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Abstract

Among 2D-to-3D image conversion methods, those in-
volving human operators have been most successful but also
time-consuming and costly. Automatic methods, that typ-
ically make use of a deterministic 3D scene model, have
not yet achieved the same level of quality as they often rely
on assumptions that are easily violated in practice. In this
paper, we adopt the radically different approach of “learn-
ing” the 3D scene structure. We develop a simplified and
computationally-efficient version of our recent 2D-to-3D
image conversion algorithm. Given a repository of 3D im-
ages, either as stereopairs or image+depth pairs, we find k
pairs whose photometric content most closely matches that
of a 2D query to be converted. Then, we fuse the k corre-
sponding depth fields and align the fused depth with the 2D
query. Unlike in our original work, we validate the sim-
plified algorithm quantitatively on a Kinect-captured im-
age+depth dataset against the Make3D algorithm. While
far from perfect, the presented results demonstrate that on-
line repositories of 3D content can be used for effective 2D-
to-3D image conversion.

1. Introduction
The availability of 3D hardware today (3D TVs, Blu-Ray

players, handheld gaming consoles, cell phones, still and
video cameras) is not yet matched by 3D content produc-
tion. Although methods have been proposed to convert 2D
images to 3D stereopairs, the most successful approaches
are interactive, i.e., involve human operators [4, 1, 7], and,
therefore, time-consuming and costly.

The problem of depth estimation from a single 2D im-
age, which is the main step in 2D-to-3D conversion, can be
formulated in various ways, for example as a shape-from-
shading problem [14]. However, this problem is severely
under-constrained; quality depth estimates can be found
only for special cases. Other methods, often called multi-
view stereo, attempt to recover depth by estimating scene
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geometry from multiple images not taken simultaneously.
For example, a moving camera permits structure-from-
motion estimation [11] while a fixed camera with varying
focal length permits depth-from-defocus estimation [10].
Both are examples of the use of multiple images of the same
scene captured at different times or under different exposure
conditions (e.g., all images of the Statue of Liberty). Al-
though such methods are similar in spirit to our approach,
the main difference is that while these methods use images
known to depict the same scene as the query image, we use
all images available in a large repository and automatically
select suitable ones for depth recovery.

Some electronics manufacturers have developed real-
time 2D-to-3D converters that rely on stronger assumptions
and simpler processing than the methods listed above, e.g.,
faster-moving or larger objects are closer to the viewer,
higher frequency of texture belongs to objects located fur-
ther away, etc. Although such methods may work well in
some cases, in general it is very difficult, if not impossi-
ble, to construct a deterministic scene model that covers all
possible background and foreground combinations.

Recently, machine learning techniques based on image
parsing have been used to estimate the depth map from sin-
gle monocular images [8, 6]. Such methods have the po-
tential to generate depth maps for 2D visual material, but
currently work only on few types of images using carefully-
selected training data (precise, laser-scanned depth esti-
mates or manually-annotated semantic depth classes). The
algorithm we describe in this paper is somewhat similar to
these two methods except that it applies to arbitrary scenes
and requires no manual annotation.

The trend to use large image databases for various com-
puter vision tasks, such as object recognition [12] and image
saliency detection [13], has recently inspired us to develop
a data-driven approach to 2D-to-3D conversion [ 5]. How-
ever, this approach is computationally involved due to the
use of SIFT-flow for disparity warping. Furthermore, it has
only been tested qualitatively which is subjective.

In this paper, we propose a simplified algorithm that
”learns” the scene depth from a large repository of im-
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age+depth pairs and is more efficient computationally than
our original algorithm [5]. Furthermore, we validate the
simplified algorithm quantitatively on a Kinect-captured
image+depth dataset [9] against the Make3D algorithm [8].
While far from perfect, the presented results demonstrate
that on-line repositories of 3D content can be used for ef-
fective 2D-to-3D image conversion.

2. Proposed approach

Our approach is built upon a key observation and an as-
sumption [5]. The key observation is that among millions of
image+depth pairs available on-line, there likely exist many
pairs whose 3D content matches that of a 2D input (query).
The assumption is that two images that are photometrically
similar are likely to have similar 3D structure (depth). This
is not unreasonable since photometric properties are often
correlated with 3D content (depth, disparity). For example,
edges in a depth map almost always coincide with photo-
metric edges. We rely on the above observation and as-
sumption to “learn” depth from a dictionary of image+depth
pairs and render a stereopair in the following steps:

1. k nearest-neighbor (kNN) search: finding k im-
age+depth pairs that are photometrically most similar
to the 2D query,

2. depth fusion: median filtering of the k depth fields,

3. cross-bilateral depth filtering: smoothing of the
median-fused depth field to remove spurious varia-
tions, while preserving depth discontinuities,

4. stereo rendering: generation of the right image of
the stereopair using the 2D query (left) image and
smoothed median depth field followed by suitable pro-
cessing of occlusions and newly-exposed areas.

Although the original algorithm [5] includes an additional
step of depth (disparity) warping via SIFT-flow to bet-
ter align kNN depth (disparity) fields with the 2D query,
this step is computationally demanding while bringing only
small quality improvement to the depth estimates. We forgo
this step for the sake of computational efficiency without
sacrificing much performance.

Fig. 1 shows the block diagram of our approach. The
sections below provide a description of each step and some
high-level mathematical detail. In these sections, Q is the
query image for which a right image QR is being sought.
We assume that a database I = {(I1, d1), (I2, d2), ...}
of image+depth pairs (I k, dk) is available. Note that a
database of stereoscopic videos, such as YouTube 3D, could
be processed to extract image+depth pairs. The goal is to
find a depth estimate d̂ and then a right-image estimate Q̂R

given the 3D database I.

Figure 1. Block diagram of the overall algorithm; algorithmic de-
tails for each block are provided in the sections below.

2.1. kNN search

There exist two types of images in a large 3D image
repository: those that are relevant for determining depth in
a 2D query image, and those that are irrelevant. Images
that are not photometrically similar to the 2D query need to
be rejected because they are not useful for estimating depth
(as per our assumption). Note that although we might miss
some depth-relevant images, we are effectively limiting the
number of irrelevant images that could potentially be more
harmful to the 2D-to-3D conversion process. The selection
of a smaller subset of images provides the added practical
benefit of computational tractability when the size of the
dictionary is very large.

Our 2D query image Q is the left image from a stere-
opair whose right image QR is unknown. We assume that a
database of 3D images or videos I, such as the NYU depth
database [9] or YouTube 3D, is available, and that for each
RGB image Ii in the database the corresponding depth field
di is either known or can be computed from a stereopair.

One method for selecting a useful subset of depth-
relevant images from a large dictionary is to select only the
k images that are closest to the input where closeness is
measured by some distance function capturing global im-
age properties such as color, texture, edges, etc. As this dis-
tance function, we use the Euclidean norm of the difference
between histograms of oriented gradients (HOGs) [2] com-
puted from two images. Each HOG consists of 144 real val-
ues (4×4 blocks with 9 gradient direction bins) that can be
efficiently computed. This image closeness measure is sig-
nificantly less computationally complex than the weighted
Hamming distance between binary hashes of features that
we used originally [5].

We perform a search for top matches to our 2D query
among all 3D images in the database I. The search returns
an ordered list of image+depth pairs, from the most to the
least photometrically similar vis-à-vis the 2D query. We dis-
card all but the top k matches (kNNs) from this list.

Fig. 2 shows search results for four 2D query images (of-
fice, bedroom, dining room and kitchen). An examination
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2D query: office NN #1 NN #2 NN #3 NN #4

2D query: bedroom

2D query: dining room

2D query: kitchen

Figure 2. RGB image and depth field of four 2D queries (left column), and their four nearest neighbors (columns 2-5) retrieved using the
Euclidean norm on the difference between histograms of gradients [2]. All image+depth pairs are from NYU depth dataset (see Section 3).
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of the search results shows that the majority of retained im-
ages share a very similar global 3D structure with the query
image - a large table in the dining room or a slanted wall on
right in the kitchen. Although none of the kNNs perfectly
matches the corresponding 2D query, the general underly-
ing depth is closely related to that expected in the query.

The average similarity between a query and its k-th near-
est neighbor usually decays with increasing k. While for
large databases, larger values of k may be appropriate, since
there are many good matches, for smaller databases this
may not be true. Therefore, a judicious selection of k is im-
portant. For now, we denote by K the set of indices i of im-
age+depth pairs that are the top k photometrically-nearest
neighbors of the query Q.

2.2. Depth fusion

In general, none of the NN image+depth pairs
(Ii, di), i ∈ K match a query Q accurately (Fig. 2). How-
ever, the location of some objects (e.g., furniture) and parts
of the background (e.g., walls) is quite consistent with those
in the query. If a similar object (e.g., table) appears at a sim-
ilar location in several kNN images, it is likely that such an
object also appears in the query and the depth field being
sought should reflect this. We compute this depth field by
applying the median operator across the kNN depths at each
spatial location x as follows:

d[x] = median{di[x], ∀i ∈ K}. (1)

Examples of the fused depth fields d are shown in the cen-
tral column of Fig. 3. Although these depths are overly
smooth, they provide a globally-correct, although coarse,
assignment of distances to various areas of the scene.

2.3. Cross-bilateral depth filtering

While the median-based fusion helps make depth more
consistent globally, the fused depth is overly smooth and
locally inconsistent with the query image due to:

1. misalignment of edges between the fused depth field
and query image,

2. lack of fused depth edges where sharp object bound-
aries occur,

3. lack of fused depth smoothness where smooth depth
changes are expected.

In order to correct this, similarly to Agnot et al. [1],
we apply a variant of bilateral filtering to the fused depth
d with the RGB query image as a reference. Bilateral fil-
tering is an edge-preserving image smoothing method that
applies anisotropic diffusion controlled by the local image
content [3]. We apply bilateral filtering to the fused depth
with two goals: alignment of the depth edges with those of

the query image Q and local noise/granularity suppression
in the fused depth d. This is implemented as follows:

d̂[x] =
1

γ[x]

∑
y

d[y]hσs (x− y)hσe (Q[x]−Q[y]),

γ[x] =
∑
y

hσs(x− y)hσe (Q[x]−Q[y]),
(2)

where d̂ is the filtered depth field and hσ(x) =
exp(−‖x‖2/2σ2)/2πσ2 is a Gaussian weighting function.
Note that the directional smoothing of d is controlled by the
query image via the weight hσe(Q[x]−Q[y]). For large dis-
continuities in Q, the weight hσe(Q[x]−Q[y]) is small and
thus the contribution of d[y] to the output is small. How-
ever, when Q[y] is similar to Q[x] then hσe(Q[x] − Q[y])
is relatively large and the contribution of d[y] to the output
is larger. In essence, depth filtering (smoothing) is happen-
ing along (and not across) query edges.

Fig. 3 compares the fused depth before cross-bilateral
filtering (d) and after (d̂). The filtered depth preserves the
global properties captured by the unfiltered depth field d,
and is smooth within objects and in the background. At the
same time it keeps edges sharp and aligned with the query
image structure.

2.4. Stereo rendering

In order to generate an estimate of the right image Q̂R

from the 2D query Q, we need to compute the disparity
δ from the estimated depth d̂. Assuming that the ficti-
tious image pair (Q, Q̂R) was captured by parallel cameras
with baseline B and focal length f , the disparity is simply
δ[x, y] = Bf/d̂[x], where x = [x, y]T . We forward-project
the 2D query Q to produce the right image:

Q̂R[x+ δ[x, y], y] = Q[x, y] (3)

while rounding the location coordinates (x + δ[x, y], y)
to the nearest sampling grid point. We handle occlu-
sions by depth ordering: if (xi + δ[xi, yi], yi) = (xj +
δ[xj , yi], yi) for some i, j, we assign to the location (xi +

δ[xi, yi], yi) in Q̂R an RGB value from that location
(xi, yi) in Q whose disparity δ[xi, yi] is the largest. In
newly-exposed areas, i.e., for xj such that no xi satisfies
(xj , yi) = (xi + δ[xi, yi], yi), we apply simple inpainting
using inpaint nans from MatlabCentral.

3. Experimental Results
We have tested our approach on a database of indoor

scenes captured by the Microsoft Kinect camera [9] that
contains 1449 pairs of RGB images and corresponding
depth fields. Kinect cameras use structured (infrared) light
to provide an accurate depth map of the captured scene,
but do not work well in daylight and at large distances; the
above database is limited to indoor scenes.
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2D query image 2D query depth dQ Median-fused depth d

C = 0.7526

Fused depth after CBF d̂

C = 0.7496

Depth from Make3D

C = 0.4994

C = 0.8691 C = 0.8664 C = 0.4026

C = 0.8908 C = 0.8830 C = 0.6588

C = 0.6222 C = 0.6074 C = 0.1708

Figure 3. RGB image and depth field of queries from Fig. 2 as well as the estimated depth after fusion and cross-bilateral filtering (CBF)
and depth computed using the Make3D algorithm. Normalized depth cross-covariances are included under each estimated depth field.

In order to evaluate the performance of the proposed
algorithm quantitatively, we applied leave-one-out cross-
validation (LOOCV) as follows. We selected one im-
age+depth pair from the database as the 2D query (Q, dQ)
treating the remaining pairs as the dictionary based on
which a depth estimate d̂ and a right-image estimate Q̂R are
computed. As the quality metric, we used normalized cross-
covariance between the estimated depth d̂ and the ground-
truth depth dQ defined as follows:

C =
1

Nσ
̂dσdQ

∑
x

(d̂[x]− μ
̂d)(dQ[x]− μdQ) (4)

where N is the number of pixels in d̂ and dQ, μ
̂d and μdQ

are the empirical means of d̂ and dQ, respectively, while
σ
̂d and σdQ are the corresponding empirical standard devi-

ations. The normalized cross-covarianceC takes values be-
tween -1 and +1 (for values close to +1 the depths are very
similar and for values close to -1 they are complementary).

In order to select a suitable value of k, we ran the
LOOCV test for each image in the Kinect database for all k

Proposed algorithm
with warping no warping Make3D

Average C 0.71 0.71 0.45
Median C 0.76 0.75 0.48

Processing time 16h 5s 12h

Table 1. Average and median normalized cross-covariance C and
average processing time (3.4GHz CPU) obtained in LOOCV tests
on the Kinect depth dataset using the proposed algorithm with
warping [5] and without, and also using Make3D [8].

from 1 to 120 and averaged the resulting cross-covariance
C across all tests. The average C rapidly rose for small k,
achieved maximum at k = 45 and then gently rolled-off.
Therefore, in all experiments below we used k = 45.

Table 1 shows the average and median of cross-
covariance C obtained from 1449 LOOCV tests using the
proposed algorithm with and without warping. The warp-
ing of each kNN depth di via SIFT-flow to better align
foreground objects was originally proposed in the disparity-
learning algorithm [5] at significant computational cost. We
are advocating here conversion without warping to reduce
complexity. In both cases, an image similarity metric based
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on HOGs rather than hashes of features [5] was used. As
can be seen in Table 1, the algorithm without warping is
several orders of magnitude faster with, basically, no loss of
average depth estimation fidelity.

Since most of the fully-automatic 2D-to-3D conversion
methods have been developed by 3D equipment manufac-
turers, the employed algorithms are proprietary. The only
automatic 2D-to-3D conversion method for which we were
able to find a run-time code was Make3D developed by Sax-
ena et al. [8]. Make3D estimates 3D scene structure from a
single still image of an unstructured environment by super-
vised learning of 3D position and orientation of small ho-
mogeneous patches in the image. The original Make3D al-
gorithm was trained on images and associated laser-scanned
depth maps of mostly architectural structures. Admittedly,
it was not optimized for indoor scenes that the Kinect depth
dataset is composed of, however we were unable to re-train
Make3D for indoor data and it was the only algorithm avail-
able for comparison. As can be seen in Table 1, Make3D
achieves normalized cross-covarianceC of about 0.45-0.48,
significantly less than C for the proposed algorithm.

In terms of the computational complexity, our algorithm
has a significant edge as well. Applied to all 1449 images of
the Kinect database with k = 45, it required only 5 seconds
as opposed to 12 hours for Make3D. We must note at this
point that, due to Make3D’s complexity, the depth learning
step was performed on reduced-resolution images and depth
fields (80×60) as opposed to full-resolution (640×480).
Had we used full-resolution data, we would have to wait
over 4 weeks for Make3D output. We believe that depth
learning at low resolution is acceptable if depth edges are
aligned with photometric boundaries, because depth varies
smoothly within objects and background. The estimated
depth fields d̂ were interpolated to full resolution prior to
the right-image rendering.

We would like to point out that althoughC values shown
in Fig. 3 are slightly lower for depth fields after cross-
bilateral filtering, the depth edge alignment with the query
and the high piece-wise depth smoothness are both per-
ceptually beneficial in 3D viewing. In Fig. 4, we show
anaglyph images constructed from (Q, Q̂R) image pairs for
the ground truth depth dQ, and the estimated depths d̂ us-
ing the proposed approach and Make3D. Although neither
conversion is flawless, errors on the bulletin board in the
office image and under the chest of drawers in the dining
room image produced by Make3D cause significant visual
discomfort. For comparison, Fig. 5 shows the kitchen im-
age converted using YouTube 3D. While no quantitative
comparison is possible since YouTube does not provide any
depth field, visually one is left with the sensation of a card-
board effect; there is no gradual increase of disparity to-
wards the viewer, unlike in the image converted by the pro-
posed method (bottom of the middle column in Fig. 4).

4. Conclusions
We have proposed a simplified data-driven 2D-to-3D

conversion method and have objectively validated its per-
formance against state-of-the-art Make3D algorithm. The
proposed algorithm compares favorably in terms of both es-
timated depth quality and computational complexity. Ad-
mittedly, the validation was limited to a database of indoor
scenes on which Make3D was not trained. The generated
anaglyph images produce a comfortable 3D perception but
are not completely void of distortions. With the continu-
ously increasing amount of 3D data on-line and with the
rapidly growing computing power in the cloud, the pro-
posed algorithm seems a promising alternative to operator-
assisted 2D-to-3D conversion.
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