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Abstract

Recent work has shown that visual attributes are a pow-
erful approach for applications such as recognition, im-
age description and retrieval. However, fusing multiple at-
tribute scores – as required during multi-attribute queries
or similarity searches – presents a significant challenge.
Scores from different attribute classifiers cannot be com-
bined in a simple way; the same score for different at-
tributes can mean different things. In this work, we show
how to construct normalized “multi-attribute spaces” from
raw classifier outputs, using techniques based on the sta-
tistical Extreme Value Theory. Our method calibrates each
raw score to a probability that the given attribute is present
in the image. We describe how these probabilities can be
fused in a simple way to perform more accurate multi-
attribute searches, as well as enable attribute-based simi-
larity searches. A significant advantage of our approach is
that the normalization is done after-the-fact, requiring nei-
ther modification to the attribute classification system nor
ground truth attribute annotations. We demonstrate results
on a large data set of nearly 2 million face images and show
significant improvements over prior work. We also show
that perceptual similarity of search results increases by us-
ing contextual attributes.

1 Introduction
Visual attributes are a powerful representation for a variety
of vision tasks including recognition, classification, image
description and retrieval. First proposed in the computer
vision community by Ferrari and Zisserman [4], visual at-
tributes are text labels that can be automatically assigned
to scenes, categories, or objects using standard machine
learning techniques. Kumar et al. [9] demonstrated the first
system to automatically train several attribute classifiers for
faces, such as “brown hair,” “pointy nose,” “thin eyebrows,”
or “wearing lipstick.” Later work has looked at attributes
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Figure 1. In this work, we show how to calibrate (a) raw attribute
scores into (b) a “multi-attribute space” where each normalized
value approximates the probability of that attribute appearing in
the given image. This allows different attributes to be fused in
a unified way – unlike the raw attribute scores, which have no
uniform interpretation between different attributes. Distances be-
tween points in this space correspond to perceptual similarity be-
tween images, allowing for (c) better multi-attribute search re-
sults than prior work and (d) similarity searches based on target
attributes, defined using a given query image.

in the context of recognition [11, 3, 10], zero-shot learn-
ing [11], discovery [1, 13], automatic image description [8],
scene parsing [21], and attribute refinement [7, 10, 14, 19].

Attribute classifiers take an image as input and return a
real-valued score representing the presence of the given at-
tribute in the image. Using these values directly suffices for
some applications, but if multiple attributes are involved,
issues of score calibration become paramount because (1)
the distribution of scores for each attribute is usually not
Gaussian, and (2) these distributions are often radically dif-
ferent for each attribute. Thus, looking at the distances be-
tween raw attribute values for different images does not cor-
respond to similarity between the images (Fig. 1a). If, how-
ever, the scores were calibrated to the range [0, 1] and these
scores could be interpreted uniformly across different at-
tributes, one could then use distances in this “multi-attribute
space” to measure similarity as expected (Fig. 1b).
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Unfortunately, current approaches do not calibrate at-
tributes in this way. Some methods [18] do no normaliza-
tion at all, while others [2, 10] normalize output scores as-
suming a Gaussian distribution, which meets the first condi-
tion but not the second – identical scores for two attributes
don’t correspond to any perceptual quality (i.e., the degree
to which those attributes are exhibited, or the probability
that the given attributes are present). This has drastic impli-
cations for applications built on these scores. For multi-
attribute searches, individual attributes can greatly bias
search results, over- or under-emphasizing that attribute.
For applications needing to find all instances “close” to a
set of target attribute values, there is no principled way to
define closeness that matches perceptual similarity. Indeed,
in many systems the attribute scores are simply fed into an-
other classifier with the hope that the second-stage classifier
can figure out how to combine attribute values as needed.

In this paper, we show how to calibrate each attribute
score to the probability that approximates how humans
would label the image with the given attribute. Using a prin-
cipled technique based on the statistical Extreme Value The-
ory (EVT) [17, 16], we fit a distribution to attribute scores
close to but on the opposite side of the decision boundary
for the attribute in question, e.g., the scores for images clas-
sified only slightly negatively for the “female” attribute are
used to estimate the probability of being “male.” Counter-
intuitively, the statistical fit from these “extreme values” is
much more robust than one based on the strongly positive
scores of a classifier. In fact, under mild assumptions, this
distribution must be a Weibull. This allows for a normal-
ization of raw classifier scores into a multi-attribute space,
where comparisons and combinations of different attributes
become “apples-to-apples.” A significant advantage of our
method is that it is done after-the-fact, requiring neither
changes to the underlying attribute classifier nor ground
truth attribute annotations.

One can visualize this normalization as a mapping of N
attributes to the unit hypercube in RN (see Fig. 1b). An im-
age maps to a point in this hypercube based on its calibrated
attribute scores. Simple metrics in this space measure dis-
tance between images in an intuitive way, and projecting the
hypercube down to RK allows for measuring similarities
using only a subset of K attributes. Keeping this metaphor
in mind, we can now define different search applications in
a straightforward way.

Multi-attribute searches, such as “Indian females,”
map to a corner of a hypercube in RK (see Fig. 1c), in this
example with Indian=1 and male=0. These are the kinds
of queries possible in prior work [9, 18], but as shown in
Fig. 1c and Sec. 5, our approach results in superior matches.

Target attribute similarity searches, such as “images
similar to a given specified face with respect to face shape
and weight,” map the specified face to a point inside the hy-

percube defined by the given attributes, and return images
close to that point, sorted by distance (see Fig. 1d). Since
our scores are normalized, this results in perceptually simi-
lar matches. This is more powerful than prior methods that
allow for similar functionality, as described next.

Simile classifiers [10] only measure similarity to a given
part of the face, and have to be trained individually for each
person, requiring additional data; in contrast, we can per-
form similarity searches on-the-fly using just a single im-
age, and they can be based on any combination of target
attributes. The work on relative attributes [14] uses pairs of
images labeled with relative strengths of attribute values to
learn a better ranking of attribute values (similar to meth-
ods using relational phrasing [5, 19] in the context of ob-
jects), but does not address the issue of combining multiple
attributes. Other work [6, 7, 12, 20] has looked at ways to
build more complete representations of faces for performing
similarity searches; our approach is more general because it
works within the attribute framework, which is not specific
to faces, and can include appearance as well as geometry.

We also explore the effect of including contextual at-
tributes in similarity searches for better perceptual similar-
ity. This is done by raising the dimensionality of the similar-
ity search hypercube to include other attributes (e.g. gender,
age, hair) that form a context for understanding the image,
and measuring distances in this space. Intuitively, if one
were looking for similarity based on “curly hair,” the gen-
der of the person in an image would influence the percep-
tual similarity to query results, because hair style is usually
evaluated in the context of gender.

Through extensive experiments, we show that search re-
sults for the above types of queries are far better when per-
formed using our multi-attribute spaces, than those using
Gaussian normalization. Since the quality of search results
is subjective, we measure improvements quantitatively by
asking hundreds of humans to compare the relevance of
search results returned by different methods, and then eval-
uating the statistical significance of their preferences over
hundreds of thousands of trials. We also show comparisons
against the work of Kumar et al. [9] on a large data set of
almost 2 million faces, highlighting the greater relevance of
our matches. With the exception of that work itself, no other
previous method has looked at data sets of this size.

2 Multi-Attribute Spaces
To analyze or combine multiple attributes in a meaningful
way, their scores need to be properly normalized and, ide-
ally, tied to how people would label an image.

Let P (L(j)|I), j = 1 . . . N, be the probability that hu-
mans would assign label L(j) to a given image I; Aj(I) be
attribute classifiers that map images to real-valued scores;
and E(Aj) ≡ |Aj(I) − P (L(j)|I)| be the expected label-
ing error in Aj approximating the labeling probability.
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Def. 1 A continuous function Aj : I 7→ [0, 1] is called a
well normalized attribute function when E(Aj(I)) ≤
ε with a probability of at least 1 - δ.

Def. 2 A multi-attribute space M : I 7→ [0, 1]N is a
product space formed from well normalized attribute
functions, M(I) = A1(I)×A2(I)× . . .×AN (I)

With this idealized definition of multi-attribute spaces,
attribute classifiers Aj for similar images produce similar
scores, and scores in each dimension are an ε approximation
of probabilities associated with an image being assigned a
label. A multi-attribute space will, at least locally, support
meaningful similarity measures, and since it approximates
probabilities, its dimensions can be compared or fused.

The framework presented in Defs. 1 & 2 is a general one.
Many different normalization schemes that produce a map-
ping into [0, 1] will also satisfy Def. 1, given a large enough
ε and δ. The key contribution in this paper is a calibration
that not only conforms to Def. 1, but is based in a strong sta-
tistical theory that is appropriate for the raw attribute scores
obtained via Support Vector Machine (SVM) classification.
Note that quantifying ε and δ depends on the accuracy of
the SVM, which is beyond the scope of this paper, and thus
left for future work.

2.1 Calibration of SVM decision scores
The goal of our calibration is to map raw decision scores
from a binary SVM to a probabilistic decision Aj(I) that a
given image I matches some attribute label L(j). If we had
enough ground truth data, we could estimate this function
directly, but this is rarely the case. Instead, let us assume
that we are only given the outputs of an existing classifier
(without ground truth labels), which we would like to nor-
malize. In general, the distribution of scores is not Gaus-
sian, and thus difficult to estimate robustly. In particular,
the “head” of the distribution (values around and greater
than 1) can be quite fat, and yet these values are the least
informative – they should all simply map to a probability
of 1. However, the distribution of scores around 0 is much
more informative and also more constrained – in fact, ac-
cording to the statistical Extreme Value Theory (EVT) [16],
if scores are bounded from above and below, it must be the
Weibull distribution, which has shape parameter k > 0 and
scale parameter λ > 0.

This idea was first exploited in the w-score tech-
nique [17] for normalizing scores from recognition systems
with tolerance to “failure” cases. In a multi-class recogni-
tion scenario, suppose an algorithm is given a single input
and outputs a set of scores, one for each class. If the algo-
rithm succeeds, i.e., assigns the highest score to the correct
class, then the top score should be an outlier with respect to
the distribution of all other scores (the “non-match distribu-
tion”). The EVT shows that the probability of a score being
an outlier – a correct match – can be robustly estimated from
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Figure 2. An overview of the score calibration algorithm intro-
duced in this work. SVM decision scores are normalized by fitting
a Weibull distribution (the red curve) to the tail of the opposite
side of the classifier, where instances of the attribute of interest
(“male” in this case) are outliers. The CDF of this distribution (the
blue curve) is used to produce the normalized attribute w-scores.
Note that no assumptions are made about the entire score distribu-
tion (which can vary greatly); our model is applied to only the tail
of the distribution, which is much better behaved.

only the few highest values (excluding the correct match),
not exceeding 50% of the total scores. This is the tail of the
non-match distribution, its “extreme values.” The following
CDF is then used directly for score normalization once the
parameters k and λ are found from the Weibull fitting:

F (x; k, λ) = 1− e−( xλ )k (1)
In this formulation, xmust be positive, and the extreme val-
ues must be the largest scores in the set of scores.

Unfortunately, this w-score formulation cannot be di-
rectly used with SVM-based attribute classifiers, as it as-
sumes that the score set S comes from matching a single
input image against a large gallery of classes, and also that
there is a single hypothesized outlier with respect to the ex-
trema of a non-match distribution – the true match. With
binary SVMs, neither assumption is true: there are only two
classes, and there will be many true match scores. We there-
fore reformulate the w-score method in a way that is con-
sistent with both the EVT and binary SVM classification.

This can be done by an EVT fitting on the classification
non-match distribution, followed by a hypothesis test that
estimates the probability of a score being drawn from this
distribution. In an SVM attribute context, the non-match
distribution is the set of negative values obtained from the
classifier, and so we must look at the scores from a classi-
fier for the opposite attribute. As an illustration, consider
the gender classifier in Fig. 2. If we are interested in esti-
mating the probability of a face being “male,” we look at
the distribution of scores that are negative with respect to
the non-male side (i.e., the “female” side). The CDF of the
Weibull fit to these scores directly gives us the probability
that a face is male. For attributes which are multinary or not
strictly binary, e.g., “black hair,” the negative class is com-
posed of a mixture of “opposite” attributes – blonde hair,
brown hair, grey hair, and red hair.
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Algorithm 1 EVT Norm. of binary SVM decision scores
Input: A vector of decision scores S = {si}, of length m,

from a single binary SVM attribute classifier
Input: n, the number of elements used for fitting

1: Let V ⊂ S be scores from the opposite decision space
2: if the negative decision space is chosen then φ = 1
3: else φ = −1
4: end if
5: V̂ = φ ∗ V . If needed, flip so extrema are largest
6: Sort V̂ retaining n largest scores: D = dn > . . . > d1

7: Let D̂ = D − d1 + 1 . Shift to be positive
8: Fit a Weibull distribution W to D̂
9: Let T (x) = φ ∗ x− d1 + 1;

10: for i = 1→ m do
11: s′i = F (T (si);W )
12: end for
13: return normalized decision scores {s′i}

The calibration process is detailed in Alg. 1. Given an
input feature vector, an SVM outputs a score s. Normally,
the sign of s determines its class – positive or negative. In
our work, however, we are interested in calibrating the score
itself by fitting a Weibull W (k, λ) to the extreme values
of the non-match distribution. From an input set of scores
si ∈ S, these are the negative values closest to 0, i.e., the
highest scores that don’t correspond to the positive class.
We first apply a transform T that flips and shifts these scores
as necessary to satisfy the two conditions needed by Eq. 1
(the data must always be positive, regardless of the side of
the decision boundary we’re considering), then fit a Weibull
to the transformed scores, and finally normalize each score
using its CDF:

F (T (si);W ) (2)

Note that ground truth data is not necessary for this process
(assuming the attribute classifier SVMs have already been
trained using appropriate data). As a formal probability es-
timate for the attribute label, this normalization meets the
definition of a well-normalized attribute function and cre-
ates multi-attribute spaces consistent with Def. 2.

3 Fusion for Multi-Attribute Search
A multi-attribute search, such as “Indian females” (as
shown in Fig. 1c), requires fusing the scores for each at-
tribute in query q into a combined score sq . Since our cali-
bration procedure described in the previous section converts
attribute values into a multi-attribute space, where scores
Aj represent probabilities, one might assume that perform-
ing a search would simply be a matter of multiplying the
appropriate attribute values. Unfortunately, there are a few
issues with this scheme. First, many attributes are corre-
lated, e.g., “male”, “beard”, and “mustache.” Teasing out
these correlations can be very difficult, as some are due to

inherent correlations in real life and some are due to classi-
fier biases. Second, if the search involves many attributes,
there might not be any images in the database that exhibit
all of those attributes. Therefore, we formulate the search
problem slightly differently:

maximize over I sq =‖ Aj(I) ‖1
subject to Aj(I) = F (T (sj(I));Wj);

for ∀ j ∈ J satisfying 0 ≤ αj ≤ Aj(I) ≤ βj ≤ 1;
(3)

The goal here is to find the images that maximize the L1

norm of estimated probabilities for each attribute j in the
query set of attributes J that also satisfy constraints given
by parameters αj & βj , which define a range of scores of
interest for each attribute. For example, setting αj = 0.95
and βj = 1 restricts the problem to use images that have at
least 95% confidence in label j. Since calibrated attribute
scores Aj can be precomputed for a images in a database,
this optimization reduces to selecting the images satisfying
the search constraints and then computing the maximum of
the sum of the attribute scores.

The choice of theL1 norm here is important, since it pro-
vides for robustness in the case that no images matching all
attributes can be found in the database. If this happens, it
is probably preferable to return the images that have high
probabilities for n − 1 or n − 2 attributes, and perhaps not
as high for the remaining 1 or 2. In contrast, multiplying
attribute values would tend to favor images where all at-
tributes are somewhat likely, but none is particularly low.
As the bound αj is lowered, this would start returning im-
ages where none of the attributes match, whereas our for-
mulation would still return images with some relevance.

4 Multi-Attribute Space Similarity
Measuring the similarity of two images is an important and
well-studied problem. However, most approaches do so on
simple transformations of the original image space and are
thus strongly biased by the “configuration” of the objects in
question: pose, illumination, expression, etc. For instance,
in face recognition, images of different individuals taken
under the same pose and lighting are often more similar
than those of the same individual under different conditions.
Since attributes are designed to capture aspects of appear-
ance independent of imaging configuration, we should be
able to measure similarity better in a multi-attribute space.

What makes this problem particularly challenging – even
with the use of attributes – is that perceptual similarity is not
uniform across all values for a given attribute, or between
attributes. For example, the perceived difference between
images with calibrated attribute values Aj in the range of
0.81−0.84 might be similar to that perceived between those
in the much larger range of 0.2 − 0.4. In this case, our
similarity function should weight small distances in the first
range more strongly than in the latter range. Or we might
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be much more sensitive to small differences in one attribute
as compared to another, and should thus weight distances
accordingly. Since it is infeasible to directly measure these
perceptual distances over an entire multi-attribute space, we
must rely on a method that can estimate these directly from
individual classifier outputs, without ground truth labels.

Let us consider the following scenario: a user selects a
target image and wants to find images that are similar to it,
with respect to a given set of k attributes. The search func-
tion should compute distances in the k-dimensional multi-
attribute subspace corresponding to the given attributes, but
in such a way as to respect the distribution of attribute val-
ues in that “neighborhood.” The size of the neighborhood
considered should be changeable to allow for different lev-
els of similarity, i.e., small neighborhoods result in search-
ing only for “very similar” images, while larger neighbor-
hoods correspond to images which might be only “some-
what similar.” Finally, the relative neighborhood size of
different attributes should be changeable as well, for em-
phasizing one attribute compared to another.

Our method for solving this problem applies the EVT
normalization to distances for each of the target attributes
individually, and then sums these for the final similarity
score. We first gather images with calibrated attribute val-
ues αj ≤ Aj(I) ≤ βj , where the neighborhood is defined
by the range αj − βj for each attribute (allowing for both
different neighbor sizes, and relative weighting of differ-
ent attributes). For each attribute, we compute the set of
L1 distances between the target attribute value and each of
the gathered images. The largest of these distances is as-
sumed to be just outside the “similar” range – the outlier
with respect to similarity – and thus the distances immedi-
ately smaller (the tail of the extreme values) can be used to
fit a Weibull. Intuitively, we are measuring the local dis-
tribution of distances for this attribute, close to the target
attribute value. As before, we can then use the CDF of the
Weibull to estimate the probability that a particular image
is “similar” with respect to this attribute and given search
range. Finally, we maximize over the L1 sum of these cali-
brated probabilities for each attribute (analogously to Eq. 3)
and return the corresponding images to the user. The full
code for this algorithm is available on the paper’s compan-
ion website1. Since this normalization depends on the par-
ticular attribute values of the target image as well as the
search ranges, we must perform this calibration at run-time
for each query; however, this process is quite fast, typically
requiring only a few seconds at most.

Examples of similarity searches are shown in Fig. 3. On
the left, we show the results for faces with nose most like
that of the target image of Jackie Chan; on the right, we
show the results for faces with smiles most like that of the
image of Angelina Jolie. The first query maps to the at-

1http://www.metarecognition.com/

Query: Nose Most like Jackie Chan’s Query: Smile Most like Angelina Jolie’s

Figure 3. Results for similarity searches using a set of target at-
tributes and a query image. By calibrating attribute distances in a
local neighborhood around the normalized target attribute values,
we can compute similarity in a consistent manner for any set of at-
tributes and query images, despite the fact that perceptual similar-
ity changes quite drastically with the attribute values in question.

tribute “big nose”, while the latter maps to a 3-dimensional
subspace consisting of the attributes “smiling, “lipstick”,
and “high cheekbones.” The most similar results are shown
around the target images. Note that we have zoomed in on
the relevant parts of the face for ease of comparison.

One final issue is whether people can truly consider only
a given set of query attributes in isolation. For example,
face shape is often viewed in context of gender and age of
the person, and it might be difficult to separate those com-
ponents when looking at similarity results. To examine this
effect, we can add “contextual attributes” to a query set, in
effect forcing results to be similar with respect to not only
the query attributes, but also these contextual attributes. In
our experiments, these consist of gender (male, female),
age (baby, child, youth, middle-aged, senior), and hair color
(blonde, black, brown). Fig. 5c provides an illustration of
the resulting reordering achieved with these contextual at-
tributes. Note how the reordered results are perceptually
more similar to the target.

5 Quantitative Experiments
Having presented the conceptual models for multi-attribute
spaces and algorithms for computing them, we now turn to
evaluation. While these concepts apply to many types of
attributes and a variety of applications, our evaluation here
focuses on face attributes for search. Face search based on
visual similarity is not a new topic, with the notable Pho-
tobook work of Pentland et al. [15] appearing in 1996. Re-
cently, more powerful approaches to the problem [10, 18]
have shown excellent promise for general use. The work
of Kumar et al. [10] is especially relevant, as it represents
the largest scale face attribute approach in terms of data and
number of attributes available in the literature. Where ap-
plicable, we compare directly to that work.

While Figs. 1, 3, 4, 5 show some qualitative results illus-
trating the merits of our method, we also perform rigorous
and extensive quantitative evaluation. Since search results
are subjective (by definition), we obtain quantitative results
by asking workers on Amazon’s Mechanical Turk service
to rate search results. We gathered hundreds of thousands
of responses from hundreds of workers, and then used sta-
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Kumar et al. 2011:  Weighted SVM Decision Score Fusion Our Approach:  Multi-Attribute Space Fusion
Query:  Chubby Indian Men with Mustache

Query:  White Babies Wearing Hats

Figure 4. Comparisons between the weighted SVM decision score fusion approach of Kumar et al. [10] (left) and our multi-attribute space
fusion approach (right) for the top five results on a selection of queries, made over nearly 2 million face images from the web. Without
proper normalization (left), certain attributes can dominate a query, e.g., gender in the first query, and ethnicity and age in the second.

tistical analysis to determine the validity (significance) of
their responses. In particular, we ran 4 sets of experiments,
corresponding to testing these 4 hypotheses:

H1: For attribute-based search queries, multi-attribute
space fusion with EVT normalization is more consis-
tent with human rankings than fusion with state-of-the
art Gaussian normalization.

H2: For target-based similarity queries, using L1 distance
in the query-only multi-attribute space provides an or-
dering consistent with human similarity ranking.

H3: For target-based similarity queries, using L1 distance
in a contextual multi-attribute space provides an or-
dering consistent with human similarity ranking.

H4: For target-based similarity queries, using L1 distance
in a contextual multi-attribute space provides better or-
dering than just distance in query-space.

In each case, our null hypothesis H0 is that there is no dif-
ference between what is being compared. We then perform
a statistical test to reject H0.

We evaluated these hypotheses using 1, 932, 987 face
images downloaded from the web, including a large portion
of the Columbia Face Database [10], as well as many other
images. Raw attribute scores for each image are computed
using the method of Kumar et al. [10], via their publicly
available implementation2. Given all scores for an attribute,
we normalize them using Alg. 1. This provides the well-
normalized attribute functions from which we obtain our
multi-attribute spaces used for experiments.

5.1 Hypothesis H1: Multi-Attribute Search
For the first hypothesis, the queries to our system come
from a text string naming one or more attributes. For multi-
attribute queries, the scores for each image are evaluated
using Eq. 3, with α = 0 and β = 1, and the images are
shown to the user sorted by scores, highest first. We com-
pare our multi-attribute space approach directly with the
face retrieval approach of Kumar et al. [10], which converts

2http://afs.automaticfacesystems.com/

weighted SVM decision scores into probabilities by fitting
Gaussian distributions on a separate set of positive and neg-
ative attribute examples, and then uses the product of prob-
abilities to rank the results. From the qualitative compari-
son shown in Fig. 4, one can see that despite the weighting
and Gaussian normalization, certain attributes dominate the
queries in the approach of Kumar et al. The Gaussian nor-
malization is likely overemphasizing variations within the
tails – e.g., weighting minor “baby” variations more heav-
ily than scores for hats. Our multi-attribute space normal-
ization and optimization emphasizes more meaningful dif-
ferences in terms of label probabilities.

For quantitative evaluation, we generated 30 different
textual queries, sampling from combinations of 42 different
attributes, and submitted side-by-side top 10 face retrieval
results to 30 different Mechanical Turk workers (order and
side were randomized per test to remove presentation bias).
For all 30 queries, each worker was asked to identify the set
of results that was more relevant, yielding 900 individual
comparisons. H0 in this case indicates equal votes for each
algorithm for each query, which was evaluated with a one-
sided paired t-test. The results from our approach were cho-
sen as “more relevant” by the workers for the given queries
86.9% of the time, yielding rejection of the null hypothesis
with a p-value < 10−16. Thus, we accept our hypothe-
sis H1 and conclude that the EVT-based multi-attribute
space provides significantly better fusion for search.

5.2 Target-based Similarity Search
The remaining experiments test the three hypotheses related
to target-based similarity queries (e.g., “find people with
a round nose and black hair similar to the given image”).
There is no prior work for direct comparison to this novel
and useful capability, and so we focus on the quantitative re-
sults. These hypotheses are related to the ordering produced
for a target-based attribute query, and are used to determine
if a particular automatic ordering of the results is consis-
tent with human orderings of similarity. Our statistical tests
are designed to not only evaluate the overall viability of the
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Similarity search results for “blonde hair and rosy cheeks”

1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

...
31. 32. 33. 34. 35. 36. 37. 38. 39. 40.

(b) Using given attributes only

...

(c) Using given attributes and contextual attributes

1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

31. 32. 33. 34. 35. 36. 37. 38. 39. 40.

Target

Ranks:
Which image has more similar 

Blonde Hair and Rosy Cheeks to the 
one on the top? 

(a) Example of worker task

Left Right

Target

Figure 5. Using the task template shown in (a), workers were asked to rate the similarity search results for the target image w.r.t. attributes
“blonde hair” and “rosy cheeks.” The results of our algorithm are shown in (b) using only the query attributes, and in (c) using additional
contextual attributes as well. The latter looks better (e.g., see the relative order of the highlighted faces). Our quantitative experiments
(summarized in Fig. 6) used hundreds of thousands of pairwise comparisons to assess hypotheses H2 : (b) is similar to human rankings,
H3 : (c) is similar to human rankings, and H4 : (c) is better than (b).

technique, but also the utility of these orderings for search
tasks. We present a summary of our results in this paper. A
more detailed analysis, including the full statistics, is also
available on our companion website.

Experimental design is important here; asking human
subjects to rate attribute strength directly is prone to strong
biases (as became apparent during our experimentation).
Thus, our measurements are based on a relative compari-
son approach, shown in Fig. 5a. Each worker was asked
to select the image that most resembled the target image
with respect to the target attributes from two candidates.
The candidates were chosen from a set of the 40 closest im-
ages in query-only distance (described in Sec. 4) and 10 ad-
ditional randomly selected images as “negative” examples,
to reduce bias and provide meaningful comparisons for the
bottom images in the top 40. These 50 images were fixed
for each query, and were used to generate 100 unique pairs,
with balanced left-right presentation and different random
selections for each worker.

For our experiments, we generated 12 different attribute
combinations (four 1-attribute, four 2-attribute and four 3-
attribute queries) and chose score targets for each attribute
by sampling a face from the available images and selecting
the relevant normalized attribute scores as the targets for a
query. With 100 workers evaluating 100 pairs for each of 12
queries, we collected a total of 120, 000 comparisons. Our
null hypothesis H0 is that our similarity search ordering is
not consistent with human responses. A test is “consistent”
if the automatic distance rank and worker response both in-
dicate that a particular image from a pair is closer to the
target image than the other image in the pair. We test each
set of results by comparing to random chance, with a χ2 test

for significance, rejecting H0 if p < 0.01. To measure how
finely we can distinguish similarities, we test statistical sig-
nificance separately for different intervals of results, look-
ing first at the top 5 matches only, then the top 10 matches,
and so on down to the top 40. This will show us if, for
instance, our algorithm finds very similar images correctly,
but not those which are only somewhat similar.

Fig. 6 shows the results for our hypothesis tests H2, H3,
and H4 for each query and each top n results set. A partic-
ular ring is marked with ** for a given query if the results
were statistically significant to the p = 0.01 level, * for the
p = 0.05 level, and - for not significant. The results indi-
cate thatH2 andH3 are valid and statistically significant for
most queries, i.e., that results from both the original query
and from the additional contextual attribute results are con-
sistent with human rankings.

Finally, we consider the hypothesis H4, which seeks to
identify if measuring distance in a contextual multi-attribute
space provides better ordering than just distance in query-
space. Here H0 indicates that the orderings are the same.
Using the collected results for each ordering approach, we
applied a pooled sample test for differences in the means
between the results for the two different distance measures,
considering the null hypothesis rejected when p< 0.01 (see
Fig. 6, right). Interestingly, the contextual-attribute order-
ing was significant only for some queries, indicating that
adding these contextual attributes is not always helpful.

6 Discussion
In this paper, we have formalized the notion of multi-
attribute spaces and shown how to calibrate attribute val-
ues into probabilities that an image exhibits a given at-
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Figure 6. Summary of quantitative experiments on target-based similarity search, using hypotheses H2, H3, and H4. For each set of
query attributes (on the outside of the circles) the hypothesis was evaluated for each cumulative set of 5 ranks (moving from the center
circle outwards: top-5, top-10, etc.). A ** means the results were statistically significant at p = 0.01, * means p = 0.05, and - means
not statistically significant. Both algorithmic rankings (query-only and query+context) match human rankings well. Adding contextual
attributes improves results for some queries but not others. See text for details.

tribute. Through extensive experiments on a large data set
of almost 2 million faces, we have shown that our princi-
pled probabilistic approach to score normalization greatly
improves the accuracy and utility of face retrieval using
multi-attribute searches, and allows for the new capability
of performing similarity searches based on target attributes
in query images. We have publicly released our calibration
code on our companion website3.

As the use of attributes continues to expand to other ap-
plication areas, we expect that techniques based on multi-
attribute spaces will be crucial for effectively using the out-
puts of multiple attribute classifiers. For example, face ver-
ification using attributes [10] is currently done by training a
second stage verification classifier on raw attribute scores.
It would be exciting to obtain similar or better results us-
ing simple metrics in a multi-attribute space – an approach
which would be more intuitive and easier to reason about.
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