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Abstract

We propose a novel post-processing framework to im-
prove foreground segmentations with the use of Probabilis-
tic Superpixel Markov Random Fields. First, we convert
a given pixel-based segmentation into a probabilistic su-
perpixel representation. Based on these probabilistic su-
perpixels, a Markov random field exploits structural infor-
mation and similarities to improve the segmentation. We
evaluate our approach on all categories of the Change De-
tection 2012 dataset. Our approach improves all perfor-
mance measures simultaneously for eight different basis
foreground segmentation algorithms.

1. Introduction and related work
Segmentation of an image into foreground and back-

ground is arguably one of the most important pre-
processing steps in many computer vision applications. The
goal of change detection, or foreground segmentation, is the
separation of the dynamic foreground from the presumably
static background. A good segmentation of the relevant im-
age regions can greatly improve the performance of applica-
tions building on top of it. For example, people detection is
much easier and computationally more efficient when static
background is reliably removed.

Because of the importance of change detection, there
is a large body of literature and a great number of varia-
tions. However, most algorithms can be classified by how
they model the background and how they compute the dis-
tance of a frame to the background model. The background
model is usually described on pixel level, e.g. by a simple
mean value, by storing a set of samples [4], or by one or
multiple Gaussians [9, 16, 17]. Other approaches use self-
organizing neural maps [11] or non-parametric density es-
timation methods [8]. More comprehensive overviews can
be found in [5, 6, 14].

It is common to post-process a segmentation to improve
results and comparative evaluations can be found in [6, 13].

Typical post-processing methods include noise removal,
morphologic operators, median filtering, but also higher-
level methods such as saliency or optical flow analysis.
Post-processing generally improves the results and can alle-
viate the differences between algorithms [6]. However, the
methods and their parameters must, in general, be chosen
carefully depending on the sequence [13].

Independent of the segmentation algorithm or post-
processing method, most approaches are based on pixels.
But pixels are a result of the sensors we use, not meaningful
units by themselves. In addition, they are very susceptible
to noise. Superpixels, on the other hand, are a higher-level
image representation that partitions an image into meaning-
ful regions. Their key property is that they align well with
object boundaries. They are more robust to noise than pixels
and serve well to represent objects in the image. Therefore,
they can be used as atomic primitives in image processing
applications. We use an improved variation of the super-
pixel segmentation algorithm SLIC [2] that was proposed
in [15]. [15] generally maintains a lattice-like structure [12]
due to the initial rasterization. This means that the superpix-
els conform to a grid with known and fixed neighborhoods,
like pixels in an image. This property is only weakly guar-
anteed, but we can nevertheless exploit it in the Markov ran-
dom field (MRF). While there are segmentation approaches
based on superpixels [3, 10], we are unaware of superpixels
being used in a post-processing framework.

In the remainder of this paper, we will introduce a novel
post-processing framework based on Probabilistic Super-
pixel Markov Random Fields (PSP-MRF) to improve a
given foreground segmentation. We show evaluations of
eight benchmark algorithms for all categories of the Change
Detection 2012 dataset before concluding with a discussion.

2. Probabilistic Superpixel Markov Random
Fields

We will first introduce the concept of probabilistic super-
pixels before incorporating them in a Markov random field.
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(a) Input (b) Segmentation (c) Superpixels (d) Probabilistic superpixels (e) Final segmentation

Figure 1. Visualization of the processing pipeline. Based on the input, the superpixels are computed. Combining them with the segmen-
tation leads to probabilistic superpixels with white regions indicating a high foreground probability. The final segmentation shows a clear
improvement.

2.1. Probabilistic superpixels

We will now introduce the term probabilistic superpixel
and explain how to compute them. For a more visual ex-
planation, we refer to Figure 1. A probabilistic superpixel
gives the probability that its pixels belong to a certain class.
In this paper, we consider two classes: foreground and
background. Therefore, a probabilistic superpixel gives the
probability of its pixels belonging to the foreground.

Let F be the foreground segmentation of image I and
S its superpixel segmentation. Let S ∈ S be a superpixel
with pixels p ∈ S and |S| its size. Let F (p) be 1 if pixel p
belongs to the foreground and 0 otherwise. Then, the prob-
ability of superpixel S belonging to the foreground is given
by

p(S) =

∑
p∈S F (p)

|S|
. (1)

Probabilistic superpixels have several advantages. Their
shape only depends on the image, not on the foreground
segmentation. Because they accumulate foreground pixels,
they are therefore able to restore the original shape of the
objects even if the foreground segmentation contains errors.
In addition, they allow to transform any binary segmenta-
tion into a probabilistic one. Further, they can also be ap-
plied to non-binary inputs and extended to multiple classes.
Finally, probabilistic superpixels fit very well into proba-
bilistic frameworks, like Markov random fields, as we will
show now.

2.2. Markov random fields

Superpixels usually provide an over-segmentation of the
image, and in general foreground objects consist of more
than one superpixel. Assuming that nearby superpixels
which are similar in appearance also jointly belong to either
foreground or background, we make use of neighborhood
relationships between superpixels in order to improve the
segmentation. Let us denote the neighborhood of superpixel
S asNS . Note that because of the lattice structure of the su-
perpixels, and considering vertical, horizontal and diagonal
connections, each superpixel has exactly eight neighbors.
Let N = {(S, T ) | S ∈ S, T ∈ NS , id(S) < id(T )} be
the ordered set of all neighboring superpixels in the image.

Following [7], we define an energy function

E(fS)) =
∑
S∈S

US(fS) +
∑

(S,T )∈N

VST (fS , fT ) (2)

over the domain of all foreground/background-labelings
fS ∈ {0, 1}|S|. The segmentation problem can now be seen
as an energy minimization problem, where we seek the f∗S
that minimizes E.

The unary term US(fS) captures the likelihood of super-
pixel S belonging to either foreground or background, and
we define it as

US(fS) =− ln(σ(p(S), θ))fS

− ln(1− σ(p(S), θ))(1− fp) , (3)

where p(S) is given by Eq. (1), and σ(p(S), θ) =

min(1, p(S)·θ0.5 ) is a linear mapping function of the super-
pixel probability.

The relationship between two neighboring superpixels S
and T is modeled by a pairwise term

VST (fS , fT ) = |fS − fT | (λ1 + λ2 · e−β||µS−µT ||) . (4)

It consists of the Ising prior λ1 |fS − fT | and an edge-
sensitive term, which gives a higher penalty if the mean col-
ors µS and µT (computed from the original input image) of
neighboring superpixels S and T are not similar. Parameter
β models the expected color differences and is estimated for
each image as β = (2 ∗ E(||µS − µT ||))−1.

We find the labeling for the superpixels by minimizing
E, i.e. f∗ = argminf E, which can be done efficiently via
graph cuts [7]. Since the number of superpixels is signifi-
cantly lower than the number of original pixels (by a factor
of ∼25 in our experiments), the graph cut computation does
not present a computational bottleneck.

3. Experimental setup
Our post-processing framework works on existing fore-

ground segmentations. To cover a wide range of algo-
rithms, we used pre-computed results of benchmark al-
gorithms made available in the Change Detection 2012
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(a) Original (b) Improved

Figure 2. Original and improved segmentation (”canoe”). Our ap-
proach reduces noise and fills holes, while maintaining the shape
of the objects due to the superpixels.

dataset [1]. The algorithms are Euclidean distance [6]
(EUCL), GMM KaewTraKulPong [9] (GMM Kaew),
GMM Stauffer and Grimson [16] (GMM Stau), GMM
Zivkovic [17] (GMM Zivk), KDE [8], Mahalanobis dis-
tance [6] (MAHA), SOBS [11], and ViBe [4].

Please note that these results were already post-
processed with a 5x5 median filter. We tried to improve
them further by applying common post-processing meth-
ods (e.g. various combinations of morphologic operators).
While this led to an improvement of some performance
measures (e.g. precision), it was at the cost of decreasing
other performance measures (e.g. recall). We will show in
Section 4 that our method simultaneously improves all per-
formance measure of all benchmark algorithms.

We applied our post-processing framework to all cate-
gories and evaluated the results with the tools made avail-
able by [1]. For evaluation, we used the performance mea-
sures used in the Change Detection 2012 challenge [1]: re-
call, specificity, false positive rate (FPR), false negative rate
(FNR), percentage of bad classification (PBC), F-measure,
and precision. We first segmented each input frame into su-
perpixels. Then, based on the existing foreground segmen-
tation, we computed the probabilistic superpixels which
were then used as input for the MRF. The result of the MRF
is the final post-processed segmentation that we used in the
evaluation. For the superpixel segmentation, we chose a
superpixel size of 25 pixels to capture smaller objects and
compactness parameter α = 0.9 as recommended in [15].
For the MRF, we chose λ1 = 0.3, λ2 = 3, and θ = 0.35.
The parameters were kept constant for all benchmark algo-
rithms and for all categories.

4. Evaluation

Table 1 shows the summary results over all categories
for each benchmark algorithm and for the improved seg-
mentation with the proposed framework. The proposed
PSP-MRF achieves the best results for all algorithms and
in all performance measures. It equally improves recall
and precision which also leads to an improvement for the
F-measure. Both the false positive and false negative rates

are reduced and consequently also the PBC, while the speci-
ficity is slightly improved. Note that the span of some of the
performance measures is quite narrow, e.g. the span of the
F-measure is only 0.12 over all benchmark algorithms.

A closer analysis (Table 2) of the improvements shows
that the categories ”dynamic background” and ”camera jit-
ter” benefit the most which is due to the neighboring re-
lations modeled by the MRFs. The ”shadow” category
also benefits strongly from our improvements mainly due
to an increased recall rate without a loss in precision. The
”baseline” category benefits the least from the PSP-MRFs,
mainly because the results were already very good due to
easy video sequences. Due to space limitations, the detailed
results of all algorithms are available for download 1.

Figures 1, 2, and 3 show qualitative examples of the ef-
fect of PSP-MRFs. Noisy regions can be reduced even if
they form relatively large segments. Holes in the segmenta-
tion are also closed. One of the biggest benefits, however, is
the fact that the shape of the objects is maintained after pre-
processing because the superpixels capture the meaningful
object boundaries in the images.

In our prototype implementation, this post-processing
framework achieves up to ten frames per second. There are
many aspects that can be parallelized, and we are confident
that with careful optimization a true real-time implementa-
tion is possible.

5. Conclusion
We proposed a novel post-processing framework to im-

prove foreground segmentations based on Probabilistic Su-
perpixel Markov Random Fields. We evaluated our method
on all categories of the Change Detection 2012 dataset for
eight benchmark algorithms and showed continuously bet-
ter results for all performance measures.

In future work, we want to further investigate the effects
of the underlying superpixel segmentation and incorporate
temporal relationships between frames into the Markov ran-
dom field.
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Algorithm Recall Specificity FPR FNR PBC F-Measure Precision
Eucl [6] 0.7048 0.9692 0.0308 0.0169 4.3465 0.6111 0.6223
Eucl [6] + PSP-MRF 0.7252 0.9699 0.0301 0.0162 4.1821 0.6350 0.6509

GMMKaew [9] 0.5072 0.9947 0.0053 0.0291 3.1051 0.5904 0.8228
GMMKaew [9] + PSP-MRF 0.5221 0.9948 0.0052 0.0284 3.0252 0.6043 0.8359

GMMStau [16] 0.7108 0.9860 0.0140 0.0202 3.1046 0.6623 0.7012
GMMStau [16] + PSP-MRF 0.7302 0.9869 0.0131 0.0196 2.9623 0.6779 0.7202

GMMZiko [17] 0.6964 0.9845 0.0155 0.0193 3.1504 0.6596 0.7079
GMMZiko [17] + PSP-MRF 0.7213 0.9855 0.0145 0.0181 2.9520 0.6821 0.7284

KDE [8] 0.7442 0.9757 0.0243 0.0138 3.4602 0.6719 0.6843
KDE [8] + PSP-MRF 0.7655 0.9760 0.0240 0.0128 3.3419 0.6899 0.7039

Maha [6] 0.7607 0.9599 0.0401 0.0110 4.6631 0.6259 0.6040
Maha [6] + PSP-MRF 0.7784 0.9602 0.0398 0.0100 4.5365 0.6524 0.6395

SOBS [11] 0.7882 0.9818 0.0182 0.0094 2.5642 0.7159 0.7179
SOBS [11] + PSP-MRF 0.8037 0.9830 0.0170 0.0089 2.3937 0.7372 0.7512

ViBe [4] 0.6821 0.9830 0.0170 0.0176 3.1178 0.6683 0.7357
ViBe [4] + PSP-MRF 0.7113 0.9837 0.0163 0.0161 2.9018 0.7006 0.7733

Table 1. Evaluation results for eight benchmark algorithms averaged over all categories of the Change Detection 2012 dataset. Each double
row shows the results of the original segmentation algorithm and the improved segmentation generated by the proposed Probabilistic
Superpixel Markov Random Field (PSP-MRF).

Category Recall Specificity FPR FNR PBC F-Measure Precision
Baseline 0.9193 0.9980 0.0020 0.0026 0.4332 0.9251 0.9313
Baseline (PSP-MRF) 0.9319 0.9978 0.0022 0.0021 0.4127 0.9289 0.9261

Dyn. Back. 0.8798 0.9843 0.0157 0.0009 1.6367 0.6439 0.5856
Dyn. Back. (PSP-MRF) 0.8955 0.9859 0.0141 0.0006 1.4514 0.6960 0.6576

Camera Jitter 0.8007 0.9787 0.0213 0.0075 2.7479 0.70860 0.6399
Camera Jitter (PSP-MRF) 0.8211 0.9825 0.0175 0.0064 2.2781 0.7502 0.7009

Interm. Object Motion 0.7057 0.9507 0.0493 0.0183 6.1324 0.5628 0.5531
Interm. Object Motion (PSP-MRF) 0.7010 0.9530 0.0470 0.0200 6.0594 0.5645 0.5727

Shadow 0.8355 0.9836 0.0164 0.0083 2.3318 0.7717 0.7219
Shadow (PSP-MRF) 0.8736 0.9829 0.0171 0.0067 2.2414 0.7907 0.7281

Thermal 0.5888 0.9956 0.0044 0.0188 2.0983 0.6834 0.8754
Thermal (PSP-MRF) 0.5991 0.9962 0.0038 0.0173 1.9189 0.6932 0.9218

Table 2. Detailed evaluation of the SOBS algorithm for all categories of the Change Detection 2012 dataset. Results for other algorithms
will be made available. Each double row shows the results of SOBS and the improved segmentation generated by the proposed Probabilistic
Superpixel Markov Random Field (PSP-MRF).

References

[1] http://www.changedetection.net/. In Workshop on Change
Detection 2012.

[2] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and
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