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Abstract

We propose a new latent variable model for scene recog-
nition. Our approach represents a scene as a collection of
region models (“parts”) arranged in a reconfigurable pat-
tern. We partition an image into a pre-defined set of regions
and use a latent variable to specify which region model is
assigned to each image region. In our current implemen-
tation we use a bag of words representation to capture the
appearance of an image region. The resulting method gen-
eralizes a spatial bag of words approach that relies on a
fixed model for the bag of words in each image region.

Our models can be trained using both generative and
discriminative methods. In the generative setting we use
the Expectation-Maximization (EM) algorithm to estimate
model parameters from a collection of images with cate-
gory labels. In the discriminative setting we use a latent
structural SVM (LSSVM). We note that LSSVMs can be very
sensitive to initialization and demonstrate that generative
training with EM provides a good initialization for discrim-
inative training with LSSVM.

1. Introduction
Consider an image of a beach scene. We expect to see

sky, water and sand in the image. Moreover, we expect to
see sky at the top of the image, water somewhere in the
middle and sand in the bottom. One approach for captur-
ing this information involves using a different bag of words
model for different regions in the image. This structure can
be modeled by spatial pyramid matching [5]. Note however
that a region in the middle of the image could contain water
or sand. Similarly a region at the top of the image could
contain a cloud, the sun or blue sky alone. Therefore the
features observed in each region depend on a latent variable
specifying which of several possible region models should
be used to capture the content of the region.

We propose to model a scene as a collection of region
models (“parts”) arranged in a reconfigurable pattern. An

...

Region models ("parts")

Images

...

Figure 1. A Reconfigurable model for a class of outdoor scenes.
We have L region models that can be arranged in different ways to
make up an image. Each image region has a preference over the
region models that can be used to generate its content. In this ex-
ample regions in the top are formed by choosing between a cloud
or sun region model, while regions in the middle and bottom are
formed by choosing between a tree or grass region model.

image is divided into a set of pre-defined regions and we
have latent variables specifying which region model should
be used for each image region. The model includes param-
eters so that each image region has a preference over the
region models that can be assigned to it. In practice we di-
vide an image into a grid of regions and use a bag of words
(BoW) representation to capture the appearance of a region.
We call the resulting models Reconfigurable BoW models.

Figure 1 illustrates a model for a class of outdoor scenes
composed of sky, grass and trees. We can think of the model
as being defined by parts that model image regions with spe-
cific content. The latent variables specify which part should
be used to capture the appearance of each region in the grid.
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We compare reconfigurable BoW models to spatial BoW
models that use a fixed model for the bag of words in each
image region and show that reconfigurable models lead to
superior results on two datasets. In particular we obtain re-
sults that are comparable to state-of-the-art methods on the
MIT 67 indoor scene dataset [10], even though our imple-
mentation uses only simple local features.

The idea of modeling a scene in terms of a configuration
of regions with specific properties goes back to the work in
[6]. This notion has also been used recently for recogniz-
ing indoor scenes in [10] and [9]. These methods represent
scenes using different kinds of deformable part models. Re-
configurable models are different from deformable models
because they explicitly model the whole image. Reconfig-
urable models also allow the same part (region model) to be
used multiple times in an image. For example a grass region
model can be instantiated at multiple locations to explain a
large patch of grass in an image.

Another kind of latent variable model that has been used
for scene recognition involves hierarchical “topic” models
[3, 2]. These models represent the features in an image us-
ing a mixture of topics associated with an image category.
They are related to Reconfigurable models if we think of
a region model as a topic. In the case of a reconfigurable
model we assume there is a single topic in each image re-
gion. Here we train different region models for each image
category but we could also share a set of region models over
all categories as is often done with topic models.

The approach in [14] is closely related to ours from a
technical point of view but they use only two region models
for “foreground” and “background” regions while we use
many different region models to model a scene.

We describe both generative and discriminative version
of the reconfigurable BoW model. For the generative mod-
els we use Expectation-Maximization (EM) [1] to train
model parameters. For the discriminative models we use a
latent structural SVM (LSSVM) [15]. Discriminative train-
ing usually outperforms generative training but we have
found that LSSVM training is much more sensitive to ini-
tialization when compared to EM training. We show that a
combined approach that initializes LSSVM training using
the results of EM training gives the best performance.

2. Generative and discriminative Models

2.1. Generative models

Let x denote an image and y denote an image class.
Classification with generative models involves modeling a
prior probability over classes, pθ(y), and the probability of
observing certain image features conditional on the image
class pθ(x|y). Using Bayes law we can classify an image
x by selecting the class y with maximum probability given

the observed image features

y∗ = argmax
y

pθ(y|x) = argmax
y

pθ(y)pθ(x|y). (1)

The parameters θ of a generative model can be estimated
from a set of training examples {(x1, y1), . . . , (xN , yN )}
using a maximum likelihood criteria. Assuming the training
examples are independent samples from pθ(x, y) this leads
to the following optimization problem

θ∗ = argmax
θ

N∏
i=1

pθ(yi)pθ(xi|yi). (2)

One important aspect of generative models is that parame-
ter estimation can often be decomposed into separate prob-
lems, one for each image class. Let θ = {γ, θ1, . . . , θM}
where γ defines a discrete distribution over classes model-
ing pθ(y) while θy defines the parameters of a generative
model for the images in class y. That is, pθ(x|y) = pθy (x).
In this case maximum likelihood estimation amounts to se-
lecting γ based on the empirical frequencies of different
classes in the training data and selecting θy to maximize∏
i s.t. yi=y pθy (xi). Note that θy is estimated from training

images of class y alone.
In a latent variable model we have a set of unobservable

values z associated with each image x. We define pθ(x|y) in
terms of a distribution pθ(z|y) over latent values conditional
on the class of the image, and the probability of observing
certain image features conditional both on the image class
and the latent values pθ(x|z, y). Then pθ(x|y) is obtained
by integrating over the latent variables

pθ(x|y) =
∑
z

pθ(x|z, y)pθ(z|y). (3)

Maximum likelihood parameter estimation with latent
variable models typically leads to non-convex optimization
problems. The Expectation-Maximization (EM) algorithm
is a general tool for dealing with such problems.

2.2. Discriminative models

In contrast to the generative setting, the discriminative
approach does not rely on explicit probabilistic models for
the images in each class. Instead the parameters of a classi-
fier are selected to directly minimize mistakes on the train-
ing data, often with a regularization bias to avoid overfitting.
A common approach involves training a discriminant func-
tion fw(x, y) with high score if image x is from class y, and
low score otherwise. We then classify an image by selecting
the class with highest score

y∗ = argmax
y

fw(x, y). (4)

Let {(x1, y1), . . . , (xN , yN )} be a set of training exam-
ples. We would like to train w such that fw(xi, yi) >
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fw(xi, y) whenever y 6= yi. A general max-margin ap-
proach involves an objective function

w∗ = argmin
w

1

2
||w||2+

C
N∑
i=1

max
y

(fw(xi, y) + L(y, yi))− fw(xi, yi), (5)

where L(y, y′) = 0 if y = y′ and L(y, y′) = 1 if y 6= y′.
This objective encourages the score of the correct class

for each example to be above the highest score of an incor-
rect class plus one. Together with the regularization term,
this leads to a large margin classifier.

An important class of discriminative models involves lin-
ear discriminant functions of a joint feature map

fw(x, y) = w · Φ(x, y). (6)

In this case the training problem defined by equation (5)
corresponds to a structural SVM (SSVM) [11]. The result-
ing optimization problem is convex and can be solved using
standard techniques.

We can define discriminative latent variable models us-
ing a discriminant function of the form

fw(x, y) = max
z
w · Φ(x, y, z) (7)

where z is a set of latent values. In this case the train-
ing problem defined by equation (5) corresponds to a latent
structural SVM (LSSVM) [15]. A popular example in com-
puter vision is the deformable part model (DPM) for object
detection described in [4]. The work in [4] considered the
special case of a latent variable binary classifier (the object
is present or not at each position in the image).

Unfortunately, the LSSVM training objective is non-
convex. In [15], the training problem is solved using the
CCCP algorithm [16], while [4] uses a coordinate descent
method designed for the binary case. While these methods
have been shown to work well in some applications there
is increasing evidence that they can be quite sensitive to
initialization. Our experiments confirm this is a significant
problem for the models we consider. In contrast, the EM
algorithm for generative models with latent variables seems
to be less sensitive to initialization.

3. Basic models
Here we review two basic models for image classifica-

tion. Our reconfigurable models build on these.
One difference between the discriminative approach we

use and the methods that are most commonly used in the vi-
sion literature is that we use a single structural SVM for
multi-class classification instead of several binary SVMs
trained with a one-versus-all rule. We believe this is a more

natural framework and it leads to a single discriminative
training problem. In contrast, the one-versus-all approach
involves one binary training problem per class where each
problem involves training examples from all classes.

3.1. Bag of words (BoW)

A bag of words (BoW) model represents an image x by
an unordered collection of visual words. Suppose we have a
dictionary withK visual words. A bag of words b is defined
by a vector [b1, . . . , bK ] where bk is the multiplicity of word
k in b. We use |b| to denote the total number of words in b.

Generative model We can define a generative BoW clas-
sifier by assuming the visual words in an image come from
a multinomial distribution associated with the image class.

A multinomial distribution is defined by a discrete dis-
tribution with parameters v = {v1, . . . , vK} specifying the
probability of each outcome in a trial. In the multinomial
model each word in a bag is generated independently. The
probability of a bag b (conditional on |b|) is given by

mult(b, v) =
|b|!

b1! · · · bK !

K∏
k=1

vbkk . (8)

To define a BoW classifier, let θy specify a discrete dis-
tribution over visual words associated with class y. Then

pθ(x|y) = mult(x, θy). (9)

We can estimate the model parameters θ from a set of train-
ing examples using a maximum likelihood criteria. The pa-
rameters θy simply depend on the frequencies of different
visual words observed in images from class y.

To classify an image we combine the generative model
associated with each class pθ(x|y) with the prior probability
of each class pθ(y) as specified by equation (1).

Discriminative model We can define a discriminative
BoW classifier using a discriminant function of the form

fw(x, y) = wy · φ(x). (10)

Here w = [w1; . . . ;wM ] denotes a vector of model param-
eters where wy are parameters associated with class y. The
function φ(x) is a (possibly non-linear) feature map of the
bag of words in image x.1

We can train w using equation (5). Since fw(x, y) is
linear in w this leads to a structural SVM. As mentioned
above the optimization problem defined by structural SVMs
is convex and can be solved using a variety of techniques.

1φ(x) should generally include a dimension with constant value to al-
low for a class specific bias term in wy .
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3.2. Spatial bag of words (SBoW)

Following [5] we can take spatial information into ac-
count by using a different model for the features in different
regions of an image. This leads to Spatial BoW (SBoW)
models. Here we consider the case where the image is par-
titioned into a fixed grid withR regions. We use r to denote
an image region and xr to denote the bag of words in region
r of an image x.

Generative model In the SBoW model we capture spatial
information by allowing the probability of observing a par-
ticular visual word to depend on the region where the word
is observed. Let θy,r denote a discrete distribution over vi-
sual words associated with region r and class y. Under the
SBoW model we have

pθ(x|y) =
R∏
r=1

mult(xr, θy,r). (11)

As in the case of a BoW model we can estimate the model
parameters from a set of training examples using a maxi-
mum likelihood criteria. The parameters θy,r simply de-
pend on the frequencies of different visual words observed
in region r taken over images in class y.

Discriminative model We can define a discriminative
SBoW classifier using a discriminant function of the form

fw(x, y) = wy · [φ(x1); · · · ;φ(xR)]. (12)

As in the discriminative BoW model, wy are parameters as-
sociated with class y, but now wy has different parameters
for modeling the visual words in each image region. Since
fw is still linear in w, we can once again train w using a
structural SVM.

4. Reconfigurable bag of words (RBoW)
Our latent variable model builds on the SBoW model.

We can think of an SBoW model as a part-based approach
with one part per image region. Here we augment the
SBoW model to allow for reconfiguration of the parts that
make up a scene. This leads to a class of reconfigurable bag
of words (RBoW) models.

For example, an RBoW model for beach scenes might
have a part modeling an image region that contains the sun
and another part modeling an image region that contains a
cloud. The regions at the top of a beach image could all
contain the sun or a cloud. In the RBoW model we have a
latent variable indicating which region model (part) should
be used to explain each image region.

As in an SBoW model we assume images are partitioned
into R predefined regions and xr specifies the bag of words

observed in region r within the image x. In a reconfigurable
BoW model we have L BoW region models. A latent value
zr assigns a particular region model to region r.

4.1. Generative RBoW model

In the RBoW model we assume the visual words in im-
age region r are generated independently conditional on the
class label and latent value zr assigning a region model to
region r.

Let Wy,l be a discrete distribution over visual words as-
sociated with the l-th region model for class y. Under the
RBoW model we have

pθ(x|z, y) =
R∏
r=1

mult(xr,Wy,zr ) (13)

We assume the latent values zr are independent condi-
tional on the class label y but not identically distributed.
There is a different categorical distribution capturing which
parts are likely to occur in each region of an image from
a particular class. For each class y and region r let ay,r =
{ay,r,1, . . . ay,r,L}where ay,r,l is the probability that zr = l
on an image from class y. This leads to the following dis-
tribution over the latent values

pθ(z|y) =
R∏
r=1

ay,r,zr . (14)

Now we can express the probability of observing the fea-
tures in an image x conditional on an image class y by inte-
grating over the possible latent values

pθ(x|y) =
∑
z

pθ(x|z, y)pθ(z|y). (15)

Since the latent values are independent and the observa-
tions are independent conditional on the latent values we
can compute this probability efficiently (in O(RLK) time
for a model with L region models on an image with R re-
gions and a dictionary with K visual words) as

pθ(x|y) =
R∏
r=1

∑
zr

mult(xr,Wy,zr )ay,r,zr . (16)

The parameters θy associated with the model for class y
are given by L BoW region models {Wy,1, . . .Wy,L} and
R distributions over region models {ay,1, . . . , ay,R}.

Parameter estimation with EM Suppose we have N
training examples {(x1, y1), . . . , (xN , yN )}. We can esti-
mate the parameters of an RBoW model using a maximum
likelihood criteria, but since the model has latent variables
maximum likelihood estimation leads to a non-convex op-
timization problem. We use the Expectation-Maximization
(EM) algorithm to address this problem [1].
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EM computes a sequence of model parameters by repeat-
edly alternating between two steps which are guaranteed to
increase the likelihood of the data. In the E step we use
the current model θ to compute the posterior probability of
the latent variables in each training example. This gives us
a tractable lower-bound on the likelihood function which
is tangent to the actual likelihood at the current θ. In the
M step we update the model parameters by maximizing the
lower-bound on the likelihood function. In the case of an
RBoW model we obtain the following algorithm.

Repeat until convergence

Step 1 (E): For each example i, region r and latent value
zr compute Qi,r,zr = pθ(zr|xi, yi) using

pθ(zr|xi, yi) =
mult(xr,Wy,zr )ay,r,zr∑
l mult(xr,Wy,l)ay,r,l

(17)

Step 2 (M): Update θ by selecting

ay,r,l ∝
∑
i,yi=y

Qi,r,l (18)

Wy,l,k ∝
∑
i,yi=y

∑
r

Qi,r,lci,r,k (19)

where ci,r,k is the number of times the k-th visual word was
seen in region r of xi and the parameters are normalized so
that

∑
l ay,r,l = 1 and

∑
kWy,l,k = 1.

We initialize the algorithm by selecting a random latent
value zr for each region r within xi and setting Qi,r,zr = 1
while Qi,r,l = 0 for l 6= zr.

In practice we smooth the multinomial probabilities in
equation (17) by raising them to a power of 1/T . This atten-
uates the sharpness induced by the assumption that visual
words are generated independently within a region. This is
essential when using densely sampled features.

4.2. Discriminative RBoW model

We can define a discriminative RBoW classifier using a
discriminant function of the form

fw(x, y) = max
z

∑
r

Ay,r,zr +By,zr · φ(xr). (20)

Here φ(xr) is a feature map. The vector By,l specifies
model parameters for the l-th region model in class y. The
parameter Ay,r,l specifies a score for assigning part l to re-
gion r in an image of class y.

The intuition is that for each class y we attempt to ex-
plain the image x by finding the best assignment z of region
models to the regions in x. An assignment z has a score
with two terms. The first term

∑
r Ay,r,zr gives preference

to some region models over others for each image region.
The second term

∑
r By,zr · φ(xr) measures how well the

region model zr matches the content of region r.

Latent structural SVM The score of class y under a par-
ticular assignment z can be expressed as∑

r

Ay,r,zr +By,zr · φ(xr) = wy · Φ(x, z) (21)

Here the weight vector wy is the concatenation of the pa-
rameters Ay,r,zr and By,zr .

The vector Φ(x, z) is a sum ofR vectors ψ(x, r, zr), one
per image region. The vector ψ(x, r, zr) equals φ(xr) in the
dimensions corresponding to By,zr within wy and 1 in the
dimension corresponding to Ay,r,zr within wy . The other
entries in ψ(x, r, zr) are zero.

Let w = [w1; . . . ;wM ] denote a vector with all model
parameters from all classes. Suppose we have N training
examples {(x1, y1), . . . , (xN , yN )}. We can train w using
a latent structural SVM (LSSVM) [15]

w∗ = argmin
w

1

2
||w||2+

C
N∑
i=1

max
y,z

(wy ·Φ(xi, z)+L(y, yi))−max
z
wyi ·Φ(xi, z)

(22)

where L(y, y′) = 0 if y = y′ and L(y, y′) = 1 if y 6= y′.
Like the objective function of a structural SVM a latent

structural SVM encourages the score of the correct class to
be above the highest score of an incorrect class by a margin
of one. The only difference is that the score is no longer
linear, and instead involves a maximization over z.

Unfortunately the optimization problem defined by a
LSSVM is not convex. Following [15] we use the CCCP
[16] algorithm to find a local optimum solution. CCCP
works by repeatedly alternating between two steps. The first
step picks the best latent values for each training example
under the current model. The second step defines a convex
objective function over model parameters by replacing the
maximization in the last term of the LSSVM objective with
the latent values from the first step. This convex objective
gives an upper-bound on the LLSVM objective function.

Repeat until convergence

Step 1: For each training example i compute

zi = argmax
z

wyi · Φ(xi, z) (23)

Step 2: Update w by optimizing the convex objective

w∗ = argmin
w

1

2
||w||2+

C

N∑
i=1

max
y,z

(wy · Φ(xi, z) + L(y, yi))− wyi · Φ(xi, zi)

(24)
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In practice we use stochastic subgradient descent to op-
timize the convex function in step 2.

Note that CCCP optimization for LSSVM is similar to
EM in the way that it alternates estimating latent values and
estimating model parameters. One important difference is
that in step 1 of EM we obtain a distribution over latent
values for each example while here we pick a single latent
value for each example. This seems to make LSSVM opti-
mization with CCCP much more sensitive to initialization.
In practice we find that most latent values that are selected
in step 1 of the initial iteration never change.

The optimization requires either an initial weight vector
w or initial latent values zi, in which case training starts in
step 2. We experimented with three different methods for
selecting initial latent values. One method simply picks a
random region model for each region in each image. An-
other method picks a particular region model for each re-
gion. In particular, we train models with 16 regions and 16
region models and assign a different initial region model for
each image region. Finally, we tried using the result of EM
training of a generative RBoW model to select the initial la-
tent values. In this case we set the initial zi to be the most
probable latent values under the model trained by EM.

5. Experiments
We evaluated our model on the 15 Scene dataset from [5]

and the MIT 67 Indoor Scenes dataset from [10]. We mea-
sured the performance of different models using the average
of the diagonal entries of their confusion matrix.

We used densely sampled SIFT features [7] to define vi-
sual words. The visual vocabulary is created using K-Means
clustering on a subset of SIFT features randomly sampled
from training images. We set the size of the visual vocabu-
lary to be K = 200 in all of our experiments.

For discriminative training we used a feature map φ(b)
that normalizes the bag of words vector b to have unit norm
and then computes the square root of each entry.

All of the experiments with SBoW and RBoW models
used a 4x4 regular grid to partition the image into R = 16
rectangular regions. For the RBoW models we used L =
16 region models for each image category. Taking L =
R makes it possible to initialize an RBoW model with a
fixed assignment of region models to image regions, with
one region model for each image region.

5.1. MIT 67 Indoor Scenes

The MIT dataset contains images from 67 different cat-
egories of indoor scenes. There is a fixed training and test
set containing approximately 80 and 20 images from each
category respectively.

Table 1 summarizes the performance of our models and
some previously published methods. To our knowledge, the
state-of-the-art results on this dataset were obtained in [9]

MIT 67 Method Rate LSSVM
Indoor Scenes Objec.

Prev. Works

ROI+Gist [10] 26.5
MM-scene [17] 28.0
CENTRIST [12] 36.9
Object Bank [13] 37.6
DPM [9] 30.4
DPM+Gist-color+SP [9] 43.1

BoW Generative 12.80
Discriminative 25.17

SBoW Generative 19.46
Discriminative 33.99

RBoW

Generative 27.66
Discriminative Init-rand 31.63 91.08
Discriminative Init-fixed 34.99 83.50
Discriminative Init-EM 37.93 80.30

Table 1. Average performance of different methods on the MIT
dataset. The last column shows the final value of the LSSVM ob-
jective function for RBoW models with different initializations.

by combining scores from a deformable part model (DPM)
[4] for each category, together with spatial pyramid match-
ing [5] and color GIST descriptors [8]. To compare recon-
figurable models to deformable models we also include the
performance obtained in [9] using DPMs alone. Table 1
also shows the performance of our BoW and SBoW base-
lines. The performance gap between the BoW and SBoW
approaches proves a considerable point regarding the im-
portance of spatial information for image classification.

Table 1 includes the results of discriminative RBoW
models trained with different initialization methods. As dis-
cussed in Section 4.2, CCCP requires initial latent values
for each training example. Init-rand selects random initial
region models for each image region. Init-fixed selects a
fixed initial region model for each image region. Init-EM
uses a generative RBoW model trained with EM, and se-
lects the most probable latent values under the generative
model to initialize LSSVM training. We have found that
Init-EM gives consistently better results. This shows the
importance of initialization for LSSVM training. It also
shows that while generative models typically don’t perform
as well as discriminative models, EM training seems to be
less susceptible to local optima when compared to LSSVM.

Last column of Table 1 shows the final value of LSSVM
objective under each initialization method. Note that the
value of the objective is consistent with the performance of
the model, suggesting that developing better optimization
algorithms for LSSVM should lead to better models.

Table 2 shows per-category performance of the discrim-
inative RBoW model (initialized with EM), the discrimi-
native baseline approaches and the DPM method from [9].
Note that even though SBoW has a better overall accuracy
than BoW, it does worse in 12 classes. RBoW is able to
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buffet part 8

nursery part 7

bus part 11

classroom part 2

classroom part 4

Figure 2. Some interesting region models learned for different categories using a discriminative RBoW model (Init-EM). Each row illus-
trates a region model for a particular category. The first column shows the preferences of different image regions for this region model
(Ay,r,l for fixed y and l). The other columns show image regions that were assigned to this region model during classification (zr = l).

recover the performance lost by SBoW in several classes,
including florist, gameroom and videostore. The RBoW
model performs significantly better than our baselines and
the DPM method on several classes.

Figure 2 illustrates some interesting region models that
were learned for different categories. For example, in the
buffet class there is a model for food regions, in the nursery
class there is a model for crib regions, while in the class-
room class there is a model for regions with desks and an-
other for the ceiling.

Training RBoW models is reasonably fast. Training a
generative RBoW model with EM (with 16 parts and 16 im-
age regions) on the MIT dataset takes about 10 minutes on
a 2.8GHz computer with an i7 multi-core processor. Train-
ing a similar discriminative model with LSSVM on the MIT
dataset takes about 10 hours. Discriminative training takes

much longer than EM because step 2 of CCCP involves a
large convex optimization problem. At test time our imple-
mentation can classify more than 180 images per second for
the MIT dataset. The running time for classification scales
linearly with the number of classes.

5.2. 15 Scene Dataset

The 15 Scene dataset contains 4485 images of 15 dif-
ferent scenes. It includes both indoor scenes (office, bed-
room, kitchen, living-room, store) and outdoor scenes (sub-
urb, coast, forest, highway, inside-city, mountain, open-
country, street, tall-building, industrial). The dataset does
not provide separate training and test sets, so we use 5 ran-
dom splits and compute the mean and standard deviation of
the classification performance across splits. In each split we
use 100 training images for each category.
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Category RBoW SBoW BoW DPM Category RBoW SBoW BoW DPM Category RBoW SBoW BoW DPM Category RBoW SBoW BoW DPM
bowling 85 85 55 35 dentaloffice 48 29 19 24 laundromat 36 41 9 45 airport ins. 20 15 15 5
florist 84 63 74 79 casino 47 47 63 32 stairscase 35 35 45 35 bedroom 19 14 0 5
ins. subway 81 62 57 62 gameroom 45 10 40 40 bathroom 33 22 6 50 hairsalon 19 24 5 43
cloister 80 85 55 90 prisoncell 45 40 35 40 grocerystore 33 29 38 19 locker room 19 14 14 19
inside bus 78 61 9 43 trainstation 45 70 35 35 subway 33 33 14 38 warehouse 19 19 10 24
greenhouse 75 80 80 65 auditorium 44 39 22 11 bookstore 30 20 30 45 artstudio 15 5 0 5
church ins. 74 79 53 63 bar 44 39 33 11 winecellar 29 29 29 14 toystore 14 5 0 9
classroom 72 56 44 67 clothingstore 44 33 11 33 child. room 28 28 11 6 lobby 10 10 5 30
buffet 65 60 55 75 garage 44 39 39 56 dining room 28 22 11 28 poolinside 10 5 5 0
concert hall 65 60 55 65 corridor 43 62 33 57 gym 28 6 0 22 restaurant 10 10 10 5
elevator 62 62 57 52 meetingroom 41 55 27 75 lab. wet 27 18 0 5 office 10 10 10 10
closet 61 56 56 44 videostore 41 18 23 18 rstrnt kitchen 26 26 0 4 bakery 5 5 0 11
comp. room 56 33 6 22 hospitalroom 40 30 5 5 mall 25 15 10 25 operat. room 5 0 32 5
movietheater 55 65 50 45 kindergarden 40 40 25 15 waitingroom 24 14 5 5 livingroom 5 5 10 20
nursery 55 50 75 60 museum 39 26 0 13 fastfoodrstrnt 24 6 35 12 deli 0 0 5 5
pantry 55 50 30 75 kitchen 38 43 14 29 tv studio 22 44 17 6 jewel. shop 0 9 0 5
library 50 45 40 0 studiomusic 37 37 11 32 shoeshop 21 32 21 16

Table 2. Performance of our reconfigurable model in comparison to the baseline methods on the MIT dataset. The last column shows
performance of DPM method from [9].

15 BoW SBoW RBoW
Scenes Init-rand Init-fixed Init-EM
Disc. 71.7± 0.2 77.7± 0.9 74.5± 0.4 78.5± 1.1 78.6± 0.7
Gen. 62.1± 2.4 74.3± 0.5 76.1± 0.5

Table 3. Average performance of different methods on the 15 scene
dataset. We used three different initialization methods for training
a discriminative RBoW model.

Table 3 compares the overall performance of RBoW to
the SBoW and BoW baselines. Again we see that careful
initialization is important for LSSVM training. Initializa-
tion of CCCP using a generative model trained with EM
leads to the best performance, while random initialization
leads to the worst performance.

6. Summary
Reconfigurable models represent images by a collection

of regions with specific content. For each scene category
we have a set of region models. The content of an image
is defined by latent variables that assign a region model to
each image region. The models defined here assume the
latent variables are independent conditional on the image
category. In the future we plan to model dependencies be-
tween the latent variables. For example in an outdoor scene
we should have at most one region with a sun, and regions
with water should never be above regions with sky. Our cur-
rent models rely on a pre-defined partition of an image into
a grid of regions. We would like to relax this assumption so
that we can better capture the content of an image.

Latent variable models lead to challenging training prob-
lems, especially in the discriminative setting. Our exper-
iments demonstrate that EM can be used as an effective
method for initializing LSSVM training.
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