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Abstract

The objective of this work is object retrieval in large

scale image datasets, where the object is specified by an

image query and retrieval should be immediate at run time

in the manner of Video Google [28].

We make the following three contributions: (i) a new

method to compare SIFT descriptors (RootSIFT) which

yields superior performance without increasing process-

ing or storage requirements; (ii) a novel method for query

expansion where a richer model for the query is learnt

discriminatively in a form suited to immediate retrieval

through efficient use of the inverted index; (iii) an improve-

ment of the image augmentationmethod proposed by Turcot

and Lowe [29], where only the augmenting features which

are spatially consistent with the augmented image are kept.

We evaluate these three methods over a number of stan-

dard benchmark datasets (Oxford Buildings 5k and 105k,

and Paris 6k) and demonstrate substantial improvements

in retrieval performance whilst maintaining immediate re-

trieval speeds. Combining these complementary meth-

ods achieves a new state-of-the-art performance on these

datasets.

1. Introduction

We consider the problem of large scale particular object

retrieval where the goal is to retrieve all images containing a

specific object in a large scale image dataset, given a query

image of that object. This goal is required to be performed

in near-real time so that users can interactively browse the

dataset or search using images from their mobile phones,

for example, as in Google Goggles.

Many works have addressed this problem, starting with

setting up the standard framework [18, 23, 28] where an im-

age is represented using a bag-of-visual-words (BoW), and

images are ranked using term frequency inverse document

frequency (tf-idf) computed efficiently via an inverted in-

dex.

However, an object in a target image can fail to be re-

trieved for a number of reasons using this standard pipeline,

these include: feature detection drop-out; noisy descrip-

tors; inappropriate metrics for descriptor comparison; or

loss due to descriptor quantization. All of these failings

have received attention over the past few years. Quantiza-

tion introduces two problems: information about the orig-

inal descriptor is lost, and corresponding descriptors may

be assigned to different visual words. To address the first

of these problems, Jégou et al. [8, 10] have moved to-

wards keeping a more accurate approximation of the orig-

inal descriptor by Hamming embedding or product quan-

tization. To address the second problem, methods include

soft-assignment [7, 10, 24, 30] and explicitly learning quan-

tization variability [15, 17]. Others have learnt better visual

descriptors (than SIFT) [32] or better metrics for descriptor

comparison and quantization [25]. Overcoming these quan-

tization problems improves recall.

The query expansion methods of [5, 6], where BoW vec-

tors from spatially verified regions are used to issue new

queries, address the problem of feature detection drop out

in addition to quantization and noise on the descriptor, and

again improves recall. The principal limitation of query ex-

pansion is that it relies on the query to yield a sufficient

number of high precision results in the first place. Database-

side feature augmentation [29] is a natural complement to

query expansion where images in the database are aug-

mented offline with all features of images containing the

same view of the object. Again this improves recall. The

precision (but not the recall) of the pipeline is improved by

using spatial consistency to rerank a tf-idf short list [23, 28]

or to rank all images with common visual words [8], or

other (re)ranking variations [9, 27].

Against this background of considerable progress, we

make the following three novel contributions:

1. RootSIFT: We show that using a square root

(Hellinger) kernel instead of the standard Euclidean dis-

tance to measure the similarity between SIFT descriptors

leads to a dramatic performance boost in all stages of the

pipeline. This change is simple to implement in just a few

lines of code, and it does not require any additional storage

space as the conversion from SIFT to RootSIFT can be done

online.
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2. Discriminative query expansion: Current methods for

query expansion combine the BoW vectors of the spatially

verified results, e.g. by averaging. We show that using a

linear SVM to discriminatively learn a weight vector for

re-querying yields a significant improvement over the stan-

dard average query expansion method [6], whilst maintain-

ing immediate retrieval speeds through efficient use of the

inverted index.

3. Database-side feature augmentation: The database-

side feature augmentation of [29] is very powerful but suf-

fers from not taking into account the spatial configuration

of augmenting features. We show that if the visibility of the

augmenting features is taken into account (using spatial ver-

ification by a homography) then this simple extension pro-

vides a significant improvement in performance compared

to the original method.

In each case these methods can substantially boost the re-

trieval performance, and can simply be “plugged into” the

standard object retrieval architecture of Philbin et al. [23]

(BoW, inverted index, tf-idf, spatial consistency re-ranking)

without increasing processing time. Indeed, RootSIFT and

discriminative query expansion do not even increase the

storage requirements.

In sections 3–5 we describe each of these methods in

detail and demonstrate their performance gain using the

method of [23] as a baseline on the Oxford Buildings 5k and

105k image dataset benchmarks as a running example. The

methods are combined and compared to the state of the art

in section 6. We conclude with giving recommendations for

the design of object retrieval systems based on their perfor-

mance, computational efficiency, storage requirements and

ease of implementation of the various methods.

2. Evaluation, datasets and baselines

The performance of particular object retrieval systems

is evaluated using standard and publicly available image

datasets containing hundreds of thousands of images each.

Several representative queries are defined and ground truth

is manually compiled. The single score for the recognition

performance is the mean average precision (mAP), where

the mean is taken over all queries.

Oxford Buildings [23] Contains 5062 high-resolution

images automatically downloaded from Flickr [2]. It de-

fines 55 queries (consisting of an image and query region

of interest) used for evaluation (5 for each of the 11 cho-

sen Oxford landmarks) and it is quite challenging due to

substantial variations in scale, viewpoint and lighting con-

ditions. The basic dataset, often referred to as Oxford 5k,

is usually appended with another 100k Flickr images to test

large scale retrieval, thus forming Oxford 105k dataset.

Paris Buildings [24] Analogously to Oxford 5k, 6392 im-

ages were obtained from Flickr [2] and 55 queries are used

for evaluation. As it contains images of Paris it is consid-

ered to be an independent dataset from Oxford 5k and thus

commonly used to test effects of training a visual vocabu-

lary on it while evaluating performance on Oxford 5k.

2.1. Baseline retrieval system

We follow the standard BoW retrieval framework de-

scribed in [23]. We use affine-Hessian interest points [16], a

vocabulary of 1M vision words obtained using approximate

k-means, and spatial re-ranking of the top 200 tf-idf results

using an affine transformation. Our most recent implemen-

tation of the system achieves a mAP of 0.672 on the Oxford

5k dataset compared to the original 0.657 of [23]. This is

the baseline system that we will compare to as we introduce

new methods in the sequel.

Our most recent implementation of the average query ex-

pansion method from [6] (described in detail in section 4)

achieves a mAP of 0.726 on Oxford 105k compared to the

original 0.711 [6]. Note, although the original paper de-

scribed several methods for query expansion (e.g. transitive

closure, multiple image resolution), the average method has

emerged as the standard to compare to [5, 17, 24] (it has

similar performance to the others, and is faster at run time

as the other methods involve issuing several new queries).

Hence, we use it as our baseline for query expansion in the

subsequent comparisons.

For consistency reasons (using the same visual vocabu-

lary, and various parameters of spatial reranking and query

expansion) we compare our improvements to our most re-

cent implementation of the baseline systems.

3. RootSIFT: Hellinger distance for SIFT

It is well known for areas such as texture classification

and image categorization, that using Euclidean distance to

compare histograms often yields inferior performance com-

pared to using measures such as χ2 or Hellinger. SIFT

was originally designed to be used with Euclidean dis-

tance [14], but since it is a histogram the question naturally

arises as to whether it would also benefit from using alter-

native histogram distance measures. We show that using the

Hellinger kernel does indeed bring a great benefit.

In the following it will be helpful to make use of the

standard connection between distances (metrics) and ker-

nels. Suppose x and y are n-vectors with unit Euclidean

norm (‖x‖2 = 1), then the Euclidean distance dE(x,y) be-
tween them is related to their similarity (kernel) SE(x,y)
as

dE(x,y)
2 = ‖x−y‖2

2
= ‖x‖2

2
+‖y‖2

2
−2xT

y = 2−2SE(x,y)

where SE(x,y) = x
T
y, and the last step follow from

‖x‖2
2
= ‖y‖2

2
= 1. We are interested here in replacing

the Euclidean similarity/kernel by the Hellinger kernel.
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The Hellinger kernel, also known as the Bhattacharyya’s

coefficient, for two L1 normalized histograms, x and y (i.e.∑
n

i
xi = 1 and xi ≥ 0), is defined as:

H(x,y) =

n∑

i=1

√
xiyi

SIFT vectors can be compared by a Hellinger kernel us-

ing a simple algebraic manipulation in two steps: (i)

L1 normalize the SIFT vector (originally it has unit L2
norm); (ii) square root each element. It then follows that

SE(
√
x,

√
y) =

√
x
T√

y = H(x,y), and the resulting vec-
tors are L2 normalized since SE(

√
x,

√
x) =

∑
n

i
xi = 1.

We thus define a new descriptor, which we term RootSIFT,

which is an element wise square root of the L1 normalized

SIFT vectors. The key point is that comparing RootSIFT

descriptors using Euclidean distance is equivalent to using

the Hellinger kernel to compare the original SIFT vectors:

dE(
√
x,

√
y)2 = 2− 2H(x,y).

RootSIFT is used in the specific object retrieval pipeline

by simply replacing SIFT by RootSIFT at every point.

The fact that RootSIFT descriptors are compared using Eu-

clidean distance means that every step can be effortlessly

modified: k-means can still be used to build the visual vo-

cabulary (since it is based on Euclidean distance), approxi-

mate nearest neighbor methods (essential for systems with

very large vocabularies) can still be used; as can soft as-

signment of descriptors to visual words [10, 24], query ex-

pansion, and other extensions which only require Euclidean

distance on SIFT [8, 11, 17, 25].

The dramatic improvement in performance is shown in

table 1, where for each step (e.g. adding query expansion,

adding feature augmentation) using SIFT is compared with

using RootSIFT. For example, on Oxford 105k the baseline

system (tf-idf only) increases in performance from 0.515 to

0.581, and with spatial reranking included the improvement

is from 0.581 to 0.642. These improvements come at virtu-

ally no additional cost, and no additional storage since SIFT

can be converted online to RootSIFT with a negligible pro-

cessing overhead.

Discussion. The RootSIFT transformation can be thought

of as an explicit feature map from the original SIFT space to

the RootSIFT space, such that performing the scalar prod-

uct (i.e. a linear kernel) in RootSIFT space is equivalent to

computing the Hellinger kernel in the original space. This

approach has been explored in the context of kernel maps

for SVM classifiers by [22, 31]. Explicit feature maps can

be built for other additive kernels, such as χ2, but we find

little difference in performance from that of the Hellinger

kernel when used in the specific object retrieval system.

The effect of the RootSIFT mapping is to reduce the

larger bin values relative to the smaller bin values. The

Euclidean distance between the original SIFT vectors can

be dominated by these large values. After the mapping the

distance is more sensitive to the smaller bin values. The im-

portance of this “variance stabilizing transformation” has

previously been noted by Winn et al. [33] for texton his-

tograms.

Previous work has compared SIFT vectors with distances

other than Euclidean, but an explicit feature map was not

employed and so the benefits of simply being able to con-

tinue to use algorithms with Euclidean distance (e.g. k-

means) were not apparent. For example, Johnson [12] uses

Jeffrey’s divergence to compare SIFT vectors concentrating

on descriptor compression, Pele and Werman use a variant

of the Earth Mover’s Distance [19] or a quadratic χ2 met-

ric [20].

4. Discriminative query expansion

Query expansion can substantially improve the perfor-

mance of retrieval systems. The average query expansion

method proceeds as follows: given a query region, images

are ranked using tf-idf scores and spatial verification is per-

formed on a short list of high ranked results, also providing

the location (ROI) of the queried object in the retrieved im-

ages. BoW vectors corresponding to words in these ROIs

are averaged together with the query BoW, and this result-

ing query expanded BoW vector is used to re-query the

database.

In contrast we introduce here a discriminative approach

to query expansion where negative data is taken into ac-

count and a classifier trained. It proceeds as follows: BoW

vectors used to enrich the query are obtained in exactly the

same way as for average query expansion. These provide

the positive training data, and images with low tf-idf scores

provide the negative training data. A linear SVM is trained

using these positive and negative BoW vectors to obtain a

weight vector w. The learnt weight vector is used to rank

images by their distance from the decision boundary, i.e. if

the image is represented by the BoW vector x, then images

are sorted on the value w
T
x. Ranking images using the

learnt weight vector w can be carried out efficiently using

the inverted index in much the same way as when comput-

ing tf-idf scores – both operations are just scalar products

between a vector and x. For the tf-idf scoring in average

query expansion the vector used is the average query idf-

weighted BoW vector, whilst for discriminative query ex-

pansion (DQE) it is the learnt weight vectorw.

Note, for DQE to be efficient it is essential that the

weight vector is sparse. As discussed below, by a careful

choice of negative data the obtained weight vector is at least

as sparse as the one used in average query expansion. Thus,

the method is at least as computationally efficient as average

query expansion with an insignificant overhead of training a

linear SVM. Figure 1 illustrates schematically how negative

data can benefit DQE over average query expansion.

Table 1 compares the DQE method to our implemen-
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Retrieval Method
SIFT RootSIFT

Ox5k Ox105k Ox5k Ox105k

Philbin et al. [23]: tf-idf ranking 0.636 0.515 0.683 0.581

Philbin et al. [23]: tf-idf with spatial reranking 0.672 0.581 0.720 0.642

Chum et al. [6]: average query expansion (AQE) 0.839 0.726 0.850 0.756

Turcot and Lowe [29]: database-side feature augmentation (AUG) 0.776 0.711 0.827 0.759

This paper: discriminative query expansion (DQE) 0.847 0.752 0.861 0.781

This paper: spatial database-side feature augmentation (SPAUG) 0.785 0.723 0.838 0.767

This paper: SPAUG + DQE 0.844 0.795 0.881 0.823

Table 1. Retrieval performance (mAP) of various proposed methods. We use our implementation of all listed methods [6, 23, 29] in

order to compare them consistently using the same visual vocabularies and sets of parameters. RootSIFT significantly outperforms SIFT

for all investigated methods. The vocabularies are generated using the Oxford 5k descriptors and all methods apart from “tf-idf ranking”

employ spatial reranking of the top 200 results. Note that for AUG and SPAUG we recompute the idf as described in section 5.

Q

AQE

DQE ranking

Figure 1. Discriminative query expansion (DQE). Illustration of

the BoW feature space. True positives are shown as green circles

and true negatives as red circles. Spatially verified images used to

expand the query (i.e. “known” positives) are shown with pluses

inside, low ranking images (i.e. “known” negatives) with minuses.

Q and AQE denote the query and the average query expansion

BoW vectors, respectively. A tf-idf AQE ranking sorts images

based on their distance to the AQE vector, while DQE ranking

sorts images by their signed distance from the decision boundary.

As illustrated here, DQE correctly ranks the two images with un-

known labels while AQE does not.

tation of the average query expansion (AQE) of Chum et

al. [6]. It can be seen that DQE is consistently superior

to AQE. The performance gain is particularly evident with

increasing dataset size – for Oxford 5k DQE outperforms

AQE by 1% and 1.3% for SIFT and RootSIFT respectively,

while for Oxford 105k mAP improves by 3.6% and 3.3%.

Implementation details. The images used for negative

data are the 200 with smallest non-zero tf-idf score for the

query. These images are very unlikely to contain any posi-

tive instances. However, to avoid the weight vector becom-

ing dense, the BoW vector corresponding to each image is

first truncated to only include words that appear in at least

one positive example. This is done to prevent many irrele-

vant negative words being brought in by the large number

of negative images, which would then make the 1 million

dimensional (i.e. the size of the vocabulary) weight vec-

tor dense, rendering re-querying inefficient. Other trunca-

tion or sparsity methods could be employed here, but we

have found this simple procedure quite adequate. With this

procedure the weight vector is at least as sparse as the one

used in average query expansion as the set of considered

words is identical. Note, all vectors are idf-weighted and

L2-normalized before training.

The classifier is a linear SVM trained with LIBSVM [3].

The choice of linear (rather than a non-linear kernel) is for

efficiency in training, and to have a linear weight vector for

use with the inverted file. In training there is only one pa-

rameter to be optimized, namely the C weighting of the

SVM cost function. The retrieval performance is very in-

sensitive to this value – for RootSIFT and the Oxford 5k

benchmark varyingC between 0.001 and 1000 changed the

mAP of 0.8608 by at most 0.0015. We thus choose C = 1.
The entire overhead of using DQE instead of AQE (gather-

ing negative training data and training the linear SVM) is

30 ms on average on a 3 GHz single core machine.

Discussion. It is interesting to note that, unlike any object

retrieval method proposed to date, our method can actually

benefit from adding more distractor images to the dataset to

make it “more confusing”. DQE could learn a better weight

vector if the new images are picked as negative examples,

while for other methods the performancewould be expected

to remain the same at best. As already noted, results in

table 1 indeed show that the relative improvement of DQE

compared to the average query expansion increases with the

number of distractors in the dataset.

Recent work [5, 13] has proposed methods for identify-

ing words that are confusing for a given query image, and

thus should not be used. In [5] these confusing words are

then removed when re-querying, though the actual “expan-

sion” is still performed by simply averaging the BoW vec-

tors and applying the tf-idf ranking scheme. The DQE goes

further in two respects: first it learns the weighting for the

positive words (rather than simply averaging), and second it

has negative weights for confusing words (rather than sim-

ply ignoring them).

5. Database-side feature augmentation

Turcot and Lowe [29] use a matching graph to improve

retrieval performance by augmenting the BoW for each im-
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Figure 2. Image graph. Part of an image graph, nodes represent

images while edges signify that images contain a common object;

objects are labelled A, B, C and Q.

Query Sorted results

(b)

(a)

(c)

Q Q

Q

B C

QC

QC

QC

Figure 3. Database-side for feature augmentation. Retrieval

performance of augmentation methods: the queried object is high-

lighted in yellow on the leftmost image. (a) tf-idf retrieval results

when not using image graph information, a challenging image is

not retrieved; (b) retrieved images using the method of Turcot and

Lowe [29] and graph shown in figure 2: recall is improved but

precision decreases as the false positive (highlighted in red) is aug-

mented with all the visual words of its highly ranked neighboring

image; (c) our method shows increased recall while maintaining

high precision since images are only augmented with visual words

from relevant neighboring regions.

age with the visual word counts of all neighboring images

in the graph. In a matching graph [26] nodes represent im-

ages, while edges signify that images contain an object in

common (figure 2). This approach is somewhat comple-

mentary to query expansion as it tries to overcome the same

problems as query expansion but on the dataset side, namely

feature detection drop outs, occlusion, noisy description and

quantization errors.

The procedure of [29] could be thought of as query ex-

panding each image of the dataset, and replacing the origi-

nal BoW vector of the image, by its average query expanded

version. However, rather than only augmenting the BoW

vector with spatially verified visual words, [29] augments

the BoW vector with all visual words from neighboring im-

ages. This can be dangerous because a significant number

of augmenting visual words may not be visible in the orig-

inal image (because they are outside the image). The prob-

lem is very common as unless two images are nearly iden-

tical, a large number of augmenting words will indeed not

be visible (figure 2). Instead, we augment using only words

estimated to be visible in the augmented image. This is sim-

ple to do, as an estimated homography between the two im-

ages is readily available from the spatial verification stage

of the matching graph construction. The benefit of spatial

database-side feature augmentation (SPAUG) is illustrated

in figure 3.

Table 1 shows that SPAUG always significantly im-

proves over the baseline. For example, on Oxford 105k

with RootSIFT, SPAUG achieves a mAP of 0.767 whereas

the baseline gets 0.642. It also consistently outperforms the

original method [29], which does not perform the visibility

check by 1.0 or 1.7% (for Oxford 5k or 105k respectively).

These improvements are significant at these high values of

mAP. It is not shown in the table, but SPAUG gives an im-

provement (of 3.6 or 4.5% respectively) over the tf-idf base-

line even before spatial re-ranking is performed. This is im-

portant because the tf-idf ranking has to provide a sufficient

number of results in order for spatial re-ranking to be bene-

ficial – if there are almost no results then reranking achieves

little.

Discussion. Although there is clearly a retrieval benefit in

using the spatial homography, there is a cost in terms of

additional storage requirement. The original augmentation

method of [29] does not incur this cost as it does not need

to explicitly augment BoW vectors in advance of a search.

Instead, at run time the scalar product tf-idf score between

the query and a dataset image is efficiently computed us-

ing the inverted index as usual, and then it is augmented

by simply summing scores of neighboring images (neigh-

boring according to the matching graph). This is equiva-

lent to augmenting the vectors before tf-idf scoring due the

distributivity of the scalar product. However, this is only

possible because all visual words in neighboring images are

used for augmentation; our extension requires explicit aug-

mentation as one image can contribute different words to

different neighbors according to the spatial overlap. This

increases the storage requirement since the inverted index

grows, however it is worth it given the improvement in re-

trieval performance. Note that for a particular BoW vector

storage only increases when an augmenting word does not

already appear anywhere in the augmented image, as if it

does then only the count of that word needs to be incre-

mented which does not impact on the inverted index size.

The spatially verified augmentation adds 4.4 words on

average per existing word for the Oxford 105k dataset. This

is 28% less than the original augmentation method [29],

and illustrates that the original approach indeed introduces

a large number of irrelevant and possibly detrimental visual

words.
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SIFT RootSIFT

AUG variant Ox5k Ox105k Ox5k Ox105k

Orig. idf 0.712 0.662 0.780 0.709

Recomp. idf 0.734 0.673 0.785 0.720

Orig. idf + SR 0.755 0.708 0.820 0.752

Recomp. idf + SR 0.776 0.711 0.827 0.759

Table 2. Idf recomputation for database-side feature augmen-

tation. Retrieval performance of our implementation of the Turcot

and Lowe [29] d-base augmentation method (AUG) using just tf-

idf or with spatial re-ranking (SR). Recomputing the idf using the

augmented dataset always improves performance.

Implementation details. We use the approach of Philbin

and Zisserman [26] to construct a matching graph of im-

ages in a dataset offline. Each image in the dataset is used

as a query in a standard particular object retrieval system

of Philbin et al. [23] and an edge is constructed to each

spatially verified image. An alternative graph construction

method which employs hashing [4] can be used for very

large scale datasets where querying using each image in turn

is impractical. When constructing the graph we do not in-

clude the query images used for evaluation of a dataset in

order to simulate a real-life scenario where query images

are not known at preprocessing time.

Since the augmenting words are considered to be equally

important as the original visual words extracted from an im-

age, we additionally recompute the inverted document fre-

quency (idf) using the augmented dataset. Both the original

augmentation method [29] and our extension benefit from

idf recomputation, as shown in Table 2. As can be seen, re-

computing idf values based on the augmented dataset pro-

vides a gain in all cases with median mAP improvement of

1.2%.

6. Results and discussion

In this section we discuss and compare the three new

methods to related work and the state of the art. Compar-

ing absolute performance to previous publications is diffi-

cult as the results depend on a number of important imple-

mentation details (even though the same benchmark image

datasets are used). There factors include: (i) the feature de-

tector used; (ii) the size of the vocabulary; and (iii) whether

the vocabulary is learnt on the original dataset or another.

For example, the substantial mAP performance improve-

ment in [21] was principally due to using a better implemen-

tation of the Hessian-affine feature detector. Hence we take

these factors into account in our comparison, using feature

detectors provided by the authors or learning the vocabulary

on different datasets as appropriate.

The methods are evaluated on the standard Oxford 5k

and 105k [23], Paris 6k [26] (section 2) image datasets.

6.1. RootSIFT

We have tested RootSIFT over many retrieval methods,

with and without spatial reranking, query expansion, soft

assignment and all the methods described in this paper. In

(a) SIFT (L2 distance): 10 matches

(b) RootSIFT: 26 matches

Figure 4. Comparing matches with SIFT and RootSIFT. Query

image and region are shown on the left, a matching result with the

estimated corresponding region of interest is shown on the right.

RootSIFT yields more matches and the object localization is better.

every single case RootSIFT significantly outperforms the

standard L2 distance for SIFT comparison; due to space

limitations we only show a subset of these experiments in

table 1. Note that the simple tf-idf scheme with RootSIFT

and without spatial reranking outperforms tf-idf using SIFT

with spatial reranking. Figure 4 shows examples of matched

image patches using SIFT and RootSIFT, demonstrating

that RootSIFT yields more complete matches enabling bet-

ter object localization

RootSIFT may be thought of as a non-linear map on

SIFT, and it is interesting to compare its performance to

the non-linear projection learnt by Philbin et al. [25] from

SIFT space into a space where L2 distance is more appropri-

ate. This projectionwas modelled by a deep-belief network,

and learnt discriminatively using training data. RootSIFT

equals or outperforms this method on the three datasets used

in [25]. The mAPs are ([25]/RootSIFT): 0.707/0.720 for

Oxford 5k; 0.615/0.642 for Oxford 105k; and 0.689/0.689

for Paris 6k. Since RootSIFT achieves superior results us-

ing a simple non-linear root transformation, there is possi-

bly still more room for improvement by combining the root

transformation with learning.

6.2. Final retrieval system

We combine all the proposed improvements into one sys-

tem and evaluate its performance. RootSIFT (section 3) is

used to generate the visual vocabulary and hard assign de-

scriptors to visual words, images are augmented with vi-

sual words of adjacent images in the image graph, but only

with ones which back-project into the image region, and the

inverse document frequency (idf) is recomputed (SPAUG,

section 5). At query time we extract RootSIFT descriptors
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Method F V SA Ox5k Ox105k Paris6k

a Philbin et al. [24] M S 0.801 0.708 N/A

b Philbin et al. [24] M S
√

0.825 0.718 N/A

c Qin et al. [27] M S 0.814 0.767 0.803

d This paper M S 0.881 0.823 0.850

e Philbin et al. [24] M I 0.654 0.562 N/A

f Philbin et al. [24] M I
√

0.719 0.605 N/A

g This paper M I 0.714 0.602 0.660

h Perďoch et al. [21] P I 0.784 0.728 N/A

i Perďoch et al. [21] P I
√

0.822 0.772 N/A

j Mikulik et al. [17] P ⋆

√
0.849 0.795 0.824

k Chum et al. [5] P I 0.827 0.767 0.805

l This paper P I 0.809 0.722 0.765

m Perďoch et al. [21] P S 0.901 0.856 N/A

n Perďoch et al. [21] P S
√

0.916 0.885 N/A

o This paper P S 0.929 0.891 0.910

Table 3.Comparison of the combinedmethod (section 6.2) with

state-of-the-art. F denotes the feature detector used: M for Miko-

lajczyk & Schmid [16] and P for Perďoch et al. [1, 21]. V signi-

fies which dataset was used to generate the visual vocabulary: S

for same as test dataset (e.g. Oxford 5k for Oxford 5k and Ox-

ford 105k tests), I for an independent dataset (e.g. Paris 6k for the

Oxford 5k and Oxford 105k tests) and ⋆ for the case of [17] where

they learn word similarities based on mined SIFT correspondences

in a 6M dataset. SA marks whether soft assignment was used or

not. Spatial reranking is performed on the top 200 or 1000 tf-idf

results for consistency with [24] or [5, 17, 21] respectively, which

use these parameter values. For (g) the baseline system does not

produce a good enough image graph so database-side feature aug-

mentation is not used for this test.

from the interest region, hard assign them to the closest vi-

sual word and use the resulting sparse BoW representation

to query the database. Fast spatial reranking is performed

on the top tf-idf results, and spatially verified results are

used to train a linear SVM to learn weights for visual words

which represent the query object. The learnt weights are

used to efficiently re-query the database and spatial rerank-

ing is performed again (DQE, section 4).

Table 3 shows a comparison of this combined method

with previous results. The performance of the method

is evaluated over three datasets, using two different fea-

ture detectors (Mikolajczyk and Schmid [16] or Perďoch et

al. [1, 21]), and learning the visual vocabulary from two

different datasets (from Oxford 5k or Paris 6k).

First, (a–d), we report on using the Mikolajczyk &

Schmid [16] feature detector and a vocabulary generated

from the test image dataset descriptors. Our combined

method sets the new state-of-the-art on all three datasets.

The best result for each dataset reported in previous publi-

cations is improved on by 6.8%, 7.3% and 5.9% for the Ox-

ford 5k, 105k and Paris 6k datasets respectively. Note, these

superior results are achieved without using soft-assignment

(as used by (b)), so there are probably still improvements to

be gained.

Second, (e–g), the vocabulary is now generated on an

Figure 5. Retrieval performance of various methods. (left) The

number of queries that achieve a specific AP or higher. Tested

on Oxford 105k with the feature detector of [21] and Oxford 5k

vocabulary. (right) Two badly performing queries for all methods.

independent dataset. As reported previously [24], and ev-

ident here, this diminishes performance. Despite this, the

combined method exceeds the state of the art (e) without

soft-assignment by 9.2% and 7.1% (on Oxford 5k and 105k

respectively), and almost equals the state-of-the-art includ-

ing soft assignment (f).

Third, (h–l), using the feature detector of Perďoch et

al. [21] boosts the performance even when using an inde-

pendent vocabulary. The combined method, (l), does not

top the results of [5, 17, 21], (i–k), due to problems of

replicating their average query expansion score (our imple-

mentation gets a 4% worse mAP, probably caused by dif-

ferent parameter settings and heuristics). The performance

on an independent vocabulary could be improved by using

more powerful methods to construct the image graph for

SPAUG: currently, it is computed without using DQE or

soft-assignment. Another method which overcomes this in-

dependent vocabulary problem is that of Mikulik et al. [17],

(j), where a very large vocabulary is generated and similar-

ities between the words are learnt.

Finally, (m–o), use the Perďoch et al. [21] feature detec-

tor and a vocabulary generated from the test image dataset

descriptors. The combined method sets the new state-of-

the-art for the standard Oxford 5k and 105k, and Paris 6k

benchmarks, achieving mAP scores of 0.929, 0.891 and

0.910 respectively.

Given this high performance, we can now ask “What is

being missed?”. Figure 5 (left) shows the performance of

various methods in terms of the number of queries on Ox-

ford 105k that achieve a specific average precision or above.

The combined method, (o), achieves an AP of 0.7 or higher

for all but 3 (out of 55) queries. The two worst performing

queries for the combined, and all other methods, are shown

in figure 5 (right). The top one fails because the query object

is quite small and the lighting very bright, so there are not

many distinctive features in the image. The bottom one fails

because the query object is imaged from an extreme view-

point, whilst repetitive patterns yield some spatially verified

false positives (e.g. on fence railings). Thus, retrieval on this

dataset is still not saturated.
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7. Conclusions and recommendations for re-

trieval system design

RootSIFT. Using RootSIFT instead of SIFT improved re-

trieval performance in every single conducted experiment.

We highly recommend it to be used as it provides a perfor-

mance boost at no cost – it is very easy to implement, does

not increase storage requirements as SIFT can be converted

to RootSIFT on the fly with negligible computational cost.

Note that RootSIFT is not specific to object retrieval –

all systems which use SIFT (e.g. image classification, ob-

ject detection) could potentially benefit from switching to

RootSIFT and we encourage everyone to try it as the con-

version is very simple to implement.

Discriminative query expansion (DQE). DQE consis-

tently outperforms average query expansion (AQE). It is

as efficient as AQE since SVM training is negligible and

re-querying requires equal computational resources. Imple-

mentation complexity is only slightly increased compared

to AQE due to the additional training stage, however this is

insignificant as many SVM packages are publicly available.

As there are no arguments against DQE we recommend it

to be used instead of AQE in all situations.

To our knowledge this is the first time that discriminative

learning methods have been employed in the area of large

scale retrieval.

Database-side feature augmentation (AUG). AUG is a

useful method of increasing recall. It is not computationally

demanding at runtime, but it does require a lengthy prepro-

cessing graph construction stage. We recommend it to be

used as it is a natural complement to query expansion. Our

extension to the basic method improves precision but in-

creases storage requirements; this trade-off should be kept

in mind when deciding whether to use it or not.

Query descriptors soft assignment. Soft assignment of

descriptors to visual words alleviates the problems caused

by descriptor quantization to some extent, but in the origi-

nal implementation of [24] soft-assignment was applied to

the database, thus leading to a large increase in storage re-

quirements as the BoW vectors representing the images are

consequently more dense (than using hard assignment). In-

stead, we recommend Jégou et al. [7, 10]’s approach of only

soft assigning the query descriptors (not the database im-

ages) thus not changing the storage requirements and only

marginally increasing the query processing time.
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