
Hierarchical Matching with Side Information for Image Classification

Qiang Chen1, Zheng Song1, Yang Hua2, Zhongyang Huang2,Shuicheng Yan1
1 Department of Electrical and Computer Engineering, National University of Singapore, Singapore

2 Panasonic Singapore Laboratories, Singapore

fchenqiang,zheng.s,eleyansg@nus.edu.sg, fyang.hua,zhongyang.huangg@sg.panasonic.com

Abstract

In this work, we introduce a hierarchical matching
framework with so-called side information for image clas-
sification based on bag-of-words representation. Each im-
age is expressed as a bag of orderless pairs, each of which
includes a local feature vector encoded over a visual dic-
tionary, and its corresponding side information from priors
or contexts. The side information is used for hierarchical
clustering of the encoded local features. Then a hierarchi-
cal matching kernel is derived as the weighted sum of the
similarities over the encoded features pooled within clus-
ters at different levels. Finally the new kernel is integrated
with popular machine learning algorithms for classification
purpose. This framework is quite general and flexible, other
practical and powerful algorithms can be easily designed
by using this framework as a template and utilizing par-
ticular side information for hierarchical clustering of the
encoded local features. To tackle the latent spatial mis-
match issues in SPM, we design in this work two exemplar
algorithms based on two types of side information: object
confidence map and visual saliency map, from object de-
tection priors and within-image contexts respectively. The
extensive experiments over the Caltech-UCSD Birds 200,
Oxford Flowers 17 and 102, PASCAL VOC 2007, and PAS-
CAL VOC 2010 databases show the state-of-the-art perfor-
mances from these two exemplar algorithms.

1. Introduction
In this work, we focus on image classification according

to the objects contained in the images. More specifically, we
focus on the classification of complex images which con-
tain objects as well as cluttered background areas. Ideally,
different parts of image should serve different roles for the
classification. The appearance model of object itself plays a
key factor while rich context information from background
is helpful for the classification process. However, since the
objects may only occupy a small portion of the images, rich
context information as well as background noise introduced
by the rest area of the image must be well handled in prac-
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Figure 1. Illustration of the hierarchical matching representation.
The local features are pooled according to partition of (b) tradi-
tional SPM and (c) the proposed object confidence prior. The fig-
ure shows our framework is superior than SPM in object matching
across different images. For better viewing of all figures in this
paper, please see original color pdf file.

tice. State-of-the-art methods following the bag-of-words
(BoW) framework [10] mainly contain three steps: local
feature extraction, feature encoding/pooling, and classifier
learning. The local features are extracted from the dense
grids, or via sparse interest point detection in the images.
Feature encoding forms global image representations, e.g. a
frequency histogram of visual words, which encodes the lo-
cal features with a predefined visual dictionary such that the
image representation has a comparable unified coordinate.
The classifier learning step generally uses the kernel built
on matching scores of the global image representations.

Traditional BoW framework equally encodes all local
features and does not emphasize any elements with re-
gard to image layout. Hence, pyramid structure represen-
tation is often used to extend the global BoW representa-
tion in image classification, e.g. Spatial Pyramid Match-
ing (SPM) [20] for natural scene classification. SPM mod-
els global geometric correspondence by partitioning the im-
age plane into increasingly fine sub-regions. The success of
SPM comes from the valid assumption that the images with
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similar scene and geometry layout possibly belong to the
same category. However, we argue that this representation
is not optimum for object-centered recognition problem. As
Figure 1 indicates, the spatial partition based on SPM may
have mismatch problem caused by different object locations
and scene layouts. In other words, if a prior knowledge,
e.g. the possibility of object existence confidence in the im-
age as shown in Figure 1 is acquired, we can construct the
representation to match the corresponding object and back-
ground more accurately.

To this end, we propose a generalized hierarchical
matching framework (GHM), which is capable to integrate
different kinds of prior knowledge, including clues of object
layout, for enhancing feature matching and towards object-
oriented recognition. The prior knowledge, which is called
side information in this paper, is associated with each local
feature vector in image. Using the side information, the im-
age local feature pool can be clustered into cells and further
a coarse to fine hierarchical representation can be generated.
Since the partition of the cells is guided with side infor-
mation more semantically concerned, the encoding within
each cell tends to be more semantically matchable and thus
is expected to achieve better performance. Figure 1 demon-
strates an example of how object-level side information is
supplied to the proposed GHM framework. The side infor-
mation of object confidence map can be used as an object-
oriented prior for spatial partition of the image local feature
pool. Consequently the images represented as hierarchical
structures could carry out a coarse to fine matching.

Our contributions are two-fold. First, we propose the
Generalized Hierarchical Matching framework for image
classification. It gracefully extends the popular pyramid
matching work, but further enables us to integrate other se-
mantically useful side information with the flexibility. Sec-
ond, two novel kinds of side information, i.e. object con-
fidence map and visual saliency map, are introduced to en-
hance object-oriented image classification tasks based on
the proposed GHM framework.

2. Related Work

2.1. Hierarchical Matching

Pyramid structure representation is often used to extend
the global BoW representation in image classification, e.g.
Spatial Pyramid Matching (SPM) [20] and Pyramid Match
Kernel (PMK) [14]. SPM models approximate geometric
layout by partitioning the image plane into increasingly fine
sub-regions, and due to its better performance and simple
implementation, it has become a standard procedure for im-
age classification. However, for object-oriented classifica-
tion, the increased complexity brought by SPM cannot con-
tribute much to the recognition target because the object
may appear in arbitrary position within an image, which

thus may reduce the recognition efficiency and bring mis-
alignment issue due to the unpredictable object locations in
images.

PMK maps each feature set to a multi-resolution his-
togram that preserves the individual features’ distinctness
at the finest level. The histogram pyramids are then com-
pared using a weighted histogram intersection computation,
which implicitly defines the correspondence based on the
finest resolution histogram cell where a matched pair first
appears. It focuses on the mismatch problem caused by
inaccurate Vector Quantization in feature encoding proce-
dure. GHM framework well generalizes the SPM and PMK
approaches and Section 3.3 will detail their relationship.

2.2. Saliency-guided Object Recognition

The saliency map [16] is a topographically arranged map
that represents visual saliency of a corresponding visual
scene. The purpose of the saliency map is to represent
the conspicuity or “saliency” at every location in the vi-
sual field by a scalar quantity and to guide the selection
of attended locations, based on the spatial distribution of
saliency. Many of these saliency models are based on find-
ings from psychology and neurobiology and explain the
mechanisms guiding attention allocation [19, 16]. More re-
cently, a number of models [28, 33] attempt to explain at-
tention based on more mathematically motivated principles.
Both types of models tend to rely solely on the statistics
of the current test image when it comes to computing the
saliency of a point in the image.

Some previous studies attempt to use saliency map as
guidance for object recognition. Khan and Weijer [18] use
color to guide attention by means of a top-down category-
specific attention map. The color attention map is deployed
to modulate more shape features from regions within an im-
age that are likely to contain an object instance. Kanan
and Cottrell [17] attempt to solve image classification us-
ing a biologically-inspired model to approximate the hu-
man eye fixations. These fixations are extracted from the
feature maps at the sampled location, followed by proba-
bilistic classification and the acquisition of additional fixa-
tions. The major difference between the proposed saliency
map based GHM algorithm and these methods lies on how
to utilize the saliency maps. In other words, GHM attempts
to re-partition the features so that the group of features has
more meaningful structure and each layer of partition has
consistent elements to be matched.

2.3. Region-based Object Recognition
Recently, some work attempts to process the object

recognition at the image region level. Andrews and
Tsochantaridis [1], Wang and Forsyth [38] explore mul-
tiple instance learning respectively to classify images by
the highest scored image region. Following this idea,
Yakhnenko and Verbeek [41] use a latent-SVM model,
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Figure 2. Diagrammatic flowchart of the proposed framework for image classification. The image is along with the (b) local features and
side information. (c) The side information is hierarchically clustered to different levels. Different color mask represents different clusters
at each level. (d) The encoding is operated on each cluster to form the hierarchical representation. (e) Finally, the matching over each
corresponding cluster is performed.

which scores an image using all regions and associates each
region with a latent variable indicating whether the region
represents the object of interest or not. The solution takes
the classification and foreground estimation into a joint in-
ference framework. Though simpler than our proposed two-
step solution, the critical drawback of the joint inference is
that it will restrict the source of side information and can-
not handle information from too complex sources. Other
similar recognition work for image classification also ex-
ists. Chai et al. [4] propose to segment the images into fore-
ground and background within co-segmentation scenario to
improve image classification performance. Bosch et al. [2]
define a Region-Of-Interest in the image and take the max-
imum response over the coarse image grid as the output
of classifier. Comparing to these region-based approaches,
the GHM framework aims to utilize all image information
including object itself and context from different kinds of
sources.

3. Generalized Hierarchical Matching
3.1. Image Classification Flowchart

Figure 2 shows the diagrammatic flowchart for image
classification. Each image is expressed as a bag of or-
derless pairs I , each of which includes a local feature
vector xi encoded as ci over a visual dictionary, and the
side information fi from priors and/or context, i.e. I =
ffxi; cig; fig

N
i=1. The side information is used for hierar-

chical clustering of the encoded local feature.
Along with the image itself, we may obtain the side

information from various sources, e.g. the object confi-
dence map denoting the existence probability of an object
from object detector as shown in Figure 2. The side in-
formation is quantized into M discrete types. The encod-
ing vectors ci are assigned into different levels of clus-
ters according to the quantization of side information, and
form the hierarchical matching representation. To measure

the similarity of two images I1 = ffx1i ; c
1

i g; f
1

i g
N1

i=1 and
I2 = ffx2i ; c

2

i g; f
2

i g
N2

i=1, a kernel is constructed based on
this representation. The kernel could be fed into any pop-
ular machine learning algorithm for classification purpose.
We detail the GHM representation in the following section.

3.2. Hierarchical Matching Kernel
Assuming there are two images I1; I2, we can allo-

cate each pair in I1; I2 into a hierarchical structure G =
fG1; G2; :::; GLg , where L is the number of hierarchical
levels. Same as in previous hierarchical matching algo-
rithms, only the elements grouped to the same cluster are
supposed to match to each other. Hence we quantize all
encoded feature vectors into Ml cells at level l, and the cor-
responding pooling is functioned on each cluster. We ex-
plored two ways to construct hierarchical structure. One
is to perform hierarchical clustering on single/combined
maps. The clustering is operated on the side information
of training set. The other one is to design mixed mean-
ingful structure from prior knowledge instead of automatic
hierarchical clustering.

Then we can define a cluster kernel through a similarity
function, i.e. �jl

12
= S(I1; I2; G

j
l ), where S is a similarity

function based on local feature cluster Gj
l on cell j at level l

for images I1 and I2, and �jl
12

represents the similarity value
on cell j at level l. Then the similarity kernel between two
images is defined as the weighted sum of similarity values:

K12 =

LX

l=1

MlX

j=1

wjl�
jl
12
: (1)

Similar to other hierarchical methods, it degenerates to a
standard BoW when L = 1;Ml = 1. It is easy to verify
that if the �jl is a Mercer Kernel, then K is also a Mercer
Kernel and thus it can be embedded into any popular kernel-
based machine learning algorithm. The kernel weight wjl

can be intuitively set or learnt by popular Multiple Kernel
Learning (MKL) [29] method.
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Table 1. Unified framework of Generalized Hierarchical Matching
Method Name Side information Coding method Similarity function

PMK [14] Histogram Index Vector Quantization Intersection

SPM
General [20]

Location Coordinate
Vector Quantization Arbitrary

ScSPM [42] Sparse Coding Linear
ImprovedFV [12] Fisher Vector Coding Linear

The proposed GHM Object Confidence Map, ArbitraryVisual Saliency Map

3.3. Generalization and Flexibility

In Table 1, we demonstrate the generalization capabil-
ity with various configurations of GHM to realize previous
hierarchical matching algorithms as well as our proposed
object-oriented recognition with new side information.

First, we show that the Pyramid Match Ker-
nel (PMK) [14] is one exemplar of the GHM framework.
To encode and match the local feature with more accurate
quantization, PMK uses multiple levels of local feature
pooling and intersection kernel matching based on Vector
Quantization (VQ). The pool of local image features is
hierarchically partitioned into clusters according to their
histogram indices and the final matching score is defined as
weighted sum of all cluster matching scores, which can be
straightforwardly explained by our GHM framework. As
aforementioned, SPM uses the location coordinate of local
features as side information for clustering and it is easily
adapted as one special case of the GHM framework. GHM
is the general form of PMK and SPM, which use diverse
side information respectively.

Table 1 also illustrates that GHM framework can em-
bed any popular coding method with flexibility. The BoW
feature encoding approaches such as Sparse Coding [42]
and Locality-constrained Linear Coding (LLC) [39] intro-
duce soft assignment for local feature quantization. Fisher
encoding[12] and Super vector encoding [44] capture the
average first and second order differences between local
features and their distribution centres modeled by Gaussian
Mixture Models. Most of the coding work include SPM as
the spatial pooling step. GHM could also help this step and
indicate image coding on well-designed clusters based on
provided side information, e.g. object confidence map and
visual saliency map which is detailed in next section.

4. Side Information Design
In this section, we design two schemes to construct side

information: (1) the object confidence map which reveals
the possibility of a local patch containing a object. (2) the
visual saliency map which takes advantage of natural image
statistic and distinguishes the foreground against the back-
ground. Further these two kinds of information, as well as
the location coordinate information, can be combined par-
allelly or hierarchically as side information to reflect mean-
ingful structure for GHM-based image recognition.

Fusing

Images

Object Confidence Maps

Random 
sub-window

Sliding 
window

Score vote 
back to image

Shape Model Appearance Model

Process

Score vote 
back to image
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Figure 3. Object confidence map and some examples from car cat-
egory.

4.1. Object Confidence Map
For object recognition task, it is commonly believed

that in traditional well-proposed object recognition datasets,
such as CMU PIE face [31] and Caltech-101 [9], most ob-
jects are cropped after fine alignment and with little back-
ground noises, and such preprocess always leads to much
better performance. But it does not work for general ob-
ject recognition datasets such as Caltech-UCSD Birds [40],
PASCAL VOC [7], etc, where no object pre-alignment and
cropping is performed. Intuitively the most useful recogni-
tion prior for these object-unaligned images is object posi-
tion. And object position should be extremely beneficial for
fine-grained image classification task.

The steps to construct an object confidence map, denoted
as GHM Object, is illustrated in Figure 3. For each ob-
ject category, e.g. car, we train one shape-based and one
appearance-based object detectors, respectively. The usage
of two detectors is to guarantee both high precision and high
recall on object detection since none of the detectors can
achieve this alone and they complement each other in cer-
tain way. Instead of constructing the local classifiers on a
super-pixel representation as in other work [34, 21], we use
square grid samples and sliding-window approach for effi-
ciency consideration.

The shape-based object detection adopts the state-of-the-
art part-based model from Felzenszwalb et al. [11] using
HOG [6] features. And the appearance-based object detec-
tor is trained with BoW features. We use dense SIFT [22]
and LBP [26] as local features and the codebook sizes for
dense SIFT and LBP are 2000 and 1000 respectively. Each
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Figure 4. Visual saliency map generation and some examples.

detection sub-window is divided into 3x1 spatial pyramid
to provide weak geometry constraint. The BoW histogram
is mapped into high-dimension space via Additive Kernel
Mapping [37]. This nonlinear transformation guarantees
the possibility of using linear classifier for fast detection.
We further accelerate the detection by using integral image
to construct BoW representation within sub-window. Mul-
tiple scale detection is performed in each image and the ob-
tained multi-scale scores are averaged to get final single ob-
ject confidence map.

4.2. Visual Saliency Map
For some object categories, such as flowers, detection

models may perform poorly. We propose another apparent
foreground prior on finding visually salient image regions
from human attention models and construct saliency maps
as side information, denoted as GHM Saliency.

We consider the saliency under the scenario of general
visual classification problem. In other words, the saliency
information should reflect how human sees the objects
against the natural background clutter. For this reason, we
use the saliency model SUN (Saliency Using Natural statis-
tics) [43]. This measure of saliency is based on natural im-
age statistics, rather than based on a single test image, pro-
viding a straightforward explanation for many search asym-
metries observed by humans.

The SUN model illustrated in Figure 4 defines the bot-
tom up saliency as P (F )�1, where F indicates the trans-
formed color features through Independent Component
Analysis (ICA) [35] on local color patch. Since the compo-
nents of F have been made largely statistically independent
by ICA, SUN models P (F ) as the product of unidimen-
sional distributions: P (F = f) =

Q
i P (fi), where fi is

the ith value of these filter responses at this location. The
ICA feature responses to natural images can be fitted very
well using Generalized Gaussian Distributions [30], and we
obtain the shape and scale parameters for each ICA filter by
fitting its response to the ICA training images.

4.3. Side Information Combination
The nature of the GHM framework enables us to flex-

ibly combine side information from various sources. One
straight way to combine the side information is parallel in-
formation fusion, e.g. the spatial location information and

Object Scene Layout

Figure 5. Combine object confidence map and spatial layout into
one GHM. Level 2 is clustered according to object confidence
map. Level 3 is designed for foreground matching and scene lay-
out matching.

the saliency map coupling as f = fflocation; fsaliencyg col-
laboratively. The clustering over this combination aims to
consider the geometric constraint and saliency information
so that each of the sub-cluster in the image contains equal
amount of salient area. We denote this parallel combination
as GHM LocSaliency.

Another feasible solution for side information combina-
tion is to design mixed hierarchical structure. Most nat-
ural images (e.g. those from PASCAL VOC dataset) con-
tain large amount of background area, which in fact supplies
rich contexts for the recognition of certain object categories
e.g. sky for aeroplane/bird, urban scene for various vehi-
cles. This motivates us to design a configuration which si-
multaneously matches foreground objects and background
scenes. The background confidence can be simply obtained
from the foreground object confidence with reversed pro-
cess, i.e. small object confidence map value meaning higher
possibility of background. The spatial layout is proved to be
useful for the recognition of background scenes [20]. We
design a 3 level hierarchical structure with combined side
information: the whole image as level 1, object confidence
map is used in level 2 as the foreground confidence map,
and the small value denoting the background area will be
further utilized in level 3 to construct the 3 � 1 spatial lay-
out modeling the background scene as shown in Figure 5.
We denote this hierarchical combination as GHM ObjHier-
archy.

In summary, we propose two useful resources of side in-
formation to fit into proposed GHM framework for image
classification, i.e. the object confidence map and the visual
saliency map. We further propose to associate the side in-
formation from multiple resources, either through simple
parallel combination or via sophisticated hierarchical de-
sign to reflect the semantic complexity in real image recog-
nition task.

5. Experiments

5.1. Datasets and Metric

We evaluate our proposed Generalized Hierarchical
Matching framework on several popular datasets, the re-
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Figure 6. Sample images from Oxford Flowers 17 and CUB 200.
The images in the same row belong to the same category.

cently released Caltech-UCSD Birds 200 (CUB-200) [40],
the Oxford Flowers 17 (Flowers 17) [24] and 102 (Flowers
102) [25], and the PASCAL Visual Object Challenge (VOC)
datasets [7].

The CUB-200 contains 200 bird categories and 6033 im-
ages in total. It is created to enable the study of subordinate
categorization. The Flowers 17 [24] dataset contains 17
different flower species with 80 images per category. The
dataset provides three different data splits with each includ-
ing 60 training and 20 test images. The Flowers 102 [25]
dataset includes 8289 images divided into 102 categories
with 40 to 250 images per category. We use the provided
data split with 20 images per-category for training and the
rest for testing. Figure 6 shows some examples of the Ox-
ford Flowers and CUB-200 images. It can be seen that these
two fine-category classification datasets are very challeng-
ing due to the large intra variances.

The PASCAL Visual Object Challenge (VOC)
datasets [7] are widely used for many image under-
standing tasks and provide a common evaluation platform
for both object classification and detection. We use PAS-
CAL VOC 2007 and 2010 datasets for experiments. VOC
2007 and VOC 2010 datasets contain 9,963 and 21,738 im-
ages respectively. The two datasets are divided into “train”,
“val” and “test” subsets. We conduct our experiments on
the “trainval” and “test” splits. The employed evaluation
metric is Average Precision (AP) and mean of Average
Precision (mAP) complying with the PASCAL challenge
rules.

5.2. Experimental Details

Baseline Configuration: For CUB-200, Flowers17 and
Flowers102 datasets, the local features used for the image
recognition are RGB color moment and dense SIFT descrip-
tors. The implementation of dense SIFT is based on VL-
Feat [36] using multiple scales setting (spatial bins are set as
4, 6, 8, 10) with step 4. We use the improved Fisher vector
coding [12] with SPM setting which has demonstrated the
superiority over other coding methods in a fair setting [5].
The size of Gaussian Mixture Model in Fisher vector coding
is set to 256 for these two features separately. One-vs-All
SVM is learnt for each category using the representation

generated by GHM and returns the class with the maximum
score over all the image classifiers. The SPM is with typ-
ical setting, 3 levels are used, 1 � 1; 2 � 2; 4 � 4 spatial
separation.

For PASCAL VOC 2007 [7] datasets, we use only dense
SIFT feature with the Fisher vector coding to make it com-
parable with other popular works. We also conduct the
experiments with “heavy” setting to obtain state-of-the-art
performance for PASCAL VOC 2010 dataset. For local fea-
tures, we extract dense SIFT, HOG, color moment and LBP
features in a multi-scale setting. Typically, the number of
local features for each image is around 30K for SIFT, 5K-
10K for others. This is critical in feature coding to pro-
duce non-sparse representation. All these features are also
encoded with improved Fisher vector coding. One-vs-All
SVM is learnt and the performance is evaluated by AP.

Side Information Generation: We implement the pro-
posed two kinds of side information: (1) the supervised
object confidence map and (2) the unsupervised visual
saliency map. The two detectors used to generate object
confidence map are trained with PASCAL VOC images.
For part-based model [11], the HOG and LBP features are
used for object description and the number of part models
for each object category is set to 8. For appearance-based
approach, we sample 4000 sub-windows with different size
and scale and perform the BoW based object detector on
these sub-windows. We construct the hierarchical struc-
ture with three-level clusters, each of which includes 1, 2,
4 nodes respectively on the training images. For each class,
we sample the responses from the positive images and the
same number of negative images and get various cluster
centers with clustering process. Finally each local feature
is assigned to the nearest center at each level.

For the saliency map generation, we follow the SUN [43]
framework and adopt the ICA filters model from [17].
These filters are learned with the images from the McGill
color image dataset [27]. For the following experiments, we
use this setting unless otherwise stated: three-level clusters
for hierarchical structure, each of level with 1, 2, 4 nodes
respectively. The clustering is operated on single image but
not cross dataset since we find that the saliency map values
for different images are not comparable.

The weight wjl is intuitively set without fine tuning: the
higher confidence cluster has higher weight within each
level and the weights are normalized to have unit sum for
each level.

5.3. Exp1: Caltech-UCSD Birds 200
We first evaluate our methods on the newly released

Caltech-UCSD Bird 200 dataset and show that the visual
saliency map and the object confidence map are very help-
ful for the fine categorization problem. The dataset is ex-
tremely challenging, and its authors report only 19% recog-
nition accuracy [3] when using ground truth masks. The
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Table 2. Performance comparison on Caltech-UCSD Birds 200.
The proposed methods lead to the highest recognition accuracy.

Methods Recognition Acc.
Chai et al. [4] 17.0

Branson et al. [3] 19.0
BoW Baseline 15.2

FVSPM 15.0
GHM Saliency 18.1
GHM Object 19.2

recognition performance is listed on Table 2 (using the sug-
gested 20 training images per class split). Chai et al. [4]
first segment the image into foreground and background and
then extracted feature on the foreground. We also imple-
ment the Fisher vector coding with SPM (FVSPM) [12].

For this fine-grained categorization problem, the spatial
layout has no exact meaning for different fine classes since
most of classes share the same background. We propose
to use saliency map (GHM Saliency) and the object con-
fidence map (GHM Object) as a guidance to partition the
images into different levels. The object confidence map
is obtained by performing the “bird” detector trained from
VOC 2010 datasets. Both of the results are much better than
FVSPM. The results show that the unsupervised saliency
performs very well on this dataset and the object confidence
map gives strong support for separating the foreground and
background so that fine-grained categorization is possible.

5.4. Exp2: Oxford Flowers 17 and 102

We compare our proposed GHM method with other
state-of-the-art results on Oxford Flowers datasets. Gehler
and Nowozin [13] adopt multiple feature combination
method. Kanan and Cottrell [17] use the same saliency map
as ours. Chai et al. [4] use segmentation to get the fore-
ground area which is current leading method in this dataset.
It is almost impossible to train a “flower” detector for this
dataset, on the other hand, the saliency map shows strong
evidence over this datasets: most of the flowers are within
the salient foreground area of the images. So we evaluate
the GHM with saliency map performance and its combina-
tion with spatial information. The recognition performances
on Oxford Flowers 17 and 102 are listed on Table 3.

The GHM with the saliency map (GHM Saliency)
achieves comparable performance with FVSPM. It shows
that the saliency map is comparable prior for object recog-
nition with the weak geometric alignment at these two
datasets. It is worth noting that for these two datasets, we
use compact representation. i.e. 3 levels of saliency map
with total 1+2+4=7 cells compared with 21 cells in SPM.
We also use the parallel combination design of side infor-
mation by using saliency map together with spatial infor-
mation (GHM LocSaliency). The side information is de-
signed as f = fflocation; fsaliencyg. Then a 2 level GHM
with 1 � 1; 2 � 2 setting is constructed. The results show
the additional improvement over the single channel of side

Table 3. Performance comparison on Oxford Flowers datasets.
Flowers 17 Flowers 102

Methods Recognition Acc.
Gehler and Nowozin [13] 88.5 � 3.0 –
Kanan and Cottrell [17] – 72.8

Chai et al. [4] 90.4 � 2.3 80.0
FVSPM 93.0 � 1.7 82.0

GHM Saliency 93.1 � 1.8 82.3
GHM LocSaliency 93.5 � 1.5 82.6

information with very compact representation.

5.5. Exp3: VOC 2007 and VOC 2010
We evaluate our proposed method on PASCAL VOC

2007 and VOC 2010 dataset. The classification results on
VOC 2007 are listed on Table 4. INRIA [23] is the win-
ner of VOC 2007 and uses multiple kernel learning to bal-
ance the weight of different features. LLC [39] is the pop-
ular state-of-the-art feature coding method. We follow cod-
ing method in FisherVec [12] which results in mAP 58.3%.
Our baseline FVSPM (mAP 60.6%) achieves higher per-
formance than FisherVec approach, since more dense SIFT
features with smaller step for one image is extracted. All
these methods report much lower mAP than the leading
score in [32] which uses “heavy” setting. Also note that the
object classes in this dataset are conflicted with the saliency
map assumption since many of the concerned classes and
object instances in VOC are not at the foreground area, e.g.
bottle, chair, tv. So we mainly use the object confidence
map for each class and encode the features with GHM. The
results (GHM Object) show mAP +3% absolute improve-
ment over the baseline method using SPM. The prior of ob-
ject confidence map is much stronger than the spatial layout
for object-oriented classification.

VOC images contain large amount of background area
which provides rich context information for recognition of
certain objects. This also leads us to design a configura-
tion which simultaneously matches foreground objects and
background contexts. We design the mixed hierarchical
structure setting with combined side information as pro-
posed in Sec. 4.3. The significant performance improve-
ment from mAP 60.6% (by FVSPM) to 64.7% (by GHM
ObjHierarchy) demonstrates the effectiveness of this hier-
archical structure of mixed spatial layout and object confi-
dence modeling.

We also compare our method with the current leading
approach [32] on PASCAL VOC 2010 with “heavy” set-
ting. We adopt the Context SVM method with its configu-
ration which combines the object detection and classifica-
tion in a context-aware scenario, but generate the represen-
tation with GHM ObjHierarchy. The classification results
on VOC 2010 are listed in Table 5. The final results of
GHM ObjHierarchy outperform the leading scores in VOC
2010 challenge. The usage of hierarchical object and scene
layout side information provides great gain for this classifi-
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Table 4. Classification results (AP in %) on VOC 2007. The proposed GHM Object and GHM ObjHierarchy outperform the baseline methods.
plane bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv mAP

INRIA [23] 77.5 63.6 56.1 71.9 33.1 60.6 78.0 58.8 53.5 42.6 54.9 45.8 77.5 64.0 85.9 36.3 44.7 50.6 79.2 53.2 59.4
LLC [39] 74.8 65.2 50.7 70.9 28.7 68.8 78.5 61.7 54.3 48.6 51.8 44.1 76.6 66.9 83.5 30.8 44.6 53.4 78.2 53.5 59.3

FisherVec [12] 75.7 64.8 52.8 70.6 30.0 64.1 77.5 55.5 55.6 41.8 56.3 41.7 76.3 64.4 82.7 28.3 39.7 56.6 79.7 51.5 58.3
FVSPM 75.8 68.1 51.6 71.6 30.0 69.4 78.9 61.9 50.7 50.6 55.5 45.8 79.2 69.1 84.6 31.9 49.9 53.1 79.7 54.4 60.6

GHM Object 77.0 73.5 51.8 71.1 37.1 70.8 82.3 63.4 52.0 55.2 60.9 49.9 80.7 71.2 86.0 36.3 53.8 59.8 79.6 57.8 63.5
GHM ObjHierarchy 76.7 74.7 53.8 72.1 40.4 71.7 83.6 66.5 52.5 57.5 62.8 51.1 81.4 71.5 86.5 36.4 55.3 60.6 80.6 57.8 64.7

Table 5. Classification results (AP in %) on VOC 2010. The proposed GHM ObjHierarchy outperforms the state-of-the-art performance.
plane bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv mAP

NLPR [8] 90.3 77.0 65.3 75.0 53.7 85.9 80.4 74.6 62.9 66.2 54.1 66.8 76.1 81.7 89.9 41.6 66.3 57.0 85.0 74.3 71.2
NEC [8] 93.3 72.9 69.9 77.2 47.9 85.6 79.7 79.4 61.7 56.6 61.1 71.1 76.7 79.3 86.8 38.1 63.9 55.8 87.5 72.9 70.9

ContextSVM [32] 93.1 78.9 73.2 77.1 54.3 85.3 80.7 78.9 64.5 68.4 64.1 70.3 81.3 83.9 91.5 48.9 72.6 58.2 87.8 76.6 74.5
GHM ObjHierarchy 94.3 81.3 77.2 80.3 56.3 87.3 83.8 82.2 65.8 73.7 67.0 75.9 82.3 86.5 92.0 51.7 75.1 63.3 89.9 77.3 77.2

cation task.

6. Conclusions and Future Work
In this work, we introduced a generalized hierarchical

matching (GHM) framework for image classification task.
This general and flexible scheme allows us to embed any
useful side information into the image recognition frame-
work. We also presented two novel exemplar approaches for
side information generation towards object-oriented recog-
nition, i.e. object confidence map and visual saliency
map. Extensive experimental results clearly demonstrated
the proposed GHM together with designed varieties of side
information could achieve state-of-art performance on di-
verse and popular image recognition datasets. In future, we
shall further explore more semantically meaningful side in-
formation and new approach for combining different types
of side information.
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