
A Fast Nearest Neighbor Search Algorithm by Nonlinear Embedding

Yoonho Hwang Bohyung Han Hee-Kap Ahn
Dept. of Computer Science and Engineering

POSTECH, Korea
{cypher, bhhan, heekap}@postech.ac.kr

Abstract

We propose an efficient algorithm to find the exact near-
est neighbor based on the Euclidean distance for large-
scale computer vision problems. We embed data points
nonlinearly onto a low-dimensional space by simple com-
putations and prove that the distance between two points
in the embedded space is bounded by the distance in the
original space. Instead of computing the distances in the
high-dimensional original space to find the nearest neigh-
bor, a lot of candidates are to be rejected based on the dis-
tances in the low-dimensional embedded space; due to this
property, our algorithm is well-suited for high-dimensional
and large-scale problems. We also show that our algo-
rithm is improved further by partitioning input vectors re-
cursively. Contrary to most of existing fast nearest neighbor
search algorithms, our technique reports the exact near-
est neighbor—not an approximate one—and requires a very
simple preprocessing with no sophisticated data structures.
We provide the theoretical analysis of our algorithm and
evaluate its performance in synthetic and real data.

1. Introduction
The nearest neighbor search is one of the most prim-

itive operations in machine learning, pattern recognition,
and information retrieval. It is also a crucial task in a lot
of computer vision applications such as image clustering,
object classification, image search, visual tracking, compu-
tational photography, and so on. Recently, the efficiency
of the nearest neighbor search algorithm in both speed and
space becomes a critical issue in computer vision research
due to the demand for large-scale problems involving high-
dimensional multimedia data. Motivated by this fact, we
provide a simple but powerful algorithm to find the exact
nearest neighbor with much less computational cost and
memory requirement than existing methods.

The simplest solution for this problem is sequential scan
(brute-forth search), which computes the distance from the
query point to every point in database sequentially. How-

ever, the running time of this technique is proportional to
the number and dimensionality of data, and it does not
scale well in high-dimensional and large-scale problems
even though there exist some heuristics to reduce compu-
tational cost.

To make the nearest neighbor search algorithm more ef-
ficient, various tree-based data structures have been em-
ployed. Typical examples include KD-tree [2], R-tree vari-
ations [1, 3, 8], B+-tree [12], and Cover tree [5]. They have
the advantage to reduce the number of search candidates
based on the tree-structured organization of data. How-
ever, they may not be appropriate for the high-dimensional
and large-scale data because the construction of such data
structures typically takes significant time and requires large
memory space [13]. Note that the use of such data struc-
tures is particularly undesirable for dynamic data when the
number of queries is small compared to the computational
cost to build the data structures.

On the other hand, there are several approximate nearest
neighbor search algorithms, which compromise the accu-
racy to improve efficiency in space and time. The Approx-
imate Nearest Neighbor (ANN) search algorithm based on
KD-tree [1] presents fairly good performance, but requires
a huge amount of preprocessing time and memory. Hashing
algorithms such as locality-sensitive hashing [6, 11], and
spectral hashing [20], and coherency sensitive hashing [14]
project data onto low-dimensional subspaces and maintain
hash tables to reduce search space significantly. Hashing
techniques are useful to find approximate nearest neighbors,
but require substantially additional cost to be implemented
for the exact nearest neighbor search.

A similar approach to our algorithm can be found in pat-
tern matching [9], which is a dense nearest neighbor search
technique between all pairs of patches in two images. The
nearest neighbor search in [9] can be performed efficiently
by the linear projection of data onto low-dimensional spaces
using Walsh-Hadamard transform [18, 19]. The method in
[9] is successfully applied to approximate nearest neighbor
search by hashing for patch matching between two images
[14]. However, it mainly focuses on the effective elimina-

978-1-4673-1228-8/12/$31.00 ©2012 IEEE 3053

tion of candidates by thresholding with no careful consid-
eration of how to maintain the nearest neighbor; it needs
additional procedures to find the exact solution. The perfor-
mance of several pattern matching algorithms is evaluated
thoroughly in [17].

To overcome the limitations of existing techniques, we
propose an efficient algorithm to find the exact nearest
neighbor through non-linear embedding for large-scale and
high-dimensional computer vision problems. We embed
data points onto a low-dimensional space and prove that
the squared Euclidean distance between two points in the
embedded space is bounded by the squared distance in the
original space with a constant factor. A lot of nearest neigh-
bor candidates are eliminated by just checking the distances
in the low-dimensional embedded space, and the nearest
neighbor can be found among a small set of feasible can-
didates. It is particularly efficient for high-dimensional and
large-scale data because the benefit of the dimensionality
reduction is huge and we do not need to load full data to
compute their distances in the original space. Furthermore,
a simple recursive partitioning of input data and query im-
proves the speed of our algorithm. We compare the perfor-
mance of our technique with other exact and approximate
algorithms through various experiments.

The rest of the paper is organized as follows. Section 2
describes our basic nearest search algorithm based on the
low-dimensional embedding, and the vector partitioning to
further improve the efficiency is presented in Section 3.
Section 4 discusses the relation between our algorithm and
a linear embedding technique [9]. In Section 5, we evalu-
ate the proposed algorithm through various experiments and
illustrate its performance with respect to other exact and ap-
proximate algorithms.

2. Nearest Neighbor Search by Embedding

Our algorithm embeds the data points onto a very low-
dimensional space and eliminates non-nearest neighbors by
comparing the distances in the embedded space. This sec-
tion describes the theoretical proof of our key idea and how
to apply the idea to the efficient nearest neighbor search.
The early version of this idea was introduced in [10].

2.1. A Lower Bound on Squared Euclidean Distance

Let x = (x1, . . . , xd)
T be a d-dimensional vector. Note

that x can represent images or videos in computer vision
applications. The mean and standard deviation of the ele-
ments in x ∈ Rd are given by µx = 1

d

∑d
i xi and σ2

x =
1
d

∑d
i (xi − µx)

2, respectively. If another d-dimensional
vector y = (y1, . . . , yd)

T is given, a lower bound on the
squared Euclidean distance between x and y denoted by
dist(x,y)2 can be described with respected to µx, µy, σ2

x

and σ2
y, which is shown in the following lemma.

Lemma 1. dist(x,y)2 ≥ d
(
(µx − µy)

2 + (σx − σy)2
)
.

Proof.

dist(x,y)2 =
d∑

i=1

(xi − yi)2

=
d∑

i=1

((µx − µy) + (xi − µx)− (yi − µy))
2

=
d∑

i=1

((µx − µy)
2 + (xi − µx)

2 + (yi − µy)
2)

− 2
d∑

i=1

(xi − µx)(yi − µy)

The last equality follows from the fact that
∑d

i=1(xi −
µx) =

∑d
i=1(yi − µy) = 0. The Cauchy-Schwarz inequal-

ity is applied to the last term of the above equation as

| 2
d∑

i=1

(xi − µx)(yi − µy) |

≤ 2

(
d∑

i=1

(xi − µx)
2

d∑
i=1

(yi − µy)
2

)1/2

= 2dσxσy,

which leads us to

dist(x,y)2 ≥ d(µx − µy)
2 + d(σ2

x + σ2
y − 2σxσy)

= d
(
(µx − µy)

2 + (σx − σy)2
)
. �

The lower bound of the squared Euclidean distance be-
tween x and y has a special form; it involves the squared
Euclidean distance between (µx, σx) and (µy, σy). In other
words, dist(x,y)2 in the original dimension is compara-
ble to dist((µx, σx), (µy, σy))

2, which is the distance in
the two-dimensional nonlinear space based on (µ, σ). It
means that the nearest neighbor search can be implemented
efficiently by using the distance computations in the low-
dimensional space as illustrated in Figure 1. The details are
described in the next subsection.

2.2. Efficient nearest neighbor search

We first perform a simple preprocessing step of our
algorithm—the computation of the lower bound,

LB(x,y) = d
(
(µx − µy)

2 + (σx − σy)2
)
. (1)

Given a set X = {x1, . . . ,xn}, we can compute and
store µx and σx for all x ∈ X in O(nd) time using O(n)
space. For a query y, we obtain µy and σy in O(d) time
and LB(x,y) is computed in O(1) time for any x ∈ X .

3054

The lower bound is used deliberately to reduce the num-
ber of comparisons dramatically. In specific, a lot of the
nearest neighbor candidates for a query y are eliminated by
simple comparisons as described in Algorithm 1. Figure 1
illustrates how the Euclidean distances of vectors in the em-
bedded space is used for the filtering. In principle, the lower
bound of dist(xi,y)

2/d is equal to the squared distance be-
tween x̂i and ŷ in the embedded space, and we can reject
xi if LB(xi,y) = d · dist(x̂i, ŷ)

2 is larger than the squared
Euclidean distance to the current nearest neighbor from y.

Algorithm 1 Fast Nearest Neighbor Search

Pick a vector in X as the seed xmin

MINDIST ← dist(xmin,y)2

for i = 1→ n do
if LB(xi,y) ≥ MINDIST then

continue
end if
if dist(xi,y)

2 < MINDIST then
xmin ← xi

MINDIST ← dist(xmin,y)2

end if
end for
return {xmin, MINDIST}

At each iteration, we maintain the nearest neighbor xmin

among the points that have been considered so far. During
the procedure, we can reject xi effectively if dist(xi,y)

2 ≥
LB(xi,y) ≥ dist(xmin,y)2 for xi ∈ X , i = 1, . . . , n. Note
that for each vector, the filtering is done in O(1) time while
computing the exact Euclidean distance takes O(d) time;
we eliminate a lot of non-nearest neighbors in constant time
instead of linear time. It is a huge reduction in computa-
tional cost especially when the data are high-dimensional.

Our algorithm requires the computation of the Euclidean
distance in the embedded space as well as the original space
if the lower bound is smaller than the distance to the cur-
rent nearest neighbor. In the worst case—when the input
vectors are given in the decreasing order based on their
lower bounds and the lower bounds are always smaller
than the distance to the current nearest neighbor, the al-
gorithm takes O(nd) time to find the nearest neighbor be-
cause the algorithm computes both the exact Euclidean dis-
tance and the lower bound for every input. On the other
hand, the algorithm achieves its best running time, O(n) if
LB(x,y) ≥ dist(xmin,y)2 holds for every vector x, except
the first input vector. Such extreme cases seems unlikely to
happen; using the lower bound typically eliminates unnec-
essary computation and saves much time to find the nearest
neighbor in average case, especially on high-dimensional
vector set.

Although our algorithm is efficient to compute the near-

µ

σ

dist(xi,y)
2/ddist(xj,y)

2/d

ŷ

Figure 1: The vectors in X and the query y are embedded
in the two-dimensional space based on their mean and stan-
dard deviation of elements. The squared Euclidean distance
from a vector x̂ = (µx, σx) to the query ŷ = (µy, σy) in
the embedded space is equal to LB(x,y)/d. If the current
nearest neighbor is xi, the points lying outside the larger
disk have their LB values bigger than dist(xi,y)

2 and can-
not be the nearest neighbor. If a better candidate xj—x̂j

should be inside the larger disk—is found, we can further
reject the points lying in the annulus between the two disks
since their LB values are bigger than dist(xj ,y)

2.

est neighbor, there may still exist many non-nearest neigh-
bors that fail to be rejected by the method described in Al-
gorithm 1. To improve the performance of our algorithm by
filtering more candidates, we should be able to compute a
tighter lower bound. It can be achieved by a simple parti-
tioning of vectors, and the technique including theoretical
proof is presented in the next section.

3. Improving the Lower Bound
Suppose that we partition a d-dimensional vector x

into two disjoint parts and obtain two vectors with half
sizes, i.e., x1,2 = (x1, x2, . . . , xdd/2e)

T and x2,2 =
(xdd/2e+1, xdd/2e+2, . . . , xd)

T. If we denote by y1,2 and
y2,2 the first dd/2e-dimensional vector and the second
bd/2c-dimensional vector of y, respectively, a new lower
bound of dist(x,y)2 is given by the following lemma.

Lemma 2. dist(x,y)2 ≥ LB2(x,y), where LB2(x,y) =
LB(x1,2,y1,2) + LB(x2,2,y2,2).

Proof. We have

dist(x,y)2 =

dd/2e∑
i=1

(xi − yi)2 +
d∑

i=dd/2e+1

(xi − yi)2

= dist(x1,2,y1,2)
2 + dist(x2,2,y2,2)

2.

The claim holds since dist(x1,2,y1,2)
2 ≥ LB(x1,2,y1,2)

and dist(x2,2,y2,2)
2 ≥ LB(x2,2,y2,2).

The next lemma reads that LB2(x,y) is a better lower
bound than LB(x,y). Its proof contains long and tedious
derivations and we put it in Appendix A.

3055

Lemma 3. LB(x,y) ≤ LB2(x,y).

Lemma 3 is powerful because it does not assume any
data distributions. Moreover, this lower bound can be im-
proved further by additional partitionings. For example,
if x1,2 is divided into two d/4-dimensional vectors, x1,4

and x2,4, we can derive LB(x1,4,y1,4) + LB(x2,4,y2,4) ≥
LB(x1,2,y1,2) by applying Lemma 3 to this subdivi-
sion. In a similar way, we can prove LB4(x,y) =∑4

i=1 LB(xi,4,yi,4) ≥ LB2(x,y) and LB16(x,y) =∑16
i=1 LB(xi,16,yi,16) ≥ LB4(x,y) by applying Lemma 3

recursively. In summary, we have

LB2(x,y) ≤ LB4(x,y) ≤ LB16(x,y) ≤ dist(x,y)2. (2)

These relations are more intuitive in image and video data
because the standard deviation in a small patch tends to
be smaller than the one in a large patch due to spatial co-
herency. As shown in the proof of Lemma 1, the difference
between the distance of two points x and y in the origi-
nal space and its lower bound is proportional to σxσy. It
suggests that we can improve the lower bound by reducing
σx and σy, which is often achieved by subdividing a patch
based on the spatial locality.

The lower bound LBk(x,y) consists of k lower bounds
and we require the original data and the query should
be embedded in 2k-dimensional space. It incurs addi-
tional computational cost compared to 2-dimensional em-
bedding based only on LB(x,y). However, each partition
may still be very high-dimensional and slightly higher di-
mensional embedding—but significantly lower dimensional
representation compared to the original data—is advanta-
geous. Also, note that many data points are typically elim-
inated by the lower dimensional embeddings and that there
remain few data to be embedded onto higher dimensional
subspaces, statistically.

The pseudocode in Algorithm 2 summarizes our near-
est neighbor search algorithm using the recursive partition-
ing.1 The nested for loop handles the case that LB16(x,y) is
smaller than the current minimum distance; instead of com-
puting dist(x,y)2 in O(d) time, we gradually improve the
bound by replacing LB(xi,16,yi,16) with dist(xi,16,yi,16)

2

one by one until the bound becomes larger than or equal
to the current minimum distance. Each iteration takes
O(d/16) time, so this for loop saves time if the bound
reaches the current nearest neighbor before iterating all sub-
divisions. In practice for images or videos, we subdivide
regions, as presented in Figure 2.

4. Relation to Linear Projection Algorithm
Our work is closely related to [9], where input vectors

are projected onto a set of orthogonal basis vectors and
1Note that we introduced LB2 just for the convenience to describe our

idea and did not use it in our algorithm as shown in Figure 2.

Algorithm 2 Improved Fast Nearest Neighbor Search

Pick a vector in X as the seed xmin

MINDIST ← dist(xmin,y)2

for all x ∈ X do
if LB(x,y) ≥ MINDIST then

continue
end if
if LB4(x,y) ≥ MINDIST then

continue
end if
if LB16(x,y) ≥ MINDIST then

continue
end if
BND ← LB16(x,y)
for i = 1→ 16 do

BND ← BND+dist(xi,16,yi,16)
2−LB(xi,16,yi,16)

if BND ≥ MINDIST then
break

end if
end for
if BND < MINDIST then

xmin ← x
MINDIST ← BND

end if
end for
return {xmin, MINDIST}

x1,4 x2,4

x3,4 x4,4

x1,16 x2,16

x3,16 x4,16

x5,16

x9,16 x13,16

x16,16

Figure 2: Recursive subdivision of a d-dimensional vector
x into vectors in smaller dimensions.

eliminated based on the distance in each one-dimensional
subspace. A critical difference between our algorithm and
[9] is embedding strategy; our algorithm employs non-
linear embedding but [9] uses linear embedding. The main
idea in [9] uses the following property:

dist(x,y)2 ≥ (uT
i x− uT

i y)
2, (3)

where uT
i x and uT

i y are the projections of x and y onto
a unit vector ui, respectively. It means the lower bound of
the squared Euclidean distance between x and y is given by
the distance in the projected space. Using this property, the
lower bound of dist(x,y)2 can be improved progressively

3056

by the projections of x and y onto additional orthogonal
basis vectors as

LB′p ≡
p∑

j=1

(uT
j x− uT

j y)
2

=

p−1∑
j=1

(uT
j x− uT

j y)
2 + (uT

p x− uT
p y)

2. (4)

This implies that, at the pth projection, it updates its lower
bound by adding the squared difference between x and y
along their projections onto up to its previous lower bound
LB′p−1. For efficient computation of the projections, they
employed the Walsh-Hadamard basis vectors, which are bi-
nary (with ±1 elements) and mutually orthogonal [18, 19].

An issue in [9] is the absence of filtering criteria. They
rely on the predefined threshold instead of the distance to
the current nearest neighbor from the query. Depending on
the threshold, many candidates may remain after all avail-
able projections or the nearest neighbor may be rejected
at an early stage; threshold selection and nearest neighbor
search are chicken-and-egg problems. It is possible to main-
tain the current nearest neighbor in their framework as in
our algorithm. In this case, the linear projection approach is
almost equivalent to the optimized brute-force search algo-
rithm described in Algorithm 3.

Algorithm 3 Optimized Brute-Force Search

Pick a vector in X as the seed xmin

MINDIST ← dist(xmin,y)2

for all x ∈ X do
BND = 0
for j = 1→ d do

BND = BND + (xj − yj)2
if BND ≥ MINDIST then

break
end if

end for
if BND < MINDIST then
xmin ← x
MINDIST ← BND

end if
end for
return {xmin, MINDIST}

Figure 3 illustrates the equivalence of the brute-force
search and the linear projection algorithm. Suppose that the
ith coordinate of a vector x is the value of its projection onto
ui.2 Then, the total computation for filtering with the first

2The choice of basis vectors are different from [9]. However, this
choice is better than Walsh-Hadamard basis because we do not need to
compute projections because they are already given.

x1
x2

xn

projections

x3

ve
ct
or
s

u1u2u3 uduk

Figure 3: The equivalence of the optimized brute-force
search and the linear projection algorithm.

k projections is the same with that of the optimized brute-
force search up to the first k dimensions; the computational
costs of both strategies would be statistically equivalent.

5. Experiment
In this section, we first discuss an important implemen-

tation issue of our algorithm—seed selection. Then, we
present the performance of our algorithm in several scenar-
ios frequently observed in computer vision problems.

5.1. Seed selection

The performance of our algorithm depends on the ratio
of the candidates rejected in the embedded space, and it is
directly related to the quality of the seed in Algorithm 2.
The best choice of the seed would be the point closest to
query, but it is equivalent to the nearest neighbor search
problem. Another naı̈ve choice is to use a random point
as the seed, but it may not be effective to eliminate nearest
neighbor candidates.

In our implementation, we pick k vectors at random and
use the one with the smallest Euclidean distance to query
y as seed. The randomness improves the quality of seed
and filtering performance statistically. Note that the first
order statistic of a random sample is equal to its smallest
value [7]. This implies that there are roughly n/k vectors
whose Euclidean distances to y are at most the distance of
the random seed to y, and therefore quite a large number
of vectors are expected to be rejected in average by filtering
with the selected seed.

5.2. Nearest Neighbor Search

For the evaluation of our nearest neighbor search algo-
rithm, we used two datasets—the CIFAR-10 and a synthetic
dataset. The CIFAR dataset [15] consist of 6 (5 training and
1 test) batches of 10,000 color images of 32×32. 100 query
images are randomly sampled from the test batch, and the

3057

0.1

1

10

100

1000

16x16 32x32 48x48 64x64

ti
m

e
(s

)

FNN

ANN

CT

(a) Preprocessing

0.001

0.01

0.1

1

16x16 32x32 48x48 64x64

ti
m

e
(s

)

FNN

ANN

CT

BF

(b) A query

0.01

0.1

1

10

100

1000

1 10 100 1000 10000

ti
m

e
(s

)

query

FNN

ANN

CT

BF

(c) Preprocessing and queries on 32× 32 images

Figure 4: Performance for the exact nearest neighbor search on the CIFAR dataset. (log10 scale)

0.1

1

10

100

1000

10000

16x16 32x32 48x48 64x64

ti
m

e
(s

)

FNN

ANN

CT

(a) Preprocessing

0.01

0.1

1

16x16 32x32 48x48 64x64

ti
m

e
(s

)

FNN

ANN

CT

BF

(b) A query

0.001

0.01

0.1

1

10

100

1000

1 10 100 1000 10000

ti
m

e
(s

)

query

FNN

ANN

CT

BF

(c) Preprocessing and queries on 32× 32 images

Figure 5: Performance for the exact nearest neighbor queries on a random dataset. (log10 scale)

running time for the nearest neighbor search is measured
for each training batch. We resize images in the dataset to
change the dimensionality of data. The synthetic dataset
consists of 10,000 points of three different sizes, 16 × 16,
32× 32 and 64× 64, where the elements in each vector are
randomly chosen integers in [0, 255].

Four different algorithms are implemented and tested in
our experiment—our algorithm (FNN) in Algorithm 2, the
optimized Brute-Force search (BF) in Algorithm 3, the Ap-
proximate Nearest Neighbor search (ANN) [1, 16], and the
Cover Tree (CT) [5, 4].

Exact nearest neighbor search. Figure 4 illustrates the
performance of the four algorithms for the exact nearest
neighbor search on the CIFAR dataset, where both prepro-
cessing and query time are compared. Note that BF does
not need preprocessing and ANN is set to return the exact
nearest neighbor in this case. The preprocessing of FNN is
very efficient—approximately 1 second at most, but ANN
and CT require significant amount of time for preprocess-
ing, which takes up to 100 times more than FNN. In terms of
the query processing time, FNN outperforms others approx-
imately by one order of magnitude while the query times of
the other three algorithms are comparable.

For the synthetic dataset, FNN gains no benefit of fast fil-
tering unfortunately, which suggests that filtering technique

is more appropriate for natural images with spatial locality
than random data. The performance of the four algorithms
are all comparable; ANN and CT takes much more time in
preprocessing, but is marginally faster in query processing,
which is presented in Figure 5.

The results of FNN with random data are not as good
as natural image data because the two factors to determine
the lower bound of the squared Euclidean distance—the dif-
ferences of two element means and standard deviations—
become small statistically when the dimensionality is suffi-
ciently high and each element in a vector is iid. The effect
of the characteristics is actually found in Figure 5b, where
query time is not improved since all the pixel values are
obtained from the same uniform distribution independently.
However, natural image and video data are not iid and the
differences of the two means and standard deviations may
not decrease even in high dimensional data. Also, note that
our algorithm utilizes the property that the standard devi-
ations of each subregion decreases by partitioning due to
spatial locality of image and video data.

Approximate Nearest Neighbor Search. Our exact algo-
rithm is also compared with the approximate nearest neigh-
bor search algorithm based on ANN.3 Figure 6 presents the

3BF is not straightforward to be implemented for approximate nearest
neighbor search.

3058

0.0001

0.001

0.01

0.1

1

16x16 32x32 48x48 64x64

ti
m

e
(s

)

FNN

ANN2

ANN8

ANN32

(a) A single query

0.1

1

10

100

16x16 32x32 48x48 64x64

ti
m

e
(s

)

FNN

ANN32

(b) Preprocessing and a query

0

20

40

60

80

100

16x16 32x32 48x48 64x64

ac
cr

ar
y(

%
)

ANN2 ANN8 ANN32

(c) Accuracy

Figure 6: Performance for the approximate nearest neighbor queries on the CIFAR dataset. (log10 scale)

performance of FNN and three versions of ANN—ANN2,
8, and ANN32—in the CIFAR dataset. ANNi returns a
point whose distance is within i times of the optimal one.
Note that all three approximate ANN algorithms including
the exact version involve the exactly same preprocessing.
The preprocessing of FNN is obviously much more effi-
cient than ANN as illustrated in Figure 4a, and FNN is
also faster than ANN in query processing except ANN32
(high approximation ratio) in a relatively low-dimensional
data (16 × 16) as in Figure 6a. Since ANN32 is the faster
than the other two versions, we only compared the prepro-
cessing and query time of FNN and ANN32 in Figure 6b.
As expected, FNN is much more efficient than ANN32, es-
pecially in high-dimensional cases. Figure 6c presents the
accuracy of the approximate nearest neighbor search meth-
ods, where ANN2 always returns the exact solution over all
dimensions in practice; the accuracy of ANN32 gradually
improves with dimensionality increase and reaches around
80% in 64 × 64 images. It is probably because ANN is
more effective in a high-dimensional space due to sparsity
of data.

Memory requirement. The memory requirement is a
critical issue to handle large-scale and high-dimensional
data. While FNN needs only O(n) memory space to store
µ and σ values of n vectors in addition to O(nd) memory
space for the input, ANN and CT requires additionalO(nd)
space to construct the tree data structures.

6. Conclusion
We proposed an efficient algorithm to compute the near-

est neighbor by embedding the original data onto low di-
mensional nonlinear subspaces. Our algorithm maintains
the lower bound of the squared Euclidean distance between
a point in the dataset and the query using the distances in
the subspaces in order to reject candidate points. Due to
the effectiveness of the rejection strategy based on the low
dimensional distances, our algorithm is much faster than
the state-of-the-art nearest neighbor search algorithms. The

performance of our algorithm is tested and verified in syn-
thetic data and real images.

Acknowledgement

We give special thanks to Dr. Hyo-Sil Kim and Wan-
bin Son for their helpful discussion. This research was
supported in part by Basic Science Research Program
(2011-0005749) and in part by SRC-GAIA (2011-0030044)
through the National Research Foundation of Korea (NRF)
funded by the Ministry of Education, Science and Technol-
ogy.

References
[1] S. Arya, D. Mount, N. Netanyahu, R. Silverman, and A. Wu. An

optimal algorithm for approximate nearest neighbor searching fixed
dimensions. Journal of the ACM, 45(6):891–923, 1998. 1, 6

[2] J. L. Bentley. Multidimensional binary search trees used for associa-
tive searching. Communications of ACM, 18(9):509–517, September
1975. 1

[3] S. Berchtold, D. A. Keim, and H. P. Kriegel. The x-tree: An index
structure for high-dimensional data. In Proc. VLDB ’96, pages 28–
39, 1996. 1

[4] A. Beygelzimer, S. Kakade, and J. Langford. Cover tree implementa-
tion. http://hunch.net/˜jl/projects/cover_tree/
cover_tree.html. Online. 6

[5] A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for nearest
neighbor. In Proc. ICML ’06, pages 97–104. ACM, 2006. 1, 6

[6] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-
sensitive hashing scheme based on p-stable distributions. In T. Dar-
rell, P. Indyk, and G. Shakhnarovich, editors, Proc. SoCG’04, pages
253–262. ACM, 2004. 1

[7] H. A. David and H. N. Nagaraja. Order Statistics (3rd edition). Wi-
ley, 2003. 5

[8] A. Guttman. R-trees: A dynamic index structure for spatial search-
ing. In Proc. SIGMOD ’84, pages 47–57. ACM, 1984. 1

[9] Y. Hel-Or and H. Hel-Or. Real-time pattern matching using projec-
tion kernels. IEEE Trans. Pattern Anal. Mach. Intell., 27(9):1430–
1445, 2005. 1, 2, 4, 5

[10] Y. Hwang and H. Ahn. Convergent bounds on the euclidean distance.
In Proc. NIPS ’11, 2011. 2

[11] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards
removing the curse of dimensionality. In Proc. STOC’98, pages 604–
613, 1998. 1

3059

[12] H. V. Jagadish, B. C. Ooi, K.-L. Tan, C. Yu, and R. Zhang. iDis-
tance: An adaptive B+-tree based indexing method for nearest neigh-
bor search. ACM Trans. Database Syst., 30(2):364–397, June 2005.
1

[13] D. R. Karger and M. Ruhl. Finding nearest neighbors in growth-
restricted metrics. In Proc. STOC’02, pages 741–750, 2002. 1

[14] S. Korman and S. Avidan. Coherency sensitive hashing. In Proc.
ICCV’11. IEEE, 2011. 1

[15] A. Krizhevsky. Learning multiple layers of features from tiny
images. http://www.cs.toronto.edu/˜kriz/cifar.
html. Online. 5

[16] D. M. Mount and S. Arya. A library for approximate nearest neighbor
searching. http://www.cs.umd.edu/˜mount/ANN/. On-
line. 6

[17] W. Ouyang, F. Tombari, S. Mattoccia, L. Stefano, and W.-K. Cham.
Performance evaluation of full search equivalent pattern matching
algorithms. IEEE Trans. Pattern Anal. Mach. Intell., 2011. 2

[18] J. Shanks. Computation of the fast walsh-fourier transform. IEEE
Trans. Computers, C-18(5):457–459, 1969. 1, 5

[19] D. Sundararajan and M. Ahmad. Fast computationa of the discrete
walsh and hadamard transforms. IEEE Trans. Image Processing,
7(6):898–904, 1998. 1, 5

[20] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In Proc.
NIPS’08, pages 1753–1760, 2008. 1

A. Proof of Lemma 3
We want to show LB(x,y)− LB2(x,y) ≤ 0.

After expanding the inequality

d((µx − µy)
2 + (σx − σy)2)

−
2∑

i=1

d

2
((µxi,2 − µyi,2)

2 + (σxi,2 − σyi,2)
2) ≤ 0. (5)

By multiplying 4/d to both sides of the inequality, we are
left with

4(µx − µy)
2 − 2

2∑
i=1

(µxi,2 − µyi,2)
2

+ 4(σx − σy)2 − 2
2∑

i=1

(σxi,2
− σyi,2

)2 ≤ 0. (6)

By substituting µx and µy by (µx1,2
+µx2,2

)/2 and (µy1,2
+

µy2,2
)/2, respectively, the first two terms in Eq. (6) are re-

arranged as follows:

−((µx1,2
− µx2,2

)− (µy1,2
− µy2,2

))2. (7)

To expand the last two terms in Eq. (6), we use the following
equation.

σ2
x = µx2 − µ2

x

=
1

2
(µx2

1,2
+ µx2

2,2
)− 1

4
(µx1,2

+ µx2,2
)2

=
1

4
(2σx2

1,2
+ 2σx2

2,2
+ µ2

x1,2
+ µ2

x2,2
− 2µx1,2

µx2,2
)

=
1

4
(2σx2

1,2
+ 2σx2

2,2
+A2), (8)

where A = µx1,2 − µx2,2 and B = µy1,2 − µy2,2 . Now we
expand the terms in the second line of Eq. (6) using Equa-
tion (8).

A2 +B2 − 8σxσy + 4
2∑

i=1

σxi,2
σyi,2

. (9)

By using Eq. (7) and (9), Eq. (6) is rewritten as follows.

−(A−B)2 +A2 +B2 − 8σxσy + 4
2∑

i=1

σxi,2σyi,2

= 2AB − 8σxσy + 4
2∑

i=1

σxi,2
σyi,2

≤ 0. (10)

Since σ values are always nonnegative,
∑2

i=1 σxi,2σyi,2 ≥
0 and σxσy ≥ 0. By Eq. (8), we have (2AB)2 ≤ (8σxσy)

2,
which implies 2AB − 8σxσy ≤ 0. Therefore, we show the
following is at most zero.

(2

2∑
i=1

σxi,2σyi,2)
2 − (AB − 4σxσy)

2

=(2
2∑

i=1

σxi,2
σyi,2

)2 −A2B2 − 16σ2
xσ

2
y + 8ABσxσy

=− 2A2B2 + 8ABσxσy

−A2(2σ2
y1,2

+ 2σ2
y2,2

+B2)−A2B2

−B2(2σ2
x1,2

+ 2σ2
x2,2

+A2)−A2B2

− 4σ2
x1,2

σ2
y2,2
− 4σ2

x2,2
σ2
y1,2

+ 8σx1,2σy1,2σx2,2σy2,2

=− 4(Aσy −Bσx)2 − 4(σx1,2
σy2,2

− σx2,2
σy1,2

)2 ≤ 0

The last two equalities are also derived from Eq. (8). There-
fore, LB(x,y)− LB2(x,y) ≤ 0 holds.

3060

