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Abstract

A novel approach to object recognition based on shape
matching of repeatable segments is presented. The moti-
vation is to increase the recognition system robustness in
handling problems such as noise corruption at a local level,
featureless surfaces, and variations in 3D data sources. In-
spired by the detection of repeatable interest points, interest
segments were extracted through region growing and the re-
construction of piece-wise boundary curves from connected
interest points. An object pose is automatically estimated if
only one of the repeatable scene segments can be matched
and aligned correctly with a model segment. To demon-
strate this capability, shape matching of selected segments,
filtered by size, were registered using the 4 points congru-
ent sets (4PCS) algorithm and compared with an overlap
metric. Three different free-form objects were evaluated
against nine different occluded and cluttered 2.5D scenes. It
was found that on average 1.4± 0.8 scene segments can be
matched correctly to a model segment in the database, in-
dicating that a highly robust object recognition system will
result.

1. Introduction
Two common approaches to the problem of object recog-

nition in 3D data are Local Shape Descriptors (LSDs) and
global shape matching. The LSD approach relies on en-
coding geometric characteristics within a local neighbour-
hood into multi-dimensional vectors (i.e. features), and es-
tablishing one-to-one point correspondences by comparing
scene features to a database of model features. LSDs can
be quite effective at recognizing objects in cluttered or oc-
cluded scenes [6] [11] [16] [17], but a lack of distinctive lo-
cal features, noise corruption of the 3D data, or differences
between the resolutions of the scene and model data can ad-
versely affect the performance of LSD-based recognition.
Alternately, global shape matching methods are more re-
silient to changes at the local level since the entire shape
is considered, but typically global methods require the tar-

get object to be first isolated from the scene [1] [12]. They
therefore become less effective in cluttered and occluded
2.5D scenes.

In light of the limitations of each of these approaches,
the present study investigates the extraction of interest seg-
ments that can be used to facilitate shape matching of 3D
data in possibly cluttered and occluded scenes. Segments
have been demonstrated to be a strong candidate to gener-
ate object recognition events in 2D images such as texton
boosting [13]. In our previous work [9], it was shown that
interest points can be used to robustly generate repeatable
3D segments, resulting in the same (or similar) segments
under a variety of different conditions (e.g. viewpoint, noise
levels, sensor mode, resolution, etc.). The segments tend to
be repeatable follows from the characteristic that the inter-
est points upon which they are based are highly repeatable.
Indeed, while interest points are not attributed like features,
and therefore lack the distinctiveness that is essential for
generating meaningful correspondences, they do tend to be
highly repeatable, which is one of the main characteristics
that supports their utility.

In this work, we demonstrate that repeatable segments
can be coupled with a shape matching method to effec-
tively recognize 3D objects in cluttered and possibly oc-
cluded 2.5D scenes. The interest segments can either be
used to drive part labelling and object detection using shape
indexing, or they can alternately be used to generate fea-
tures for establishing one-to-one correspondences. Indeed,
if the segments are sufficiently distinct, then only a small
number (minimally just one) of segments need be repeat-
ably extracted for a given object viewpoint, in order to yield
a successful recognition event.

An algorithm was previously presented for extracting in-
terest segments from free-form objects in 3D point clouds
[9]. The technique is a combination of a sequence of pro-
cesses that includes: a) the extraction of interest points,
also referred to as keypoints; b) piece-wise linear curve re-
construction, and; c) region growing. Interest points, of-
ten selected as a sparse subset of points around which to
construct features in LSD-based object recognition, are ex-
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Figure 1: Segmentation based on interest points: Original
models (1st column); Corresponding 3D point clouds (2nd

column); DoN interest points (3rd column); Piece-wise lin-
ear curve reconstruction (4th column); Interest segments
(5th column)

tracted from the data using interest operators based on a
saliency measure of the 3D surface [10] [14] [15] [17] [18] .
Interest points are then joined into piece-wise linear curves
that act as boundaries for region growing, thus achieving the
segmentation of free-form surfaces.

The contribution of this work is twofold. First, a segment
merging method is introduced which improves upon shape
matching when the scene data is over-segmented compared
to the model data (which is the desired condition). The sec-
ond contribution is a set of quantitative experiments con-
ducted to investigate the shape matching ability of repeat-
able interest segments extracted from 3D data under var-
ious conditions. These experiments include comparisons
between the segmentation of complete 3D models with var-
ious 2.5D scenes, including cluttered and occluded scenes
containing multiple objects.

2. Related Work
Object recognition that relies on matching point corre-

spondences using LSDs have become a common accepted
object recognition paradigm in recent years. Many 3D
LSDs have been proposed, including Spin Images [6], Point
Fingerprint [16], Shape Context [11], and recently Variable
Dimensional LSDs [17]. Object recognition that is based
on matching LSDs can be broken down into three stages:
1) The selection of points (interest points) to generate the
LSDs; 2) Generation of LSDs, and; 3) Comparison and
matching of LSDs.

To compensate for the usually high dimensionality of the
LSDs, and the relative expense of generating them, interest
operators are often utilized to select a small subset of repeat-
able points for the generation of only a small number of dis-
tinctive LSDs. A few existing 3D interest operators include
the Eigenvector-based operator [10], Laplacian-based oper-
ator (also a interest region operator) [18], and the 3D Harris
operator [14]. Both Laplacian and Harris operators are 3D
extensions to classical 2D operators used widely within the
computer vision community. In most cases, a non-maxima
suppression step is applied to filter out 3D points that are
not a local maximum, so that the extracted interest points
are sufficiently separated spatially.

The segmentation of 3D data in early work mainly deals
with range images or depth maps, as opposed to unordered
point clouds. Most developed techniques usually treat ob-
jects as a combination of different surface patches and edges
that can be described in parametric space, which include
methods such as clustering points based on surface proper-
ties [3], robust variable-order surface fitting using the H-K
mapping [2], and extraction of primitives with the General
Hough Transform (GHT) [19]. These methods are usually
divided into edge-based, surface-based, and hybrid edge-
surface-based approaches. The major limitation of these
techniques is that objects with irregular shapes, such as free-
form surfaces, cannot be properly segmented.

The 3D mesh is another format for representing 3D ob-
jects, and a popular approach to mesh segmentation is ap-
plying graph cuts and energy minimization [8]. Recently,
[7] considered the problem of identification and labelling of
3D mesh segments from isolated objects using probabilis-
tic learning. The conditional random field (CRF) was em-
ployed to survey a collection of common 3D features that
include both single features (e.g. PCA singular values) and
pairwise features (e.g. dihedral angles). It can be concluded
that previous work usually treats segmentation and recogni-
tion as two separate problems in the 3D domain, unlike the
present study in which segmented results are directly used
as the input for an object recognition system.

3. Interest Segment Extraction
The methodology proposed here is based on the observa-

tion that interest points can be localized repeatably using in-
terest operators. By applying techniques such as RANSAC
[4] and nearest neighbour search, boundaries in the form
of piece-wise linear curves are constructed from sets of ad-
jacent interest points. Interest segment extraction is then
achieved by applying region growing, where segments are
localized by finding points within a region that is bounded
by the interest curve boundaries. Fig. 1 demonstrates the in-
termediate results for various 3D objects at different stages
of the segmentation process. The processes described in
Sec. 3.1, Sec. 3.2, and Sec. 3.3 have been previously pre-
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sented in our recent work [9], but are repeated here for com-
pleteness. The techniques described in section Sec. 3.4 and
the remainder of the paper are novel contributions.

3.1. Detection of Interest Points

Unlike other approaches that use interest operators, non-
maximum suppression is omitted here in the extraction of
interest points. This is because it is advantageous to in-
clude all interest points, including the non-maxima, to fa-
cilitate the estimation of piece-wise linear interest curves
(Sec. 3.2).

The Difference of Normal (DoN) operator [5], a scale-
based operator, was selected as our interest operator for the
proposed segmentation technique. DoN functions similarly
to the Difference of Gaussian (DoG) operator in 2D images,
where two normals { ~n1, ~n2} based on two different respec-
tive neighbourhood radii {r1, r2} are computed for each
point in the point cloud. A point is declared as an inter-
est point if the solid angle between ~n1 and ~n2 exceeds a
predetermined threshold. The DoN operator is effective at
identifying those points whose surface geometry changes
significantly as the neighbourhood radius increases from r1
to r2.

Since the DoN operator extracts interest points by mea-
suring differences based on neighbourhood scale rather than
some saliency measure at a fixed scale, the DoN is a good
choice for comparisons between scans of different resolu-
tions, such as those used in this study. Column 3 of Fig. 1
shows the extracted interest points of various 3D objects us-
ing the DoN operator. It can be seen that the interest points
are selected at locations where there is significant geomet-
ric variation on the object, rather than smoothly varying re-
gions.

3.2. Boundary Curve Reconstruction

To achieve region growing for 3D free-form surface seg-
mentation, the second and crucial step is to form continuous
and closed boundary curves.

Let pj be the jth interest point, and let P = {pj}n1 be the
set of all n such extracted points. The pj are joined into sets
of interest curves, and then connected to form continuous
curves, as follows.

For each interest point pj a tangent direction ~dj is esti-
mated by applying RANSAC to the neighbours of pj that
are elements of P.

Each point pj is only allowed to be linked with a maxi-
mum of two other points pi and pk. A point pk is selected
by finding the point that is closest to ~dj within P of pj .
Similarly, the point pi is connected to pj , if pj is the nearest
point to ~di, and is within P of pi. These three joined points
define the incoming vector ~vij and outgoing vector ~vjk at
pj . To restrict abrupt changes (i.e. kinks) in the direction

of the interest curves, the solid angle between ~vij and ~vjk is
limited to a maximum threshold value (450 in this work).

Tree traversal is used next to search for the longest path
along the linked interest points. Each longest path can be
defined as an independent interest curve, represented in the
form of a piece-wise linear curve.

Redundant representation of a single boundary line can
occur if there are sections where two interest curves are
within close proximity of each other. These sections are
eliminated and the two interest curves are merged into a
single interest curve.

To ensure that a closed segment is formed, the end of all
interest curves are always joined to the end of another inter-
est curve. The formation of continuous and closed boundary
lines has no limitation on the solid angle between the ends
of two interest curves, for example, the tip of the gnome’s
head. Each end of an interest curve is connected to the end
of another by selecting the one that gives the shortest Eu-
clidean distance between them.

The boundary curves reconstructed for various 3D ob-
jects can be seen in Fig. 1, column 4.

3.3. Interest Segments from Interest Curves

The final step of the segmentation method is to label each
point within an enclosed segment defined by a boundary
curve with a unique label. Let B denote the set of all points
that are geometrically close to any boundary curve, and let
the set of all other points that are not on a boundary (and
which are therefore within some region) be denoted as R.
Points within R are randomly chosen as seed points to start
the process of region growing. A seed point is assigned a
new region label if it does not belong to any previously la-
belled region, and all of its adjacent neighbours within R
that are not yet labelled are added to this same region. If an
adjacent neighbour point has already been associated with
another distinct region, then the two regions are merged to-
gether into one. A region is allowed to grow until the neigh-
bours of all points in the region are labelled as associated
with that region, or are within B.

To refine the results, regions with only one point are al-
lowed to concatenate with the largest regions nearby, which
is particularly useful for sparse data. Finally, all points
within B are labelled with the region associated with the
closest neighbouring point that is within R. The fifth col-
umn of Fig. 1 illustrates the resulting region segmentation
for various 3D objects.

3.4. Merging Segments

Interest segments in an unknown input scene will often
be over-segmented as a result of outliers caused by noise,
data resolution, differences in source data, etc. It is there-
fore desirable that scene segments can be merged in such a
fashion so as to increase the shape matching rate.
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One approach to segment merging is the n choose k fac-
torial solution, where n is the total number of neighbour
segments plus the current segment, and 1 <= k <= n.
Starting will all scene segments, the set S of all possible n
choose k merged segments are generated. The set S also
includes all of the original scene segments, so there will
be overlap between the elements of S. Segments that are
small in size can possibly be eliminated as they offer lit-
tle distinction that is essential to facilitate successful shape
matching. All the segments in S are subsequently used in
the shape matching process. In the present study, for exper-
imentation purposes, a supervised merge method based on
the known ground-truth transformation is used, as described
in Sec. 4.1.

4. Shape Matching of Interest Segments
The objective of performing shape matching on interest

segments is to determine the extent to which segments ex-
tracted from a 3D model in the database can be matched
correctly with segments extracted from a 2.5D input scene,
under various realistic conditions. The motivation behind
this test is the understanding that if even only a small num-
ber (minimally one) of correct correspondences can be es-
tablished between scene and model segments, then database
objects can be matched, and successful recognition events
will result.

4.1. Supervised Merge Based on Repeatability Mea-
sures

To demonstrate that the merging of interest segments in-
creases the rate of successful shape matching, which ulti-
mately increases the ability to establish correct correspon-
dences between scene and model segments, a supervised
merge of interest segments is applied in this work.

The ground truth transformations between the models
and the scenes were obtained by manually selecting a min-
imum of 3 correspondence points and then applying the It-
erative Closest Point (ICP) algorithm. Thus, for each pair
of data (3D model vs. 2.5D scene), a one-to-one correspon-
dence can be established between a point pM on the model
and a point pS in the scene. Each interest segment in a
scene is first assigned the most likely corresponding model
segment according to the repeatability measureQ, based on
the known ground truth transformation. The scene segments
are then allowed to merge with neighbouring segments, as
the value of Q approaches the maximum of 1.

Let the set of established correspondence points between
a model and a scene be denoted as PMS . Given that both the
model and the scene are segmented, each point pMS ∈ PMS

is associated with both a ground truth 3D model segment la-
bel RM and a 2.5D scene segment label RS . For each seg-
ment RS represented by a scene point within the set PMS ,
the most likely corresponding RM can be determined by

finding that model segment that has the largest degree of
overlap with RS .

Let NS denote the number of points in scene segment
RS , NM the number of points in model segment RM , and
NS∩M the number of points within the intersection RS ∩
RM . An expression for the quality of the match Q between
two overlapping segments RS and RM is:

Q =

{
NS∩M/NS if NS > NM

NS∩M/NM otherwise (1)

The interest segments in the scene are then ranked
against Q, and the segments are only allowed to merge with
neighbour segments with lower Q. This is to prevent more
repeatable segments from dropping the Q score. To select
the optimal combination of segments that generate the best
Q, the n choose k strategy described in Sec.3.4 is deployed
to select all possible combinations of the current segment
and its neighbour segments. The combination that yields
the best Q score is the optimal merge for the current seg-
ment.

4.2. Shape Registration by 4PCS

A number of methods are available for registering scans.
One option is to first align two segments using their cen-
troids and estimated normals. To resolve the rotation am-
biguity, the scans can be rotated by a small increment, and
then apply ICP. Unfortunately, scenes in this study are of-
ten occluded by itself or other objects, which drastically
changes the shapes of two segments even though they may
be perfectly segmented. Hence, this method is not practical
for the current experimental setup.

Instead, the 4-Points Congruent Sets (4PCS) [1] was ap-
plied. 4PCS is an algorithm originally developed for robust
pairwise surface registration, which according to the claims
in the original paper, is able to register two scans with min-
imum overlap under noisy conditions. Taking advantage
of this property, 4PCS is an ideal algorithm to determine
the percentage of overlap between a scene segment and a
model segment, which can be defined as the matching score
M= NS∩M/NS .

The 4PCS algorithm works by extracting a congruent
base composed of 4 coplanar points in two different sets
of data. Two coplanar sets X = a, b, c, d across differ-
ent sets are efficiently extracted by taking advantage of
the preserved ratios r1 = ||a − e||/||a − b|| and r2 =
||c − e||/||c − d|| under affine transformation, where e is
the intersection point between the two lines ab and cd. The
base X that yields the most aligned points is the best recov-
ered pose between the two data sets. Overall, a number of
parameters control the performance of 4PCS, including: δ -
the tolerance for the intermediate point e; ρ - the tolerance
for approximate congruent set; R - the nearest neighbour
search radius, and; L - the number of RANSAC cycles.
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(a) scene 1 (b) scene 1 segmented

(c) scene 6 (d) scene 6 segmented

(e) scene 7 (f) scene 7 segmented

(g) scene 9 (h) scene 9 segmented

Figure 2: Selected 2.5D scenes acquired from the Vivid Li-
DAR scanner used in this work

The shape matching of interest segments is based on the
essence of a single object detection test, in which the prior
information is that the model to be localized is present in
an unknown scene. In other words, the defined problem is
to retrieve the 3D pose of a known object in an unknown
scene. As mentioned, a minimal number of just one cor-
rectly matched segment is sufficient to retrieve the 3D pose,
which can be verified subsequently by finding the 3D pose
that produces the smallest Euclidean distance error by re-
projecting the model back into the scene. In the case of the
presence of two or even more correctly matched segments,

(a) angel front (b) gnome front (c) kid front

(d) angel back (e) gnome back (f) kid back

Figure 3: Segments for each model labelled by size

the similarity between the recovered 3D poses further in-
creases both the processing speed in matching and the like-
lihood of an object being localized. The shape matching
process is to be carried out for each scene interest segment,
compared exhaustively with m model segments, and the
best match is chosen based on the score M. Subsequently, a
verification step consists of first reprojecting the 3D model
onto the 2.5D scene using the recovered 3D pose, followed
by measuring the average nearest neighbour distance, can
be used to verify if the segment with the highest M is a true
positive or a false positive segement (This step is currently
not implemented in the experiment, instead, visual verifica-
tion is used).

5. Experiments
Experiments based on the evaluation scheme outlined in

Sec. 4 were conducted using three free-form objects (Fig.
1) in nine different realistic 2.5D realistic scenes with clut-
tered and occluded objects (Fig. 2 shows a few sample
scenes and the segmented counterparts) Both the 3D mod-
els and the 2.5D scenes were acquired using the Vivid Li-
DAR scanner, although the resolution of the scanned mod-
els and the scenes are not the same (e.g. due to the differ-
ence in the vantage of the scanner). The resolution of the
3D models were also reduced to improve the efficiency of
the algorithm. All the code was written in C++ on a Linux
platform, running on a computer with 8 GB of RAM and a
quad-core 2.26 GHz processor. The 4PCS algorithm is cur-
rently re-implemented without any code optimization, thus
the process of shape matching by considering all scene and
model segments is exhaustive. To deal with this issue and
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s1 s2 s3 s4 s5 s6 s7 s8 s9
Segment 2 70 70 82 87 76
Segment 3 81 72 85
Segment 4 89 97
Segment 8 89 88

Table 1: Angel Result: M score for true positive segments
detected

s1 s2 s3 s4 s5 s6 s7 s8 s9
Segment 1 85 77 100 93
segment 2 91 86 97 99 97 100
Segment 4 82
Segment 5 92
Segment 6 91
Segment 7 90

Table 2: Gnome Result: M score for true positive segments
detected

simplify the experiment, only the largest 20 segments from
each model and scene were considered (Fig. 3).

5.1. Parameters Selection

Since segments are first filtered based on size, it is ideal
that the selection of the DoN angle generates a set of large
and descriptive segments. Intuitively, increasing the DoN
angle threshold reduces the number of interest points, lead-
ing to fewer interest curves and larger interest segments. For
the entire experiment, the DoN angle threshold was set at
130 for the Angel model, 120 for the Gnome and 140 for
the Watermelonkid model. Other parameters included: The
nearest neighbour search, which was set at 5mm; The DoN
neighbourhood scale difference, which was set at 2×, and;
The voxel size that was used for partitioning the data for ef-
ficient nearest neighbourhood search was set at 1cm3. The
segmentation for 2.5D scenes uses the same set of param-
eters for all models under comparison during the test. For
the 4PCS parameters: δ = 10mm, R = 4mm, ρ = 0.5mm
and L = 30. It is worth mentioning that ρ has a signif-
icant impact on the efficiency of the shape matching pro-
cess: Because the resolution of the scene and model data
are different, ρ cannot be so small such that the correct 4
point congruent sets cannot be chosen. The trade-off of in-
creasing ρ is the increase of number of candidate coplanar
planes, reducing the processing efficiency.

5.2. Results and Discussion

Figs. 4, 5, and 6 show the resulting scene segments for
the three models in the nine different scenes tested in this
experiment. The respective matching results based on su-
pervised merged segments is shown in the second row of the
same figures, where the true positive segments that record

s1 s2 s3 s4 s5 s6 s7 s8 s9
Segment 2 97 94 80 81 91 70 85
Segment 3 93 90
Segment 4 93
Segment 5 93
Segment 6 100
Segment 7 83

Table 3: Watermelonkid Result: M score for true positive
segments detected

s1 s2 s3 s4 s5 s6 s7 s8 s9
Angel 0 2 0 1 2 0 1 1 0

Gnome 1 2 1 1 1 0 2 0 2
Kid 1 1 1 1 0 0 0 0 0

Table 4: Number of true positive segments in each scene
using original segments from all models

s1 s2 s3 s4 s5 s6 s7 s8 s9
Angel 2 2 1 2 2 1 1 1 0

Gnome 1 2 2 2 1 0 2 1 3
Kid 2 3 1 1 1 2 1 1 1

Table 5: Number of true positive segments in each scene
using merged segments from all models

the highest M score are coloured in green. A visual confir-
mation is provided by re-projecting the segments onto the
model using the recovered 3D pose from 4PCS. The score
M for each true positive segment for each model found in
each scene are also provided in Tables 1, 2, and 3. On aver-
age, each true positive segment is matched with an M score
of 82, 91, and 88 for the Angel, Gnome, and Watermel-
onkid models respectively, yielding a total average of M
= 87. It can be observed that many true positive segments
have higher ranks. This is because in this test, only the top
20 scene models are considered, which eliminated any com-
parisons between lower rank segments based on size. Based
only on the top 20 segments in each model and scene, Ta-
ble 5 provides a summary of the number of true positive
segments for each model in each scene. Only one scene
for the angel and the gnome model recorded zero true pos-
itive segments (possibly because of the selected segments
in the current setup). Based on these results, an average of
1.4± 0.8 true positive segments can be retrieved from each
scene. For completeness, Table 4 shows the same statistic
for segments before the merge is applied, using the same set
of parameters previoulsy selected. This shows that merging
does increase the repeatability and recognition rate of the
system.
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(a) scene 1 (b) scene 2 (c) scene 3 (d) scene 4 (e) scene 5 (f) scene 6 (g) scene 7 (h) scene 8

Figure 4: Results for Angel: Segmentation (1st row); True positive segments matched with model segments (2nd row)

(a) scene 1 (b) scene 2 (c) scene 3 (d) scene 4 (e) scene 5 (f) scene 7 (g) scene 8 (h) scene 9

Figure 5: Results for Gnome: Segmentation (1st row); True positive segments matched with model segments (2nd row)

6. Conclusions and Future Work

This work demonstrates a different use for 3D interest
operators for the goal of object recognition. In previous
work, interest operators were executed as a prelude to the
extraction of highly distinctive features, which were then
used for matching. Only a small number of extracted in-
terest points were passed to the feature extraction phase,
with the vast majority being filtered out using non-maxima
suppression. In contrast, in this work, the high repeata-
bility of interest operators is leveraged to generate highly
repeatable segments, which are then matched in place of
features. The success of this approach in the current exper-
iments demonstrates that the high repeatability of interest
operators may be as important as the high descriptiveness
of features, which has been the focus of most recent work
in this area.

A limitation for the current experimental setup is the ex-
haustive comparisons of segments using 4PCS, which in-
evitability increases the processing time. In the future, a

more efficient registration algorithm, possibly using fast in-
dexing and shape hashing, will be developed. An unsuper-
vised merge will also replace the supervised merge in a real
object recognition system. It is also desirable to extend the
current test to include a larger database of objects with vari-
ous geometric properties, and compare with state-of-the art
LSDs approaches.
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