
Simultaneous Image Segmentation and 3D Plane Fitting for RGB-D Sensors
- An Iterative Framework

Li Guan Ting Yu Peter Tu Ser-Nam Lim
GE Global Research

1 Research Circle, Niskayuna, NY 12309, USA
{guan,yut,tu,limser}@ge.com

Abstract

In this paper, we segment RGB-D sensor (e.g. Microsoft
Kinect camera) images into 3D planar surfaces. We ini-
tialize a set of plane equations based solely from the depth
(point cloud) information. We then iteratively refine the
pixel-to-plane assignment and plane equations. During this
process, the number of planes are also reduced by merg-
ing adjacent local planes with similar orientations. For the
pixel-to-plane assignment, we treat the image as a Markov
Random Field (MRF), and solve the association problem
using graph-based global energy minimization. We design
the energy terms to encapsulate both appearance cues from
the RGB (color) channels and shape cues from the D (depth)
channel. Experiments show that the use of both appear-
ance and geometry information significantly improves the
segmentation quality, especially so at genuine plane edges
and plane intersections. As a byproduct, the framework also
automatically fills in missing depth information.

1. Introduction

As shown in Fig. 1, an indoor scene usually consists of
a collection of 3D planar surface patches, many of which
are homogeneous, textureless regions, such as walls, table
tops and floors. The knowledge of such planar structure
would benefit numerous practical applications: for scene
understanding and segmentation [22, 37], it not only pro-
vides semantic information of the general orientation of the
scene, but also helps recognize typical objects in the scene;
for Structure-from-Motion (SfM) [13] or multiview stereo,
it helps plane matching to compensate for the lack of visual
feature correspondences; for video denoising and compres-
sion, it helps restore colors based on the spatial consistency
of the pixels in planar regions; and for LIDAR data regis-
tration, it helps Iterative Closest Point (ICP) [42] to more
reliably align partially overlapping 3D point clouds.

Traditionally, for RGB images, only 2D regions can be

(a)   (b)
(c)   (d)

Figure 1. A typical indoor Scene and our plane recovery and seg-
mentation. (a) original RGB frame from the Kinect camera. (b)
depth frame aligned to the RGB view. Black regions indicate pix-
els missing depth values. (c) our final planar segmentation after
the iterative segmentation converges. (d) a novel view of the con-
verged 3D planes. Notice the true plane boundaries are preserved
and pixels missing depth values are assigned with proper values.

segmented based on the color similarity; little better than
that, for 3D point cloud data format, although meaningful
3D planes can be extracted with noise-resistant algorithms
(e.g. RANSAC [11]), the planes tend to be unstable at inter-
sections. They also tend to mistakenly merge visually dis-
tinctive and disconnected patches that are roughly parallel
and have similar depth.

With the recent advances in the RGB-D sensor tech-
nology, such as the Microsoft Kinect, the simultaneously
obtained RGB and depth images provide a chance to ad-
dress the 3D plane segmentation problem beyond traditional
methods. In this paper, we propose an iterative framework
to simultaneously segment 3D planar patches from RGB-
D frames and recover the corresponding plane parameters.
After initialization, for each iteration, every plane equation
is updated given the current pixels belonging to the plane;

978-1-4673-1612-5/12/$31.00 ©2012 IEEE 49



at the same time, we treat the image as a Markov Random
Field (MRF), and solve the segmentation as a “pixel-to-
plane” association problem using graph-based global en-
ergy minimization. We designed the energy terms so that
they capture both the color/appearance and the depth cues.
In addition, the iteration and global optimization will fill in
the missing data (holes) with recovered planes.

2. Problem Overview and Related Work
Before the emergence of the RGB-D technology, image

segmentation and point cloud (or depth image) plane fit-
ting were considered to be two rarely overlapping research
topics, both with quite a long history. For image segmen-
tation, different algorithms have been well categorized in
[16] into thresholding approaches [27, 9], contour-based
approaches [31, 33], region-based approaches [1, 8], clus-
tering approaches [24, 36, 10], and other optimization ap-
proaches, for example Bayesian framework [12] and neu-
ral networks [7]. As shown in later sections, the pixel-to-
plane assignment (segmentation) procedure in our proposed
framework uses thresholding, contour, region and optimiza-
tion techniques to improve the output quality. One notice-
able drawback with these unsupervised image segmentation
techniques is that they lack the knowledge of the underly-
ing scene geometry. Consequently, they tend to either over-
segment due to the ambiguity between textures and real
plane edges, or under-segment if two overlapping shapes
have similar visual appearance.

For plane fitting to a point cloud, a group of algorithms
focus on just fitting one dominant plane to a point cloud,
and treat points outside of the plane as outliers, such as
the RANSAC-like procedures used by the widely-used open
source Point Cloud Library [34]. But a more difficult prob-
lem is to find all possible planes in a scene, and this is
the main target of this paper. It is a very similar prob-
lem to color image segmentation, but the input now is
the 3D point locations, which has been deployed in var-
ious approaches, such as depth discontinuity [2, 35], lo-
cal surface normal similarity [30, 40] and scanline group-
ing [17, 26, 18]. Algorithm-wise, although all above ap-
proaches deploy different methods to handle minor sen-
sor noise, such as consensus [34] and voting [5], and per-
form well when the dataset is of reasonable quality, they
still fall into the category of deterministic methods. When
the data is extremely noisy, probabilistic approaches [39]
can be applied to explicitly model the underlying noise.
System-wise, most of the reported methods use a “bottom-
up” strategy to form planes from pixels. “top-down” meth-
ods [30, 40], on the other hand, start by assigning all the
pixels to one group and fitting a single surface to it. They
then keep subdividing the region until certain designed cri-
teria are satisfied. As shown in later sections, our approach
falls into the deterministic “bottom-up” category that uses

both the depth discontinuity and surface normal similarity
criteria. The main issue with the depth image/point cloud
plane segmentation is that the only available information
is the 3D locations. Although it reflects the general struc-
ture of the scene, it is unstable at the plane intersections,
because points near a two-plane intersections satisfy both
plane equations.

With both the color and geometry information available
in one frame, the RGB-D cameras provide a great oppor-
tunity to combine the advantages of both image segmenta-
tion and plane fitting. Existing RGB-D algorithms focus
on the high level usage or applications of this new tech-
nology, such as object recognition [4], 3D reconstruction
[14], action recovery [25], detection and tracking [23] and
foreground/background subtraction [3]. The only papers
[15, 38] dealing with plane decomposition have not fully
explored the RGB-D information. Although [15] claims to
work with RGB-D cameras, it only uses the depth informa-
tion for fast normal computation and dominant plane clus-
tering. [38] discusses the same RGB-D image multi-plane
segmentation problem. They begin with image segmenta-
tion, then uses N-cut to group super-pixels, and RANSAC
to compute the final plane equations. The main drawback is
that it highly depends on the initial segmentation, and does
not have a refinement mechanism. As the authors pointed
out, their method tends to under-segment and produces a
single plane when two similar-colored planes overlap. It
would not perform well at plane boundaries when two sim-
ilar color planes are intersecting each other, such as at wall
edges. Both the above drawbacks are because their segmen-
tation is a one-pass process and does not have a refinement
stage. Its final result also does not treat pixels with missing
depth information. Recently [37] assigns every pixel in an
RGB-D frame to a high-level object class, such as a book-
shelf, sofa etc. It is a supervised segmentation method in
the sense that it needs to learn the priors for a fixed number
of classes.

In this paper, we segment an RGB-D frame into planar
regions, which is one level lower than semantic segmenta-
tion. Although we also resort to graph-labeling optimiza-
tion, our approach is unsupervised, namely the pixel-to-
label(plane) prior only depends on the geometric property
between the pixel and plane. Our proposal has three main
advantages. First, we view the plane equation recovery and
pixel-to-plane association (segmentation) as two closely re-
lated problems. Unlike existing approaches [15, 38], we
realize that the improvement of the one can help improve
the other. We thus propose to simultaneously refine the two
steps in an integrated iterative framework. This is extremely
effective when dealing with ambiguous pixels near plane
edges/intersections. Second, we try to model the RGB-D in-
formation using consistent energy terms, and solve the seg-
mentation using a global energy minimization framework.

50



The energy representation allows us to flexibly explore a
number of RGB-D cues. Furthermore, the global energy
minimization can be used to fill pixels with missing depth
information. Unlike the bilateral filter type [29] of filling
used in [37] based only on local color information, our fill-
ing scheme uses computed plane equations, which are much
more constrained and accurate. Finally, we choose to ini-
tially over-segment the image and merge them into final
planes as the refinement iterations proceeds. This makes
our approach suitable for general situations, since it waives
the requirement that the number of image regions has to be
a known prior as in many earlier works [41, 28, 37].

The following sections are organized as follows: Section
3 formulates the problem and introduces our solution; Sec-
tion 4 evaluates the algorithm with experiments and analy-
ses; Section 5 discusses a few possible applications, exten-
sions and concludes the paper.

3. General Framework
The complete framework is as shown in Algo. 1. Given

IRGB the RGB image, ID the depth image and K the cam-
era intrinsics as input, the algorithm outputs a set of 3D
planes and their plane-point associations. Later in this sec-
tion, we explain in detail how to initialize the planes and
how to refine the results iteratively using both color and
depth cues in the energy optimization scheme. Also we ex-
plain the criteria to reduce redundant planes and perform
plane merging.

Algorithm 1: RGB-D segmentation.
Input: IRGB , ID and K.
Result: 3D planes and their plane-point associations.
Initialize pixel groups and the corresponding plane
equations of the grouping (Sec. 3.2, Algo. 2);
while pixel-to-plane assignment NOT stable do

Compute new pixel-to-plane assignment via
Fast-PD energy optimization (Sec. 3.3);
Re-compute planes given new pixel assignment;
Merge planes if necessary (Sec. 3.4);

end

3.1. RGB-D View Alignment

Depending on the sensor modality, an RGB-D sen-
sor’s raw color image and depth image are not necessarily
aligned, such as the Kinect sensor. Although some SDKs
provide function calls to align the RGB and depth views of
a Kinect sensor in a black box manner, in general, we can
align such non-aligned RGB-D cameras as follows. Sup-
pose we know the intrinsics of both the color and depth
camera lenses (KRGB and KD respectively) and the rela-
tive location and orientation between the two lenses (R and

t respectively), we are able to find the corresponding RGB
values of any depth image pixel according to Eq. (1).xy

1

 ∼ KRGB [R | t]

d ·K−1D

x′y′
1

 , (1)

where [x, y, 1]′ and [x′, y′, 1]′ are the corresponding image
homogeneous coordinates of the raw RGB and depth image
pixels, and d is the depth value from the depth image.

From now on, we assume that we are dealing with RGB
images IRGB and depth images ID that are aligned. The
sensor intrinsic matrix K is also known. For a 3D surface
location [X,Y, Z]′ in the camera’s coordinate system, its
color and depth information are stored at location [x, y]′ of
IRGB and ID respectively. The values of [x, y]′ can be com-
puted with the expression as in Eq. (2). Note that Z is in
fact the depth value stored at location [x, y]′ in ID. In other
words, our input is a set of 3D point clouds with color in-
formation. xy

1

 ∼ K
X/ZY/Z

1

 . (2)

The coefficients of the plane equation in homogeneous
form [a, b, c, 1]′, such that [X,Y, Z, 1] · [a, b, c, 1]′ = 0, is
the plane normal vector. It can be solved as the null space of
the N matrix consists of the 3D points as in Eq. (3). More
specifically, it corresponds to the rightmost singular vector
of the Singular Value Decomposition (SVD) of N . When
n = 3, the solution is exact. When n > 3, it is equivalent to
a least square solution.

N =


X1 Y1 Z1

X2 Y2 Z2

...
...

...
Xn Yn Zn

 , n > 3, (3)

3.2. Region-growing Plane Initialization

To initialize for the iterative segmentation, we compute a
set of planes directly from the depth image (the point cloud).
Our method is a bottom-up “region-growing” method: we
start from the top-left corner of the image location as a seed
point, check its neighboring pixels to determine whether the
3D points corresponding to these pixels make a reasonable
plane. If so, we keep growing this region until no more
neighboring pixels can be explained by the same plane. We
then move on to the next un-visited pixel as a new seed until
all pixels in the RGB-D image have been explored.

Since the iterative refinement is designed to merge ex-
isting planes rather than generating new planes or splitting
existing planes into sub-planes, one critical requirement is
that the number of seed planes should be larger than the ac-
tual number of planes in the scene. Normally, this require-
ment is satisfied, because our initialization usually consists

51



of more than 100 plane patches, as shown in the leftmost
picture of Fig. 5.

In practice, we apply a few empirical criteria for robust
pixel grouping. First of all, only neighboring pixels whose
corresponding 3D locations are close enough with the ex-
isting plane equation are added for plane growing. This de-
cision is guarded by a threshold tpoint. To some degree, it
avoids the case of using points of two distinctively differ-
ent depth values to compute the one plane equation. It also
avoids using pixels without depth information. Second, we
compute every 3D point’s local normal beforehand using its
local neighborhood region. We vary the neighborhood size
so that it is proportional to the distance of the seed point to
the camera. This complies with the intuition that the larger
the distance, the noisier the depth measurement is, and the
more samples we need to draw to compute a reliable nor-
mal. When we check whether to add a certain 3D point
for plane growing, the angle between the point’s local nor-
mal and the existing plane normal should be smaller than
a threshold tangle. Finally, when no more 3D points in the
neighborhood can be added for the existing plane, we re-
compute the plane equation. We keep the new plane only
when its distance to every contributing point is shorter than
tplane. The complete algorithm is as follows in Algo. 2.

Algorithm 2: Plane segmentation initialization
Input: 3D points computed from K and ID.
Result: 3D planes and their plane-point associations.
compute local normal for every 3D point;
while not all 3D points visited do

pick a seed from the un-visited points;
compute a plane with the seed and its neighboring
points via SVD;
while neighboring points satisfy tpoint and tangle
do

add the point;
re-estimate the plane via SVD;
if new plane satisfies tplane then

update the plane equation and point-plane
association list;

end
end

end

Note that although we have the aforementioned criteria
to enforce the segmentation quality, it is still possible to
mis-classify pixels in the initialization. It is exactly why
we need a framework to refine the plane equations and re-
examine the pixel-to-plane association. Note also that we
only use geometrical information for initialization. Color
information will be used in the iterative refinement.

Also to simplify the computation, especially to reduce

the number of SVD operations, which is computationally
expensive, we only perform plane re-estimation when there
are no more neighboring points that can be added by exam-
ining tpoint and tangle. When the list of points to calculate
the plane equation is larger than 5000, we only randomly
choose 5000 points from the point list for SVD. Progres-
sive SVD solutions such as [32] may also be applicable here
with less computation overhead.

3.3. Graph Optimization

We now iteratively refine the plane equations and pixel-
to-plane associations using all information available from
an RGB-D frame. The reason why we only check color
(consistency) information after the initialization is that col-
ors for a whole plane are not necessarily the same, due to
different textures or unbalanced lighting on the plane. Dur-
ing the iterative refinement, however, we look at the pixel
scale. It is reasonable to assume that neighboring pixels
have similar colors. As shown in Algo. 1, every itera-
tion consists of two steps: pixel-to-plane re-association and
plane equation re-estimation.

We do not want to determine the plane association for a
single pixel at a time. For example, pixels near plane in-
tersections agree with both plane equations. Not to men-
tion that sensor noise could potentially worsen the labeling
quality. Therefore, we have to achieve a global optimal so-
lution or at least within a guaranteed bound. We treat the
image grid of the RGB-D frame as a Markov Random Field
(MRF), and the goal is to assign every pixel to the most
reasonable (maximal posterior probability) plane equation
“label”. As a common strategy [6, 21], instead of directly
solving the probability maximization, we equivalently solve
the energy minimization as a discrete graph labeling prob-
lem in the form of Eq. (4).

EMRF =
∑
X

∑
Y ∈N (X)

EXY (lX , lY ) +
∑
X

EX(lX). (4)

The label set L = {l1, · · ·, ln, φ} represents the n planes
plus a null label φ denoting pixels that do not belong to any
plane. Set N (X) is the 4-connected neighborhood system
of pointX in the 2D graph. EX(lX) is the unary energy. It
only concerns with the likelihood of a pixel’s corresponding
3D point belonging to a plane. EXY (lX , lY ) is the binary
energy. It represents the graph neighborhood similarity or
in other words concerns with the prior probability (cliques).

We measure the unary energy from two aspects: “Point-
Plane Distance” d2p and “Plane Normal Similarity” d2a. The
formulation is shown in Eq. (5)-(7),

EX = d2p · d2a. (5)

52



Point-Plane Distance It is simply the square of the dis-
tance d2p of the 3D point to the candidate plane.

d2p =
(aX0 + bY0 + cZ0 + 1)2

a2 + b2 + c2
, (6)

where aX + bY + cZ + 1 = 0 is the plane equation and
[X0, Y0, Z0]′ is a 3D point’s location.

Plane Normal Similarity The intuition is that for two
points belonging to a same plane patch, not only the 3D
points’ locations should physically be very close, but their
local normals should also be similar to that of the assigned
plane. The more the point’s local normal and the plane nor-
mal agree with each other, the smaller the energy d2a would
be, as in Eq. (7), with a range d2a ∈ [0, 1].

d2a =

(
2− 1

π/2
· arccos (

npoint · nplane
|npoint| · |nplane|

)

)2

. (7)

Although we computed 3D points’ local normal in the
initialization, we revisit the normal computation with the
help of RGB color information. The improvement in the lo-
cal normal computation here also illustrates the reason why
deploying different sensing modalities such as color and
depth is an effective way to achieve higher vision algorithm
quality. The main difference is that instead of using a fixed-
size pixel neighborhood for normal computation, we throw
away the pixels within the neighborhood that are color-wise
inconsistent with the seed pixel. The color consistency mea-
surement is the same as in the Color Similarity discussed
later. Fig. 2 shows the visual difference of the two normal
computations. The visual-aided version has shaper normals
especially at the plane edges.

Figure 2. Normal maps, with R, G, and B channels representing
the three orthogonal components of a 3D normal vector. Left: lo-
cal normals computed from geometric information; Right: visual-
guided local normals, which are sharper and more consistent, e.g.
around plane boundaries near the floor and monitor.

We measure the binary energy from four aspects: “Color
Similarity” d2c , “Mutual Local Distance” d2pp, “Mutual Lo-
cal Normal Angle” d2aa as well as “Visual Edgeness”d2e.
The formulation is shown in Eq. (8)-(12),

EXY = w1d
2
c + w2d

2
pp + w3d

2
aa + w4d

2
e, (8)

where w1 to w4 are the weighing parameters of the system.

Color Similarity d2c is simply the sum of square distance
in the RGB color space:

d2c = (Ri −Rj)
2 + (Gi −Gj)

2 + (Ri −Rj)
2. (9)

Mutual Local Distance d2pp is the sum of square distance
from point X to Y’s local plane and Y to X’s:

d2pp =
(aYXX + bY YX + cY ZX + 1)2

a2Y + b2Y + c2Y

+
(aXXY + bXYY + cXZY + 1)2

a2X + b2X + c2X
,

(10)

where [aX , bX , cX ]′ is the local normal at point X:
[XX , YX , ZX ]′ and [aY , bY , cY ]′ is the local normal at point
Y : [XY , YY , ZY ]′. The local normals are computed with
the help of RGB color information as shown in Fig. 2.

Mutual Local Normal Angle d2aa’s form is similar to Eq.
(7). It is the angle between the local normals of X’s and Y’s:

d2aa =

(
2− 1

π/2
· arccos (

nX · nY
|nX | · |nY |

)

)2

. (11)

Visual Edgeness The intuition is that comparing to nor-
mal pixels, a pixel that is visually an edge is more likely
to be at the intersection between two physical planes. The
edgeness term d2e is measured as the square of local color
image gradient magnitude. Fig. 3 shows the edgeness map
of the RGBD image in Fig 1 (a)&(b).

d2e =

(
∂IRGB

∂x

)2

+

(
∂IRGB

∂y

)2

+

(
∂ID
∂x

)2

+

(
∂ID
∂y

)2

.

(12)

Figure 3. Edgeness maps computed from Eq.(12). Left: edgeness
of the color image in Fig.1 (a); Right: edgeness of the depth image
in Fig.1 (b). Notice some edges are only detectable in one of the
two modalities, e.g. the desk leg and the vertical cabinet edges.

It is easy to see that any one of the above empirical
criterion does not guarantee a 100% correct labeling, but
the combination of all different cues robustifies our re-
association. We choose to solve such discrete graph label-
ing problems using the Fast-PD approach [21] which builds

53



upon principles drawn from the duality theory of linear pro-
gramming in order to efficiently derive almost optimal solu-
tions for a very wide class of NP-hard MRFs [20, 6]. One of
its main advantages is that it handles cost functions with ar-
bitrary pair-wise potentials, lifting the sub-modularity con-
straint of previous approaches [19]. This gives us the free-
dom to develop relatively sophisticated energy constrain-
ing terms, as introduced above, from all the information we
have from the RGB-D channels.

3.4. Plane Re-computation and Merging

From the initialization in Sec. 3.2, we deliberately over-
segment the planes. Now in the refinement stage, in every
iteration, after the point-to-plane assignment is computed,
the plan is to recompute the plane equation parameters and
merge the planes, as in Algo. 1. Once the new plane equa-
tion is computed given the re-assigned points using SVD,
we try to check any two planes to see if they can be merged.
The merging criterion is as follows: Suppose we have two
point lists P1 and P2. We only examine such lists if they
are connected, namely at least one point in P1 and one from
P2 are neighbors with each other. Now suppose P1 is as-
sociated to plane a1X + b1Y + c1Z + 1 = 0, whose av-
erage to-plane distance is d̄1, and P2 is associated to plane
a2X + b2Y + c2Z + 1 = 0, whose average to-plane dis-
tance is d̄2. Denote the angle between the two plane nor-
mals as α, the SVD solution of the merged plane computed
from both P1 and P2 as a0X + b0Y + c0Z + 1 = 0,
and the average to-plane distance from both P1 and P2 to
a0X + b0Y + c0Z + 1 = 0 as d̄0. We merge the two planes
if all terms of Eq. (13) satisfy. α 6 π/18

d̄0 6 1.2d̄1
d̄0 6 1.2d̄2

(13)

4. Experiments and Evaluation

We capture sequences of real indoor scenes under nor-
mal lighting condition with a hand-held moving Microsoft
Kinect camera and perform plane segmentation to all
frames with one fixed set of parameter values. The seg-
mentation results are shown in Fig. 4, in which we com-
pare our results with two benchmark algorithms: the purely
color-based segmentation algorithm (mean-shift clustering)
and a variation of [5], which is a 3D point-cloud plane fit-
ting based on polar-coordinate Hough transform. Since the
distance from a plane to the world space origin is very sen-
sitive to the plane normal errors, unlike [5] which finds the
plane normal and plane-origin distance in one voting space,
we first vote for the plane normal, and refine the distance
by fixing the normal. The dominant planes (voting space
peaks) are depicted in the fourth column in Fig. 4.

Qualitatively, from this comparison we notice the follow-
ing. First, color-only image segmentation may “flood” into
neighboring patches, if the colors are similar, e.g. two ver-
tical wall regions in Fig. 4(2c)&(4c). It would also over-
segment a region if the colors are different, such as the
photos located on the wall in Fig. 4(3c). Second, point-
cloud-based plane fitting does not have sufficient evidence
to extrapolate and fill in missing data such as the occlud-
ing boundary. Whereas, our hole filling guided by the plane
equations and color similarity constraints produces reason-
able results in areas like the ceiling light in Fig. 4(2) and
the monitor rims in Fig. Fig. 4(1)&(4). Third, in order to
maintain robustness against the noise or outliers, pure plane
fitting is incapable of disambiguating two planes whose ori-
entation and distance only have subtle difference, such as
the keyboard and desk top in Fig. 4(1d). But thanks to
the color information from the RGB image, we are able
to recover such slightly different planes. Finally, although
our planar world assumption helps constrain the segmen-
tation in many ways, and is in general suitable for indoor
environment, with non-planar shapes such as the wires in
Fig. 4(2e), the planar approximation may look unnatural,
but still, it is an optimal linear approximation to the surface.

Quantitatively, for the plane fitting quality, the point
clouds to the recovered planes are within a mean distance
of 0.470cm and standard deviation of 0.954. In compari-
son, the baseline method in Fig. 4(d), namely the modi-
fied Hough transform method recovers planes only from the
point cloud with a mean distance of 0.992cm and standard
deviation of 3.664. This shows that we recover a more ac-
curate scene structure than just 3D point cloud plane fitting.

For the segmentation quality, we evaluate both accu-
racy and fragmentation in a single measure Qratio. For
the ground truth, we manually segment a frame into pla-
nar regions. For every ground truth segment Gp, we mea-
sure Qp = |M∗|, where M∗ is the intersection Gp and
the image segment produced by method M that has the
largest overlap with Gp. | · | denotes the area of a segment.

Qratio =
∑n

i=1 |Q
i|∑n

i=1 |Gi| , where n is the number of ground truth
segment. Ideally, if we have a perfect segmentation, namely
the segments all align with the manual result, Qratio should
be 1, otherwise it is between zero and one. The more ac-
curate the segment is to the ground truth, the closer Qratio

value is to 1. The fewer pieces a ground truth segment is
broken into, the closer Qratio value is to 1. We measure
Qmean shift

ratio = 0.7653 and Qour method
ratio = 0.9156. This

again indicates that our method produces better segmenta-
tion than color-only segmentation.

Convergence and speed. For all 80 frames, the algorithm
converges within 30 iterations. Fig. 5 shows a number of
intermediate labeling for the frame in Fig. 1(a)&(b), which

54



Figure 4. Algorithm result comparison. Each row shows the inputs and results of an RGB-D frame. Our approach which uses both color and
geometry information clearly out-performs the two baseline approaches: the mean-shift color image segmentation [10] and a modification
of [5] that uses Hough transform for 3D point cloud plane fitting.

converges in 17 iterations. We observe that the initial planes
with more than one hundred labels quickly reduce to a few
labels just after one iteration, due to the labels’ spatial con-
sistency enforced by the pair-wise graph energy. Planes are
further merged and refined until they converge. In terms
of computation speed, we tested our single-thread C++ ver-
sion on 3.2GHz a quad-core machine with 3.26GB memory.
It takes about 20 sec. to initialize the plane patches due to
region-growing with SVD re-computation, which can be ac-
celerated similar to [32] and with a GPU parallelized seed
testing. Every main iteration takes about 2 seconds.

5. Discussion

In this paper, we introduced an iterative framework for
simultaneous 3D plane segmentation and refinement from
RGB-D images. This framework is mostly suitable for an
indoor scene consisting of planar surfaces. It combines both
the color and geometry information available in an RGB-D
frame and does not need to know the number of existing
planes in advance. The geometry-guided hole filling can be
beneficial to many applications.

Future work includes algorithm speed up and exploring

more complicated shapes beyond 3D planes. Although pla-
nar surfaces are the main structures in an indoor scene, we
can extend to work with more sophisticated structures, as
long as the analytical representations are known, such as
cylinders or spheres. The proposed iterative framework is
exactly the same to segment a scene and simultaneously re-
cover the structure equations.

References
[1] J. Adams and L. Bischof. Seeded region growing. PAMI,

1994. 2
[2] B. Bhanu, S. Lee, C. Ho, and T. Henderson. Range data

processing: representation of surfaces by edges. ICPR, 1994.
2

[3] A. Bleiweiss and M. Werman. Robust real fusing time-of-
flight depth and color for real-time segmentation and track-
ing. DAGM Workshop on Dynamic 3D Imaging, 2009. 2

[4] L. Bo, K. Lai, X. Ren, and D. Fox. Object recognition with
hierarchical kernel descriptors. CVPR, 2011. 2

[5] D. Borrmann, J. Elseberg, K. Lingemann, and A. Nuchter.
The 3D hough transform for plane detection in point clouds -
a review and a new accumulator design. 3D Research, 2011.
2, 6, 7

55



Initialization                                  Iter. 1                                                  Iter. 2                                              Iter. 4                                               Iter .17

Figure 5. Algorithm convergence analysis. For initialization, more than 100 plane patched are formed, the majority of which are at the real
plane boundaries which are merged in later steps.

[6] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate en-
ergy minimization via graph cuts. PAMI, 2001. 4, 6

[7] N. Campbell, B. Thomas, and T. Troscianko. Automatic seg-
mentation and classification of outdoor images using neural
networks. International Journal on Neural Systems, 1997. 2

[8] Y. Chang and X. Li. Adaptive image region growing. IEEE
Transaction on Image Processing, 1994. 2

[9] M. Cheriet, J. Said, and C. Suen. A recursive thresholding
technique for image segmentation. IEEE Transaction on Im-
age Processing, 1998. 2

[10] D. Comaniciu and P. Meer. Mean shift: A robust approach
toward feature space analysis. PAMI, 2002. 2, 7

[11] M. Fischler and R. Bolles. Random sample consensus: A
paradigm for model fitting with applications to image analy-
sis and automated cartography. Com. of ACM, 1981. 1

[12] S. German and D. German. Stochastic relaxation, gibbs dis-
tributions, and the bayesian restoration of images. PAMI,
1984. 2

[13] R. Hartley and A. Zisserman. Multiple view geometry in
computer vision. Cambridge University Press, 2003. 1

[14] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. RGB-
D mapping: Using depth cameras for dense 3d modeling of
indoor environments. RGB-D workshop, RSS, 2010. 2

[15] D. Holz, S. Holzer, R. B. Rusu, and S. Behnke. Real-time
plane segmentation using RGB-D cameras. RoboCup Sym-
posium, 2011. 2

[16] B. Jeon, Y. Yung, and K. Hong. Image segmentation by un-
supervised sparse clustering. WACV/MOTION, 2005. 2

[17] X. Y. Jiang, U. Meier, and H. Bunke. Fast range image seg-
mentation using high-level segmentation primitives. WAVI,
1996. 2

[18] I. Khalifa, M. Moussa, and M. Kamel. Range image seg-
mentation using local approximation of scanlines with appli-
cation to CAD model acquisition. Machine Vision Applica-
tions, 2003. 2

[19] V. Kolmogorov and R. Zabih. What energy functions can be
minimized via graph cuts? PAMI, 2004. 6

[20] N. Komodakis and G. Tziritas. Approximate labeling via
graph-cuts based on linear programming. PAMI, 2007. 6

[21] N. Komodakis, G. Tziritas, and N. Paragios. Fast, approx-
imately optimal solutions for single and dynamic MRFs.
CVPR, 2007. 4, 5

[22] K. Lai, L. Bo, X. Ren, and D. Fox. A large-scale hierarchical
multi-view RGB-D object dataset. ICRA, 2011. 1

[23] M. Luber, L. Spinello, and K. Arras. Learning to detect and
track people in rgbd data. RGB-D workshop, Robotics Sci-
ence and Systems conference, 2011. 2

[24] L. Lucchese and S. K. Mitra. Unsupervised segmentation of
color images based on k-means clustering in the chromaticity
plane. IEEE Workshop on Content-based Access of Images
and Video Libraries, 1999. 2

[25] D. Ly, A. Saxena, and H. Lipson. Pose estimation from a
single depth image for arbitrary kinematic skeletons. RGB-
D workshop, RSS, 2011. 2

[26] E. Natonek. Fast range image segmentation for servicing
robots. ICRA, 1998. 2

[27] R. B. Ohlander. Analysis of natural sciences. PhD Thesis,
Carnegie-Mellon University, Pittsburgh, 1975. 2

[28] M. Omran, A. Engelbrecht, and A. Salman. Dynamic clus-
tering using particle swarm optimization with application in
image segmentation. ICCI, 2005. 3

[29] S. Paris and F. Durand. A fast approximation of the bilateral
filter using a signal processing approach. ECCV, 2006. 3

[30] B. Parvin and G. Medioni. Segmentation of range images
into planar surfaces by split and merge. CVPR, 1986. 2

[31] W. A. Perkins. Area segmentation of images using edge
points. PAMI, 1980. 2

[32] J. Poppinga, N. Vaskevicius, A. Birk, and K. Pathak. Fast
plane detection and polygonalization in noisy 3D range im-
ages. IROS, 2008. 4, 7

[33] J. M. Prager. Extracting and labeling boundary segments in
natural sciences. PAMI, 1980. 2

[34] R. Rusu and S. Cousins. 3D is here: Point Cloud Library
(PCL). ICRA, 2011. 2

[35] A. Sappa and M. Devy. Fast range image segmentation by
an edge detection strategy. 3DIM, 2001. 2

[36] J. Shi and J. Malik. Normalized cuts and image segmenta-
tion. PAMI, 2000. 2

[37] N. Silberman and R. Fergus. Indoor scene segmentation us-
ing a structured light sensor. ICCV Workshop on 3D Repre-
sentation and Recognition, 2011. 1, 2, 3

[38] C. Taylor and A. Cowley. Segmentation and analysis of rgb-
d data. RGB-D Workshop, Robotics Science and Systems
conference, 2011. 2

[39] J. Weingarten, G. Gruener, and A. Dorf. Probabilistic plane
fitting in 3D and an application to robotic mapping. ICRA,
2004. 2

[40] R. Xiang and R. Wang. Range image segmentation based on
split-merge clustering. ICPR, 2004. 2

[41] Y. Zhang. Image engineering and related publications. Inter-
national Journal of Image and Graphics, 2002. 3

[42] Z. Zhang. Iterative point matching for registration of free-
form curves and surfaces. IJCV, 1994. 1

56


