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Abstract

Object recognition is challenging especially when the

objects from different categories are visually similar to each

other. In this paper, we present a novel joint dictionary

learning (JDL) algorithm to exploit the visual correlation

within a group of visually similar object categories for

dictionary learning where a commonly shared dictionary

and multiple category-specific dictionaries are accordingly

modeled. To enhance the discrimination of the dictionaries,

the dictionary learning problem is formulated as a joint op-

timization by adding a discriminative term on the principle

of the Fisher discrimination criterion. As well as present-

ing the JDL model, a classification scheme is developed to

better take advantage of the multiple dictionaries that have

been trained. The effectiveness of the proposed algorithm

has been evaluated on popular visual benchmarks.

1. Introduction

The bag of visual-words (BoW) model has been widely

used in various vision tasks, including image categorization

[8, 14], and object recognition [10, 22], to name a few. By

quantizing the continuous-valued local features, e.g. SIFT

descriptors [16], over a collection of representative visual

atoms, called codebook or dictionary, BoW simply repre-

sents an image or object as a codebook-based histogram

which is then fed into standard classifiers (e.g. SVM) for

classification. Typically, a dictionary is often obtained by

grouping the low-level features extracted from training im-

ages into groups using clustering algorithms, such as k-

means.

Recently, sparse modeling which integrates dictionary

learning and sparse coding has led to impressive results

on different visual classification problems [25, 17, 28, 23,

3, 15]. Many algorithms have been proposed to learn a

dictionary through reconstruction optimization, e.g. the K-

SVD algorithm in [1], the method of optimal directions

(MOD) [7], and the least squares optimization using its dual

[15, 25]. We refer to such dictionary learning algorithms as

unsupervised dictionary learning. While unsupervised dic-

tionary learning has achieved promising results, it is shown

in [18, 30, 27, 17, 19, 13, 28] that training more discrimina-

tive dictionaries via supervised learning has usually resulted

in better classification performance.

The existing supervised dictionary learning methods can

be roughly categorized into three main types in terms of

the structure of the dictionaries. In [18, 30, 27, 26] a uni-

versal dictionary has been learned to represent signals of

all classes. The dictionary learning and classifier training

are combined into a single objective function aiming at en-

hancing the discrimination of the dictionary to be learned

by solving the unified optimization. However, the optimiza-

tion itself is relatively complicated and often approximated

by iteratively solving the constitutive sub-problems. On the

other hand, many works have learned multiple category-

specific dictionaries and enhanced the discrimination by ei-

ther incorporating reconstruction errors using the soft-max

cost function [17, 19] or promoting the incoherence of dif-

ferent class-specific dictionaries [21]. However, the clas-

sification decision in [17, 19, 21] still simply relies on the

residual errors, even though the sparse coefficients embody

richer discriminative information. More recently, a struc-

tured dictionary in which visual atoms have explicit cor-

respondence to class labels has been trained in [13, 28].

Specifically, the label consistent constraint [13] and the

Fisher discrimination criterion [28] are adopted to promote

discrimination, respectively.

When the number of object classes becomes large, it

might be practically infeasible to unify the dictionary learn-

ing and classifier training and efficiently solve the optimiza-

tion. Furthermore, some of the object classes are strongly

correlated in terms of their visual properties. Taking Fig. 1

for example, the five object categories, whippet, margay,

cat, dog, and hound which are originated from the Ima-

geNet database [5], are highly visually similar. That is, they

jointly share some common visual properties which makes

it very challenging to effectively and accurately categorize

them (See Section 4). What being desired is a method

which can exploit the visual correlation of these correlated
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Figure 1: Our primary focus is to jointly learn multiple dictio-

naries for visually correlated object classes. The common visual

properties of the group is characterized by the shared dictionary

D0 and the class-specific visual patterns are captured by category-

specific dictionaries {D̂i}
5

i=1.

categories to learn dictionaries of stronger discrimination

power.

In this paper, we present a joint dictionary learning

(JDL) algorithm to leverage inter-object visual correla-

tion for dictionary learning. JDL jointly learns multiple

category-specific dictionaries and a common shared dic-

tionary for a group of visually correlated object classes.

Specifically, considering again the example in Fig. 1, a dic-

tionary D0 is devised to contain visual atoms shared by all

the five object categories, and five class-specific dictionar-

ies {D̂i}
5
i=1 are used to capture the category-specific vi-

sual properties. JDL models the dictionary learning process

jointly rather than independently. To couple the learning

and enhance the discrimination of the dictionaries, a dis-

criminative term is added based on the Fisher discrimination

criterion [6], which directly operates on the decomposition

coefficients. To better exploit the discrimination embodied

in the sparse codes, a new classification scheme is used once

multiple dictionaries have been learned. The contributions

of this paper can be summarized as follows:

• A novel joint dictionary learning (JDL) algorithm is

developed to leverage visual correlation among visu-

ally correlated object categories for inter-related dic-

tionaries learning.

• A discriminative term is devised to jointly couple the

learning of a shared dictionary and multiple category-

specific ones and enhance their discrimination. A new

classification scheme is then adopted once such dictio-

naries are available.

Experiments have been conducted on the popular visual

recognition benchmarks, including the ImageNet database

and the Oxford flower data set. Our experimental results

demonstrate that JDL is superior to many existing unsuper-

vised and supervised dictionary learning methods on deal-

ing with highly similar object categories. The rest of the

paper is organized as follows. In Section 2, we briefly re-

view the main works on unsupervised and supervised dictio-

nary learning. In Section 3, we present our joint dictionary

learning algorithm, including formulation, optimization and

a classification scheme. The experimental setup and results

are given in Section 4. We conclude in Section 5.

2. Related Work

Current prevailing approaches to dictionary learning can

be categorized into two main types: unsupervised dictio-

nary learning and supervised dictionary learning. Unsu-

pervised dictionary learning learns a dictionary through the

reconstruction optimization which minimizes the residual

errors of reconstructing the original signals. Particularly,

Aharon et al. [1] have generalized the k-means clustering

process and proposed the K-SVD algorithm to learn an

overcomplete dictionary from image patches. Lee et al. [15]

treated dictionary learning as a least squares problem after

the sparse coefficients are fixed and efficiently solved it us-

ing its Lagrange dual. In [25], Yang et al. proposed the

ScSPM model which took advantage of sparse coding and

spatial pyramid matching [14] for image classification. The

dictionary was trained using the same method as in [15].

The dictionaries learned via unsupervised learning are

often lack of discrimination as they are optimal for recon-

struction but not classification. Recently, many algorithms

have been proposed to enhance the discrimination of visual

dictionaries through supervised learning. A typical method

is to unify the dictionary learning and classifier training in

a single objective function, by adding different discrimina-

tive terms, such as the logistic loss function with residual

errors [18], the soft-max cost function of classification loss

[27], the linear classification error [30] and the Fisher dis-

crimination criterion in [11, 28]. In [17, 21, 31], multiple

category-specific dictionaries have been trained by incor-

porating reconstruction errors with the soft-max cost func-

tion, promoting the incoherence among different dictionar-

ies and exploiting classification errors through a boosting

procedure, respectively. More recently, Jiang et al. [13]

integrated a so-called label consistent constraint, the re-

construction and classification errors into a single objec-

tive function to learn a structured dictionary. A K-SVD

like algorithm is then used to optimize it. Yang et al. [28]

also adopted the Fisher discrimination criterion and pro-

posed Fisher discrimination dictionary learning (FDDL) to

learn a structured dictionary where both discriminative re-

construction error and sparse coefficients were achieved.

The idea of of leveraging correlation of visually similar ob-

ject classes for dictionary learning is methodologically con-

nected to that in [12] which learns a latent space factorized

into dimensions shared across subset views in the context of

multi-view learning.
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3. Inter-related Dictionary Learning

To make use of the visual correlation for dictionary

learning, in this section, we propose a joint dictionary learn-

ing (JDL) algorithm which models the learning of a shared

dictionary and multiple category-specific dictionaries as a

joint optimization.

3.1. Joint Dictionary Learning

Let Xi ∈ R
d×Ni , i = 1, . . . , C, be a collection of train-

ing samples of class i, and Di ∈ R
d×Ki the corresponding

dictionary, where d is the dimension of a training sample,
Ni is the number of training samples of the ith class, andKi

is the number of atoms of dictionary Di. The visual dictio-
naries {Di}

C
i=1 of theC visually inter-related object classes

share some common visual words, each of which can thus
can be partitioned into two parts 1) a bunch of K0 visual
words denoted as D0 ∈ R

d×K0 that is used to describe
the common visual properties of all these correlated object
classes; and 2) a group of Ki − K0 visual words denoted

as D̂i ∈ R
d×(Ki−K0) which is responsible for describing

the specific visual properties of the ith object category. Fol-
lowing the denotation of concatenating two column vectors

as [d1;d2] ,
[

d1

d2

]

and [d1,d2] , [ d1 d2 ], each dictionary

Di is mathematically expressed as Di = [D0, D̂i]. We for-
mulate the joint dictionary learning of C visually correlated
categories as

min
{D0,D̂i,Ai}

C
i=1

C
∑

i=1

{

||Xi − [D0, D̂i]Ai||
2

F + λ
∑Ki

j=1
||aij ||1

}

+ηΨ(A1, . . . ,AC), (1)

where Ai = [ai1, . . . ,aiNi
] ∈ R

Ki×Ni is the sparse co-

efficient matrix of Xi over dictionary Di, λ is a scalar

parameter which relates to the sparsity of the coefficients,

Ψ(A1, . . . ,AC) is a discrimination promotion term acting

on the sparse coefficient matrices which is described in the

next subsection, and the parameter η ≥ 0 controls the trade-

off between reconstruction and discrimination.

3.2. Discrimination Promotion Term

The term Ψ(A1, . . . ,AC) is devised not only to couple

the learning of multiple dictionaries together but also pro-

mote the discrimination of the sparse coefficients as much

as possible. On the principle of the Fisher linear discrimi-

native analysis (LDA) [6], more discriminative coefficients

can be obtained by minimizing the within-classes scat-

ter matrix and at the same time maximizing the between-

classes scatter matrix of the decomposition coefficients of

different classes. In our settings, the within-classes scatter

matrix is defined as:

SW =
C
∑

j=1

∑

ai∈Aj

(ai − µj)(ai − µj)
T , (2)

where µj is the mean vector of matrix Aj and T denotes

matrix transposition. Considering the structure of the dic-

tionaries, the sparse coefficient matrix Aj of the jth class is

concatenated by two sub-matrices A0
j and Âj in the form

of [A0
j ; Âj ], where A

0
j contains the sparse codes over the

shared dictionary D0 and Âj is the matrix holding the cor-

responding coefficients over the class-specific dictionary

D̂j . We define the between-classes scatter matrix in the

subspace spanned by D0 which is shared by samples of all

classes, given as:

SB =

C
∑

j=1

Ni(µ
0
j − µ0)(µ0

j − µ0)T . (3)

Here µ0
j and µ0 are the mean column vectors of A

0
j and

A
0 = [A0

1, . . . ,A
0
C ], respectively. The discrimination pro-

motion term is therefore defined as

Ψ(A1, . . . ,AC) = tr(SW )− tr(SB), (4)

where tr(·) is the matrix trace operator. Plugging (4) into
(1), we have the optimization of JDL, given as:

min
{D0,D̂i,Ai}

C
∑

i=1

{

||Xi − [D0, D̂i][A
0

i ; Âi]||
2

F + λ||Ai||1
}

+η (tr(SW )− tr(SB)) . (5)

The designed discrimination term enjoys several attractive

properties. First, it directly operates on sparse coefficients

rather than on classifiers [13, 17, 18, 30, 27], dictionaries

[21], or both the reconstruction term and coefficients [28],

which makes the optimization more tractable. Also, the

discrimination of coefficients is more closely related to the

classification performance as they are often used as features

in classifiers. By learning discriminative coefficients, the

discrimination of the learned dictionaries is essentially en-

hanced since sparse codes and visual basis are updated in

an iterative way. Finally, the discrimination promotion term

Ψ(·) is differentiable. We thus design an iterative scheme to

solve the JDL problem (5) by alternatively optimizing with

respect to {Di}
C
i=1 and {Ai}

C
i=1 while holding the others

fixed.

3.3. Optimization of JDL

The optimization procedure of the JDL problem (5) is it-

eratively go through two sub-procedures: 1) computing the

sparse coefficients by fixing the dictionaries and 2) updating

the dictionaries by fixing the coefficients. Considering that

the dictionaries {Di}
C
i=1 are fixed, (5) essentially reduces

to a sparse coding problem. However, the traditional sparse

coding (the l1 norm optimization), only involves a single

sample each time. The sparse codes ai of a signal xi is

computed without taking into account others’ coefficients.

In our problem, the coefficients of other samples must be
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considered, when one tries to compute the sparse codes of

xi. Therefore, we compute the sparse coefficients class by

class. That is, the sparse codes of the samples from the ith

class are simultaneously updated by fixing the coefficients

of those from the other classes. Mathematically, we update

Ai by fixing Aj , j 6= i and the objective function is given

as

F (Ai) = ||Xi− [D0, D̂i]Ai||
2
F +λ||Ai||1+ ηψ(Ai) (6)

where ψ(Ai) is the discrimination term derived from

Ψ(A1, . . . ,AC) when the other coefficient matrices are all

fixed, given as

ψ(Ai) = ||Ai −Mi||
2
F −

C
∑

j=1

||M0
j −M

0
(j)||

2
F (7)

where Mi ∈ R
Ki×Ni consists of Ni copies of the mean

vector µi as its columns, M
0
j ∈ R

K0×Nj and M
0
(j) ∈

R
K0×Nj are produced by stacking Nj copies of µ0

j and µ0

as their column vectors, respectively. We drop the subscript

j of M
0
(j) in the sequel to limit notation clutter as its di-

mension can be determined in the context. It is seen that

except the l1 penalty term, the other two terms in (6) are

differentiable everywhere. Thus, various l1-Minimization

algorithms [24] can be modified to solve it. In this work,

we adopt one of the iterative shrinkage/thresholding ap-

proaches, named two-step iterative shrinkage/thresholding

(TwIST) [2], to solve it.

Considering the coefficients are fixed. We first update

the category-specific dictionaries {D̂i}
C
i=1 class by class

and then update the shared dictionary D0. Specifically,

given Ai and D0 fixed, the optimization of D̂i reduces to

the following problem:

min
D̂i

||Xi −D0A
0
i − D̂iÂi||

2
F (8)

s.t. ||d̂j ||
2
2 ≤ 1, ∀j = 1, . . . , Ki.

After the class-specific dictionaries {D̂i}
C
i=1 have been up-

dated, we update the basis in D0 by solving the following

optimization

min
D0

||X0 −D0A
0||2F (9)

s.t. ||dj ||
2
2 ≤ 1, ∀j = 1, . . . , K0,

where

A
0 , [A0

1, . . . ,A
0
C ], (10)

X
0 , [X1 − D̂1Â1, . . . ,XC − D̂CÂC ]. (11)

Both (8) and (9) are least squares problems with quadratic

constraints which can be efficiently solved using their La-

grange duals [15]. We summarized the overall optimization

procedure of JDL in Algorithm 1.

Algorithm 1 Joint Dictionary Learning

Input: Data {Xi}
C
i=1, sizes of dictionaries Ki, i =

1, . . . , C, sparsity parameter λ, discrimination param-

eter η, and similarity threshold ξ.

1: repeat {Initialize {Di}
C
i=1 and {Ai}

C
i=1 indepen-

dently.}
2: For each class i in theC classes, update Ai by solv-

ing minAi
||Xi −DiAi||

2
F + λ||Ai||1;

3: For each class i in theC classes, update Di by solv-

ing minDi
||Xi −DiAi||

2
F using its Lagrange dual.

4: until convergence or certain rounds.

5: Select the basis in {Di}
C
i=1 whose pairwise similarities

(inner-product) are bigger than ξ and stack them col-

umn by column to form the initial D0.

6: Compute the initial {D̂i}
C
i=1 such that Di = [D0, D̂i].

7: repeat {Jointly updating {D̂i}
C
i=1 and D0.}

8: For each class i in the C classes, update Ai by op-

timizing (6) using TwIST [2].

9: For each class i in theC classes, update D̂i by solv-

ing the dual of (8).

10: Update D0 by solving the dual of (9).

11: until convergence or certain rounds.

Output: The learned category-specific dictionaries

{D̂i}
C
i=1 and the shared dictionary D0.

3.4. Classification Approach

Once the multiple dictionaries have been trained, an in-

tuitive way to classify a testing sample x is to make use of

different residual errors computed over the C dictionaries.

While this strategy has led to good results in [23, 21], better

results have been achieved in [17, 19, 28] by taking into ac-

count the discrimination of sparse coefficients. However, in

[17, 19], the classification decision was still solely based on

the reconstruction errors and in [28] the discrimination of

spare codes was exploited by calculating the distances be-

tween coefficients and class centroids. On the other hand,

classifiers were trained either simultaneously with dictio-

nary learning process [18, 27, 30, 13] or as a second step

[26, 3] to better make use of the discriminative coefficients.

To harness the discrimination of multiple versions of de-

composition coefficients over the multiple dictionaries for

better visual classification, we train multiple linear SVMs

by taking the sparse representations over different dictio-

naries as features and combine the outputs of the classifiers

to produce the final prediction via a equal voting scheme,

which is illustrated in Fig. 2.

4. Experiments

We evaluate the JDL’s performance on widely used vi-

sual benchmarks, including two subsets originated from the

ImageNet database and the 17-category Oxford flower data
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Figure 2: Illustration of the classification scheme over multiple

learned dictionaries.

set. We compare the object recognition performance of JDL

with two unsupervised dictionary learning methods, ScSPM

[25] and independent multiple dictionary learning (IMDL)

which learns multiple class-specific dictionaries indepen-

dently rather than jointly (See line 1 to 4 in Algorithm 1);

and two recently proposed supervised dictionary learning

algorithms, namely D-KSVD [30] and FDDL [28].

The SIFT [16] descriptor is used as local descriptor

due to its excellent performance on object recognition

[3, 25, 13]. Specifically, we adopt a dense sampling strat-

egy to select the interest regions from which SIFT descrip-

tors are extracted. The patch size and step size are set to be

16 and 6 respectively. The maximum width or height of an

image is resized as 300 pixels and the l2 norm of each SIFT

descriptor is normalized to be 1. Given an image, the spa-

tial pyramid feature [14] is computed as the representation

by max pooling the sparse codes of the SIFT descriptors in a

three-level spatial pyramid configuration which is then used

as feature in SVMs for classification in ScSPM, IMDL and

JDL. Note that the classification scheme presented in Sec-

tion 3.4 is also used in IMDL as multiple dictionaries are

trained. On the other hand, a linear classifier is simultane-

ously trained with the dictionary learning in D-KSVD. The

residual errors plus the distances between spare coefficients

and class centroids are used for classification in FDDL. To

make a fair comparison, the dictionaries in D-KSVD and

FDDL are learned over the spatial pyramid feature of the

entire image rather than on local SIFT descriptors. Specifi-

cally, the spatial pyramid feature is produced using a code-

book of 1,024 atoms and is further reduced to certain di-

mensions using PCA before it being fed to D-KSVD and

FDDL models.

Another important factor in JDL and IMDL is the size

of each dictionary which essentially depends on the num-

ber of training samples and the data complexity of an object

class. We however set the dictionary sizes to be equal across

all categories for simplicity. A more detailed discussion on

how the performance of JDL and IMDL is affected by dic-

tionary sizes is presented in Section 4.3. The sizes of the

universal dictionaries in ScSPM and D-KSVD are fixed the

same as 2,048 on all the three data sets. The sparsity param-

eter λ is set as 0.15 in all experiments and the parameter of

the discrimination promotion term η in JDL is fixed at 0.1

both of which are determined by cross-validation. We set

the similarity threshold ξ in Algorithm 1 to be 0.9 in all

trials.

4.1. Evaluation on ImageNet Database

As we are interested in learning multiple dictionaries for

visually correlated objects, we manually choose two groups

of object categories in each of which the object classes

are visually similar from the ImageNet database [5]. The

first group contains 1,491 images of five object categories,

including dog (n02084071), hound (n02087551), whippet

(n02091134), cat (n02121620), and margay (n02126640)

(See sample images of each class in Table 1). The sec-

ond group contains six object classes which has 3,232 im-

ages in total. The object categories are computer mon-

itor (n03085219), computer screen (n03086502), desk-

top computer (n03180011), keyboard (n03614007), laptop

(n03642806), and television (n04404412), whose sample

images are shown in Table 2 (from left to right). The avail-

able bounding boxes are used to crop out object parts for

training and testing in all the dictionary learning algorithms.

We partitioned the images into training and testing at the

ratio of 8:2. All experiments are repeated by 10 times with

different random training and test splits to obtain statisti-

cally reliable results.

On the first group (Group 1), using the predefined sim-

ilarity threshold ξ, the number of atoms of D0 and D̂i,

i = 1, . . . , 5 are found to be 103 and 409 respectively af-

ter convergence. It means that about twenty percentage of

atoms are shared by all classes reflecting that the categories

are indeed visually correlated. We tabulated the comparison

of object recognition (categorization) performance between

JDL and the other aforementioned dictionary learning tech-

niques in Table 1. It is seen that JDL achieves the high-

est average accuracy over the five object classes, among

which JDL exhibits best results on three of them. Com-

paring to the independent learning algorithm, IMDL, the

overall performance gain of JDL is 4.5%. Also, JDL out-

performs the other two supervised dictionary learning algo-

rithms D-KSVD and FDDL by 17.30% and 10.6%, respec-

tively. The results show that by learning a common shared

dictionary and a couple of class-specific dictionaries, the

proposed JDL model effectively maximizes the separation

of sparse codes of different classes to yield better recogni-

tion results.

On the second group of object categories (Group 2), JDL

learned a shared dictionary of 181 visual words and six

class-specific dictionaries of 331 atoms after the algorithm

converged. Table 2 presents the comparison and shows that

JDL outperforms all the competing algorithms in terms of

average accuracy over the six classes which is consistent

with that obtained based on the Group 1 data set.
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Average

dog hound whippet cat margay

ScSPM [25] 45.43±3.55 58.85±4.63 41.63±6.55 71.35±6.71 80.71±9.56 59.59±2.68

IMDL 54.57±6.73 61.54±7.69 42.04±4.69 71.62±3.94 86.79±3.70 63.31±3.18

D-KSVD [30] 38.57±6.34 57.69±9.84 38.78±5.77 59.46±5.23 87.50±8.51 56.40±2.61

FDDL [28] 44.67 ±10.09 57.52±6.91 62.57±7.34 66.26±7.08 68.06±6.67 59.82±7.46

JDL 57.14±4.69 59.62±4.21 53.06±3.09 71.67±3.22 89.29±2.70 66.16±1.81

Table 1: Recognition accuracy (%) on the first group of object classes from the ImageNet database.

Average

ScSPM [25] 24.58±4.00 39.22±3.92 80.77±6.01 96.65±1.25 54.88±6.73 77.38±3.88 62.25±1.92

IMDL 29.58±4.56 43.14±6.73 82.69±1.52 96.11±0.63 56.13±6.98 80.37±3.19 64.67±0.88

D-KSVD [30] 22.92±11.28 33.33±5.11 82.69±4.13 98.05±1.01 46.34±4.98 73.83±3.68 59.53±3.03

FDDL [28] 43.75±7.98 43.75±8.39 48.99±7.52 98.04±0.31 41.19±8.60 61.60±5.61 56.22±6.23

JDL 41.67±6.97 53.85±5.38 83.08±5.02 92.31±2.28 57.14±2.87 81.48±0.67 68.26±1.62

Table 2: Recognition accuracy (%) on the second group of object classes from the ImageNet database.

4.2. Evaluation on Oxford Flower Data Set

The Oxford flower benchmark contains 1,360 flower im-

ages of 17 categories with 80 images per class. Three pre-

defined training, testing and validation splits provided by

the authors [20] are used in our experiments. As bounding

boxes are not provided, the entire images are used in all ex-

periments. We also compare JDL with ScSPM [25], IMDL,

D-KSVD [30] and FDDL [28]. The size of each dictionary

is all set to be 256 in JDL, IMDL and FDDL. After the JDL

converged, a shared dictionary of 95 atoms was obtained.

We tabulated the results in Table 3 and 4. It is seen that JDL

consistently outperforms the other dictionary learning algo-

rithms, IMDL, D-KSVD and FDDL, in terms of average

accuracy.

Also, we included other state-of-the-art approaches on

this benchmark, which use different methods to com-

bine various types of features (color histogram, bag of

words and histogram of oriented gradient) for object recog-

nition/classification. They includes multi-class LPboost

(MCLP) [9], visual classification with multi-task joint

sparse representation (KMTJSRC) [29], histogram-based

component-level sparse representation (HCLSP) and its ex-

tension (HCLSP ITR) [4]. Table 5 presents the comparison

and shows that the average accuracy of the proposed JDL is

comparable to that of KMTJSRC which combines multiple

features via a multi-task joint sparse representation.

4.3. Discussion

Convergence of JDL: To investigate the convergence of

the proposed JDL, we plotted the values of the JDL’s objec-

tive function (c.f. (5)) over iterations on all three data sets

in Fig. 3. It is seen that JDL always empirically converged

after a few iterations.
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Figure 3: The convergence of JDL indicated by the values of the

objective function on the two ImageNet subsets (units indicated

in the left y-axis) and the 17-category flower database (units indi-

cated in the right y-axis).

Dictionary Size: We also investigated how the perfor-

mance of JDL and IMDL was affected by the dictionary

sizes. Intuitively, a dictionary of larger size would lead to

better results as it has richer expression power. However,

when the dictionary size becomes too large, it brings two

drawbacks: 1) the computational cost for sparse decompo-

sition would be high; and 2) the matching of features from

the same class is not that robust. In the experiments of JDL

and IMDL, we tried six different dictionary sizes per class.

Fig. 4 shows the results of JDL and IMDL with various

dictionary sizes on the Group 1 and Group 2 sets. The av-

erage recognition accuracy is demonstrated over the size of

each dictionary, Ki, ranging from 32 to 512. It is seen that

JDL outperforms IMDL under all dictionary sizes and still

achieves acceptable results even when the number of atoms

is only 64.

Computational Complexity of JDL: Compared with

unsupervised dictionary learning algorithms, JDL achieves

better recognition accuracy. The drawback of JDL is that
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ScSPM [25] 53.33 65.00 68.33 58.33 70.00 18.33 45.00 51.67 63.33

IMDL 63.33 93.33 80.00 58.33 73.33 33.33 58.33 78.33 86.67

D-KSVD [30] 61.67 90.00 80.00 48.33 68.33 30.00 58.33 71.67 80.00

FDDL [28] 46.67 88.33 88.33 68.33 78.33 41.67 71.67 76.67 81.67

JDL 75.00 95.00 81.67 58.33 70.67 35.00 60.23 78.33 85.00

Table 3: Recognition accuracy (%) on the 17-category Oxford flower data set (continued in Table 4).

Average

ScSPM [25] 58.33 58.33 50.00 38.33 70.00 43.33 20.00 58.33 52.35

IMDL 80.00 66.67 40.00 61.67 86.67 68.33 35.00 70.00 66.67

D-KSVD [30] 75.00 65.00 31.67 58.33 81.67 45.00 33.33 66.67 61.47

FDDL [28] 76.67 61.67 51.67 46.67 76.67 46.67 48.33 80.00 66.47

JDL 75.00 70.67 45.00 60.00 86.67 65.33 45.23 80.58 68.69

Table 4: Recognition accuracy (%) on the 17-category Oxford flower data set (continued from Table 3).

Models MCLP [9] KMTJSRC [29] HCLSP [4] HCLSP ITR [4] JDL

Avg. accuracy (%) 66.74 69.95 63.15 67.06 68.69

Table 5: Performance comparison with state-of-the-art results on the 17-category Oxford flower database.
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Figure 4: Performance of JDL and IMDL with various dictionary

sizes per class on the two ImageNet subsets.

it is computationally more complex to learn a dictionary.

Even though the dictionary learning can be done off-line, it

is still important to see how long the off-line process would

take. A couple of experimental parameters make influences

on the runtime of the dictionary learning process, including

the number of object categories and training samples, the

dictionary size and the dimension of feature space. Fixing

the dictionary size to be 256, the runtime performance of

JDL is shown in Fig. 5 over different number of training

samples per category on the two ImageNet sets. The run-

time is measured on an Intel Xeon 2.00 GHz PC without

fully optimizing the code.

5. Conclusion and Future Work

In this paper, we have developed a novel joint dictio-

nary learning (JDL) algorithm to exploit the visual corre-
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Figure 5: The runtime performance of JDL on the two ImageNet

subsets. The maximum number of iterations is set to be 20.

lation among visually correlated object categories to learn

inter-related dictionaries. A common shared dictionary and

multiple category-specific dictionaries have been learned in

JDL model for a group of visually correlated object classes.

To enhance the discrimination of the dictionaries, the learn-

ing problem has been modeled as a joint optimization by

adding a discriminative term based on Fisher discrimina-

tion criterion . As well as presenting the JDL model, we

have developed a classification scheme to better take advan-

tage of the multiple dictionaries. We have presented exten-

sive experimental results which show that JDL is superior

to many unsupervised or supervised dictionary learning al-

gorithms on dealing with highly correlated visual objects.

A fundamental problem is how to automatically determine

which object categories are closely correlated to each other

in terms of visual similarities rather than semantic relation-
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ships when the number of object categories becomes larger.

This is a possible direction of our future work.
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