
0 otherwise. (1)

where threshold is defined as:

Threshold =

√√√√nFrames∑
t

σt/(h× w × nFrames) (2)

where σt is the second moment (variance) of a single frame
It; h,w, nFrames are the height, width and frame number
of that video sequence.

The motion history image (MHI) H(t; τ) is used to rep-
resent how the motion image is moving, and is obtained
with a simple replacement and a decay operator:

H(t; τ) =

{
τ if Bt = 1,
max(0, H((t− 1); τ)− 1) otherwise.

(3)
We observe that the larger τ , the more information is

encoded. Therefore, we set τ as the duration of the whole
action to preserve the whole sequence motion trail. The re-
defined version of MHI is:

H̃(t; τ) =

{
τ if Bt = 1,

H̃(t− 1; τ)− 1 otherwise.
(4)

Note that there is no maximum operator in front of H̃τ

c.f . Eq. (3) because setting τ as the sequence duration will
lead to non-negativity of H̃(t; τ).

We further extend motion templates to Extended-MHI as
the early fusion of MHI with two more elements: gait ener-
gy information (GEI) and inversed recording (INV):
Gait energy information (GEI) is to compensate for the non-
moving regions and the multiple-motion-instants regions of
the action. The summation of all image pixels and normal-
ization of the pixel value define GEI:

G =
1

τ

τ∑
t=1

It (5)

Inversed recording (INV) is used to recover the loss of ini-
tial frames’ action information when setting τ as the whole
action duration and is defined as follows:

Ĩ(t; τ) =

{
τ if Bt = 1,

Ĩ(t+ 1; τ)− 1 otherwise.
(6)

Note that its subtle difference to Eq. (4) is the time variable
becomes t+1 instead of t− 1 from which we get the name

Figure 4. Illustration of the MHI, INV and GEI in two tokens (top
row and bottom row). The projection images show that MHI em-
phasizes recent motion, i.e. ending frames whilst INV the begin-
ning frames. GEI encodes the average gait information and is sup-
plementary in repetitive actions where both MHI and INV are poor
at representing.

Inversed Recording. The extended-MHI has been applied
to action recognition in [25] and proved to outperform the
original MHI.

We reason the complementary property of our extended-
MHI as MHI is poor at representing repetitive actions and
INV provides complementary information by emphasizing
(assigning larger value) at initial motion frames instead of
the last motion frames. Figure 4 illustrates the similarities
and differences between MHI,GEI and INV of two gesture
tokens. The first columns are the MHI projections, second
are the INV projections and the last are the GEI projection-
s. Again, the projection graphs show that MHI emphasizes
recent motion, i.e. ending frames whilst INV the opposite.
Hence the combination of the two is complementary. Fur-
thermore, GEI encodes the supplementary information in
repetitive actions where both MHI and INV are poor for the
representation. Then, we reduce the dimensionality of each
projection by dividing the projection into a 16 × 16 lattice
using HOG as the feature descriptor and concatenate three
vectors into a long feature vector. Supervised linear dis-
criminant analysis (LDA) is adopted for the final stage of di-
mensionality reduction. The experimental results in Table 1
prove the viability of our conjecture. Note that in order to
have a fairer comparison between different algorithms, we
use the action boundaries provided by [1] for development
batch instead of using the temporal segmentation results in
Section 3.2 and MSE in Section 3.4 is also used for RGB
and depth camera fusion so that irrelevant influences can be
reduced to a minimum.

For the matching metric, nonparametric methods is more
advantageous by avoiding the issue of overfitting. In our
experiment, Maximum Correlation Coefficient works best.
The correlation coefficient is defined as:

ρ =
σxy
σxσy

(7)
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Methods GEI MHI INV Extended-MHI
LD 0.2761 0.3010 0.3022 0.2600

Table 1. Performance comparison of three elements in Extended-
MHI

where σxy is the covariance of two feature vectors x and y,
and σx, σy are the variances.

2.1.4 Multiview Spectral Embedding (MSE) for Data
Fusion

To effectively and efficiently learn the complementary na-
ture of different views, we adopt the spectral methods in
[26] to search for a low dimensional representation and suf-
ficiently smooth embedding over all views simultaneous-
ly. [22] elegantly presents the intuition behind why spec-
tral clustering works. We briefly state the core algorithm
in MSE and further cast light on the unaddressed dimen-
sionality problem in [26] by Graph Cut point of view. For
notational details, please refer to the paper [26]. Firstly, we
construct the graph Laplacian Li for each view i. The nor-
malized graph Laplacians we choose for the system is Lsys
as it is a symmetric matrix. Then we introduce a weight αi
to encode the significance for each view i. We try to find
the low-dimensional embedding by solving:

argmin︸ ︷︷ ︸
Y,α

m∑
i=1

αri tr(Y L
iY T ) (8)

s.t. Y Y t = I;

m∑
i

αi = 1, αi ≥ 0. (9)

where Y is the multiview fused embedding feature vec-
tor in a dimension of d, exponent r is the coefficient for
controlling the interdependency between different modali-
ties/views and should satisfy r ≥ 1. Pronounced indepen-
dence between difference modalities prefers smaller r while
rich complementary prefers larger r. In our system, the val-
ue r has trivial influence over low dimensional embedding
and is set to be 1.5. In our system, we only fuse RGB and
depth camera, hence the number of views m is 2.

Eq. (9) is a nonlinearly constrained nonconvex optimiza-
tion problem and an expectation-maximization (EM) like
iterative algorithm can be used to obtain a local optimal so-
lution. The alternating optimization iteratively updates Y
and α in an alternating fashion. By introducing Lagrange
multiplier λ to take the constraint

∑m
i αi = 1 into consid-

eration, we get the Lagrange function

L(α, λ) =
m∑
i=1

αri tr(Y L
iY T )− λ(

m∑
i

αi − 1) (10)

By setting the derivative of L(α, λ) with respect to αi
and λ to zero, we have

αi =
(1/tr(Y LiY T ))1/(r−1)

(
∑m
i=1 αitr(Y L

iY T ))1/(r−1)
(11)

Here, we cast light on the choice of lower embedding di-
mension d and the interpretation of weights αi dispatched
to different views where the original paper [26] fails to ac-
complish. In the paper of [26], the value of d is acquired
by cross validation. However, we argue that the low dimen-
sion d should be fixed to be the number of gesture class-
1. According to the Graph Cut theorem, the multiplicity
k1 of the eigenvalue 0 of Graph Laplacian L equals the
number of connected components in the graph. Similar-
ly, MSE finds d smallest eigenvalues in the spectrum of L
which corresponds to the smallest variation of the cluster.
The smallest eigenvalue of L is always 0 [22] and the cor-
responding eigenvector is the constant one vector 1 . There-
fore, the veritable number of d should be the number of
cluster/gesture class-1. And the experiments in [26] are in
agreement with our reasoning. Secondly, we explicitly ex-
press the physical meaning of the weights αi as a measure-
ment of the “closeness” of intra-class distance from each
individual view. From Eq. (11), we can see that αi is pro-
portional to the inverse trace of Y LiY T , and

tr(Y LiY T ) =
∑

λi (12)

where λi are the eigenvalues of the Graph Laplacian Li.
Hence, αi ∝ 1/(

∑
λi). In Spectral clustering [22], a smal-

l eigenvalues (closer to 0) represent the the “closeness” of
intra-class distance from each individual view. A well clus-
tered view, i.e., easier to be classified, is more significant
than other views. So a larger αi assigns larger significance
to that view.

We then use the low dimensional multiview fused rep-
resentation Y as the feature vector for Correlation Coeffi-
cient comparison. Note that this approach unsupervisedly
clusters the test set, however it does not violate the compe-
tition rule that allows using unlabeled examples for training
the system. We compare the performance between our ap-
proach against the approach which directly concatenates the
RGB and depth camera feature vector and there is a consis-
tently 4% improvement in LD.

2.2. Performance Evaluation

By the time we are writing this paper, the performance of
our system on validation data batch is 0.29685 and among
the top entries on the public leader board in [1] with LD
less than 0.3. Figure 5 shows our system’s performance on
the first 20 development batches. It can be observed that our
system performs well when there is large amount of motion

1multiplicities: the number of eigenvectors belonging to λi
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Figure 5. Performance on the 20 development data batches

presents in a gesture token, e.g. batch 01, 05, 08, 09 where-
as the performance suffers if the gestures are rather stat-
ic, e.g. batch 03, 10. We reason that our gesture descriptor
is motion based so that little motion and subtle appearance
differences in gesture tokens will degenerate our system’s
discriminative power.

The experiments were done on a Intel 2-core 3.0GHz,
4GB memory desktop in a single thread running MATLAB
and the average training and testing time for a single batch is
around 220 seconds (approximately 20 fps) which is faster
than real time requirement.

3. Discussion and Future Work
We proposed a one-shot-learning gesture recognition

system that utilizes both RGB and depth information from
Kinect sensor. We utilized depth sensor’s unique property
to segment human silhouettes and perform a morpholog-
ical denoising on depth images. Temporal segmentation
was performed on the appearance-based approach and an
extended-MHI representation was adopted as the motion de-
scriptor. We explored the intrinsic property between differ-
ent spectra and made a physically meaningful embedding
of multiviews through Multiview Spectral Embedding. Our
approach achieves the LD less than 0.3 in the [1] compe-
tition and performs at the speed of 20 fps. In the future
work we would like to utilize motions for more accurate
temporal segmentation and state-of-the-art skeleton track-
er [19], which could better assist our system to conquer its
ineffectiveness in discriminating static gestures by relying
on a more advanced appearance-based descriptor.
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