
Sparse Kernel Approximations for Efficient Classification and Detection

Andrea Vedaldi Andrew Zisserman

Dept. of Engineering Science, University of Oxford, UK

{vedaldi,az}@robots.ox.ac.uk

Abstract

Efficient learning with non-linear kernels is often based

on extracting features from the data that “linearise” the

kernel. While most constructions aim at obtaining low-

dimensional and dense features, in this work we explore

high-dimensional and sparse ones. We give a method to

compute sparse features for arbitrary kernels, re-deriving

as a special case a popular map for the intersection kernel

and extending it to arbitrary additive kernels. We show that

bundle optimisation methods can handle efficiently these

sparse features in learning. As an application, we show that

product quantisation can be interpreted as a sparse feature

encoding, and use this to significantly accelerate learning

with this technique. We demonstrate these ideas on image

classification with Fisher kernels and object detection with

deformable part models on the challenging PASCAL VOC

data, obtaining five to ten-fold speed-ups as well as reduc-

ing memory use by an order of magnitude.

1. Introduction

Recent advances in large scale convex optimisation have

extended the applicability of linear Support Vector Ma-

chines (SVMs) to very large datasets as well as complex

regression problem with structured outputs [9, 21, 22, 25].

However, there exist no known general method that can

achieve a similar efficiency when working directly with

non-linear kernels, and these are often necessary to achieve

optimal accuracy. This explains the increasing interest in

techniques that can efficiently reduce non-linear kernels to

linear ones [12, 14, 16–19, 23, 29]. These techniques have

been shown to obtain state-of-the-art performance espe-

cially in the large scale setting [2, 16].

In more detail, the efficiency of linear SVMs depends

on their simple form f(x;w) = 〈w,x〉 as the inner prod-

uct of an input data vector x ∈ R
d and a parameter vec-

tor w ∈ R
d. By contrast, non-linear SVMs f(x;α) =∑n

i=1
αiK(xi,x) are expanded in term of evaluations of a

non-linear kernel function K(x,x′) and are much slower

to compute as well as train. However, since all kernels

K(x,y) can be represented as inner products up to a trans-

formation Ψ(x) of the data, i.e. K(x,y) = 〈Ψ(x),Ψ(y)〉,
in principle one can reduce any non-linear SVM to a much

faster linear one. Unfortunately, this usually requires fea-

tures Ψ(x) that are infinite dimensional and/or difficult

to compute. This motivates the interest in feature maps

Ψ̂(x) ∈ R
D that approximate a given kernel, i.e. K(x,y) ≈

〈Ψ̂(x), Ψ̂(y)〉, while being finite dimensional and computa-

tionally cheap.

In order to represent the non-linearity, the dimension D
of the feature Ψ̂(x) is usually larger than the dimension d
of the input data x. While most authors have focused on

reducing D (see Sect. 6), a large dimensionality may not

be an issue provided that the features are sparse [14]. The

questions then become: which kernels can be represented

by sparse features? How to compute them? And what ad-

vantages or disadvantages do these representations offer?

Our first contribution is to derive a general and simple

construction for sparse approximate features Ψ̂(x) for any

kernel K(x,x′) (Sect. 2.1). The theory relates sparse fea-

tures and existing dense ones geometrically (Sect. 6). It also

includes as a special case the intersection kernel map of

Maji and Berg [14] and generalises it to arbitrary additive

kernels (Sect. 2.1).

Our second contribution is a fast learning method for the

new sparse representations. In contrast to their dense coun-

terparts, the sparse features approximate a kernel by a non-

diagonal inner product (Sect. 2.1). We introduce a bundle

optimisation method [22] that learns efficiently with sparse

data and non-diagonal regularisers (Sect. 4). This algo-

rithm is the key in leveraging the sparsity of the features not

just as a way of using less memory, but also as a way to

improve learning speed.

Our third contribution is to apply the theory to product

quantisation (PQ) [8]. PQ is a data compression method

for large scale learning that was used, for example, by

the best entry in the 2011 edition of the ImageNet chal-

lenge [2, 7, 19]. We show that PQ can be interpreted as a

sparse feature map (Sect. 3) and that this allows an algo-

rithm to learn on the compressed data directly, with a five to

ten fold speedup on the standard approach (Sect. 5.1) in ad-

978-1-4673-1228-8/12/$31.00 ©2012 IEEE 2320

dition to the usual substantial reduction in storage. We also

apply PQ for the first time to deformable part models [6],

demonstrating similar benefits (Sect. 5.2).

2. Kernels and approximate feature maps

Learning a linear SVM amounts to fitting a linear func-

tion f(x;w) = 〈w,x〉 to labels y1, . . . , yn ∈ {−1,+1} at

points x1, . . . ,xn ∈ R
d, i.e. finding a parameter vector w

such that yi ≈ f(xi;w) for all i. This is usually formulated

as the convex optimisation problem

min
w∈Rd

γ

2
‖w‖2 + 1

n

n∑

i=1

Li(〈w,xi〉) (1)

whereLi(z) is the hinge loss max{0, 1−yiz}. Solvers such

as [9,10,21,22] can be used to optimise (1) very quickly, in

time linear in the data size n and dimension d.

Linear SVMs are fast but not very expressive. For-

tunately, the space of representable functions f(x;w) =
〈w,Ψ(x)〉 can be easily extended by encoding the data by

a non-linear map Ψ(x) ∈ R
D. This usually entails aug-

menting the data dimensionality, i.e. D > d, and therefore

increasing by a factor D/d the space and time complexity

of the linear SVM. Using a sparse encoding may help in

reducing this cost.

Speed, however, is not the only concern in the design of

a good encoding. Arbitrarily increasing the class of rep-

resentable functions f(x;w) may in fact reduce the per-

formance on the test data due to over-fitting. Fitting the

data must be traded off with the regularity of the func-

tion f(x;w), as measured by the term ‖w‖2 in the SVM

objective (1). The meaning of ‖w‖2 in term of statis-

tical properties of the function f(x;w) is determined by

Ψ(x) itself, or, more fundamentally, by the kernel function

K(x,x′) = 〈Ψ(x),Ψ(x′)〉. In fact, any two encodings that

generate the same kernel learn the same functions. More-

over, all PD functions K(x,x′) are the inner product 〈·, ·〉H
of an encoding [20], or feature map, Ψ : X → H in a suit-

able inner-product spaceH, called feature space (Fig. 1a):

K(x,x′) = 〈Ψ(x),Ψ(x′)〉H. (2)

Since a kernel directly captures the statistical properties of

the SVM, it is often desirable to derive an encoding from a

given kernel rather than designing it directly. While there

exist general methods for constructing a feature space H
for any kernel [20, pag. 33], in calculations one needs to

express the features as finite vectors of coordinates, which

is harder to obtain, and even impossible if H is infinite di-

mensional. This motivates looking for approximate but fi-

nite dimensional features, which is the subject of the next

section.

2.1. Approximate feature maps

The goal is to approximate a given kernel K by a fea-

ture map Ψ̂ : X → R
D that is finite dimensional, possibly

sparse, and efficient to compute. Approximating the ker-

nel means that K̂(x,x′) = 〈Ψ̂(x), Ψ̂(x′)〉 must be close, in

some sense, to K(x,x′). We give first a standard construc-

tion for dense approximate features and then we modify it

to yield sparse ones. It may be helpful to refer to Fig. 1 for

a geometric interpretation.

Dense approximations. A common feature construction

technique is to approximate the exact feature space H of

the kernel K by a subspace H′ ⊂ H that is (i) finite di-

mensional and (ii) has a computable coordinate represen-

tation. A simple way to do so is to define H′ as the span

of D feature vectors Ψ(zi) of representative data points

z1, . . . , zD ∈ X [23, 29] (Fig. 1b), i.e.:

H′ =

{
D∑

i=1

Ψ(zi)Φi : Φ ∈ R
D

}
.

Then, for each feature Ψ(x) ∈ H, one defines an approx-

imation Ψ̂(x) ∈ H′. If the goal is to preserve the kernel

between any two points x,x′ ∈ X , the Cauchy-Schwartz

bound

(〈Ψ̂(x),Ψ(x′)〉H − 〈Ψ(x),Ψ(x′)〉H)2

≤ ‖Ψ̂(x)−Ψ(x)‖2H · ‖Ψ(x′)‖2H, (3)

suggests to define Ψ̂(x) as the minimiser the norm of the

residual ‖Ψ̂(x) − Ψ(x)‖H. This is the same as defining

Ψ̂(x) to be the orthogonal projection of the exact feature

vector Ψ(x) on the subspaceH′.

The coordinates Φ(x) of the approximation Ψ̂(x) can be

computed by minimising the residual analytically:

Φ(x) = argmin
Φ∈RD

∥∥∥∥∥Ψ(x)−
D∑

i=1

Ψ(zi)Φi

∥∥∥∥∥

2

H

. (4)

Let KXX′ denote the Gram (kernel) matrix calculated at

points X = (x1, . . . ,xm) and X ′ = (x′
1, . . . ,x

′
p), i.e.

Kij = K(xi,x
′
j). Moreover, let Z = (z1, . . . , zD) be

the sequence of the D representative points. Rewriting the

residual (4) in matrix form as Kxx− 2KxZΦ+Φ⊤KZZΦ,

differentiating w.r.t. Φ, and equating to zero yields the co-

ordinate Φ(x) of point x

Φ(x) = K†
ZZKZx , (5)

where † denotes the pseudoinverse (as the ker-

nel matrix may not be full rank). The functions

Φi : X → R are called coordinate functions.

2321

H
Ψ(x)

(a) exact feature space

Φ1(x)

Φ2(x)

Ψ(x)

bΨ(x)

(d) Nyström's approx.

Ψ(x)

bΨ(x)

(b) dense approx.

Ψ(x)

bΨ(x)

Ψ(z1)

(c) sparse approx.

Ψ(z1)
Ψ(z2)

Ψ(zD)

H0 H0

H0

Figure 1: Geometric interpretation. (a) The exact feature space, reconstructing the kernel with no approximation. A distri-

bution p(x) on the input data maps to a corresponding density in this space (ellipsoid). (b) The dense feature approximation

is obtained by projecting the exact feature vector Ψ(x) to the span H′ of representatives Ψ(z1), . . . ,Ψ(zD). (c) The sparse

feature approximation uses a different subset Z̄ of representatives for each encoded point x (in this case Z̄ = {z1}). (d)

Nyström’s approximation (Sect. 6) definesH′ to be the PCA subspace of the the data distribution (a); the coordinates Φ1(x),
Φ2(x) are expressed relative to an orthonormal PCA basis obtained from an eigenvalue problem.

The approximated feature vector is then given by

Ψ̂(x) =
∑D

i=1
Ψ(zi)Φi(x), which generates the ker-

nel 〈Ψ̂(x), Ψ̂(x′)〉H =
∑D

i,j=1
Φi(x)K(zi, zi)Φj(x

′),
i.e.:

K̂(x,x′) = Φ(x)⊤KZZΦ(x
′) . (6)

This expresses the approximated kernel K̂ as the non-

diagonal inner product in R
D given by the PD matrix KZZ .

An equivalent diagonal representation can be obtained by a

change of coordinates. For example, let KZZ = V ⊤Λ2V
be the eigen-decomposition of the kernel matrix and define

Φ̄(x) = ΛV Φ(x). Then K̂(x,x′) = Φ̄(x)⊤Φ̄(x′).

Both the coordinate vectors Φ(x) and Φ̄(x) are dense in

general because the feature vectors Ψ(x) are approximated

as combinations of all the representative points Z.

Sparse approximations. The key idea to obtain a sparse

feature map is to note that each given feature vector Ψ(x)
can often be approximated well by a small subset of the

D representative points z1, . . . , zD, for example its neigh-

bours (Fig. 1c). Formally, one can restrict the approxima-

tion (4) to use only P < D representative points by solving

Φ(x;P) = min
‖Φ‖0≤P

∥∥∥∥∥Ψ(x)−
D∑

i=1

Ψ(zi)Φi

∥∥∥∥∥

2

H

. (7)

The constraint ‖Φ‖0 ≤ P allows at most P representative

points Z̄ ⊂ Z to have non-zero coefficients. These coef-

ficients are still given by the formula (5) by replacing Z
with Z̄. Denoting by Φ(x; Z̄) the resulting sparse coordi-

nate vector, the problem (7) is reduced to finding the best

subset Z̄x :

Z̄x = argmin
Z̄⊂Z,|Z̄|≤P

∥∥∥∥∥Ψ(x)−
D∑

i=1

Ψ(zi)Φi(x; Z̄)

∥∥∥∥∥

2

H

.

This is the feature space equivalent of the sparse encod-

ing/reconstruction problem, and as such can be approxi-

mately solved by popular techniques such as matching pur-

suit, orthogonal matching pursuit, and Lasso. In certain ap-

plications it is also possible to specify Z̄x directly, as in the

example below. The idea of choosing the representative as

a function of x can be found in the context of Gaussian pro-

cesses in [24].

While the vectors Φ(x;P) are sparse by construction,

the kernel approximation is still given by (6), which in-

volves the multiplication by the full matrix KZZ . Switching

to the diagonal representation Φ̄(x) = ΛV Φ(x;P) as be-

fore eliminates KZZ but results in a dense coordinate vec-

tor. Therefore the key to efficient learning with sparse fea-

tures is finding an algorithm that can work efficiently with

sparse data and a non-diagonal inner product.

Example: sparse maps for additive kernels. An ad-

ditive kernel K(x,x′) on R
d decomposes as a sum∑d

j=1
k(xj , x

′
j) of 1D kernels k(x, x′). Examples include

the χ2 kernel k(x, x′) = 2xx′/(x + x′), the Hellinger’s

kernel
√
xx′, and the intersection kernel min{x, x′}, which

have been shown to perform particularly well for histogram

data [30] (bag-of-visual visual words, spatial histograms,

colour histograms, HOG, etc.).

Since a feature for the additive kernel K(x,x′) can be

obtained by stacking the features for each of the compo-

nents k(xi, x
′
i), it suffices to derive the latter. To construct

a sparse feature Φ(x) for the 1D kernel k(x, x′) one can

2322

(i) sample D representative points zi uniformly on R and

(ii) project each point x ∈ R to the two adjacent represen-

tatives Z̄ = {zi, zi+1} such that zi ≤ x < zi+1. Con-

sider for example the intersection kernel min{x, x′} and,

without loss of generality, the set of representative points

Z = {0, 1, 2, . . . , D − 1}. Evaluating Φ(x) selects the two

points Z̄ = {i, i+ 1}, i = ⌊x⌋ and sets the respective coef-

ficients in Φ(x) using (5), i.e.

K†
Z̄Z̄

KZ̄x =

[
i i
i i+ 1

]−1 [
i
x

]
=

[
i+ 1− x
x− i

]

(8)

This equation linearly distributes x to zi and zi+1. The re-

sulting feature Φ(x) is identical to the sparse intersection

kernel map of [14], which can therefore be interpreted as

a sparse projection method, optimal in the sense of (4). In

addition to allowing for many variants (e.g. using more than

two representative points), the theory extends this construc-

tion to arbitrary additive kernels, including χ2, for which we

give the first sparse feature approximation:

K†
Z̄Z̄

KZ̄x =
2(1 + 2i)x

(i+ x)(1 + i+ x)

[
i+ 1− x
x− 1

]
. (9)

The next section investigates a completely different appli-

cation of the theory, namely product quantisation.

3. Product quantisation as a sparse feature

This section applies the general theory of Sect. 2.1 to

Product Quantisation (PQ) [8, 19]. Consider a dataset of

high-dimensional descriptors xi ∈ R
d (e.g. spatial his-

tograms [11], Fisher vectors [19]). Storing one descriptor

xi requires bd bits, where b is the average number of bits

per component, 32 if IEEE single precision math is used.

The latter is just a particular way of encoding independently

each descriptor component in space of 232 elements. PQ

encodes the data more efficiently by considering groups of

components instead. In detail, PQ (i) partitions the vector xi

into M blocks of G = d/M components, (ii) quantises each

block into a codebook of 2bG elements by using k-means on

sample data, and (iii) stores for each block just the index of

the corresponding codeword, for a total of bGM = bd bits.

PQ reduces the memory required to store the dataset by

a factor 32/b. In practice, this factor can be an order of

magnitude or more [19], making the technique very useful

for large-scale learning, where the uncompressed image de-

scriptors can occupy terabytes. In particular, if compression

allows for the entire data to be stored in central memory,

this dramatically accelerates learning compared to access-

ing data from disk. According to [19], however, the PQ

compression offers no intrinsic speed benefit because the

data must be uncompressed on the fly in the solver, as the

latter must still operate on the original vectors xi. We show

here that, by interpreting PQ as a sparse feature encoding,

it is instead possible to learn directly on the PQ compressed

data, achieving a significant speed-up in combination with

appropriate solvers (Sect. 4).

In particular, consider learning a linear SVM (1) on PQ

compressed data. Assume for simplicity that there is only

one PQ block (M = 1), as the extension to M > 1 is im-

mediate by stacking. PQ approximates each data point x by

the closest element zi in a codebook Z = (z1, . . . , zD) ∈
R

G×D, where D = 2bG is the number of codewords. This

is the same approximation given by the sparse feature con-

struction (7) by imposing that the feature Φ(x) has exactly

one non-zero component (P = 1) and that the latter is equal

to 1. The latter condition ensures that only the index of

the non-zero component must be stored and not its value as

well.

The sparse PQ feature map Φ(x) in combination with

the inner product KZZ results in the approximated kernel

(Sect. 2.1)

K̂(x,x′) = Φ(x)⊤KZZΦ(x) = (Φ(x)Z)⊤(ZΦ(x′))

where ZΦ(x) returns the codeword zi that PQ uses to

approximate x. Therefore decompressing the data in the

solver as in [19] results in exactly the same approximate

kernel as the PQ features, and the two learning methods are

equivalent (Sect. 2). Handling non-linear (e.g. additive) ker-

nels is similar, except that PQ must be modified to use the

metric induced by the kernel, rather than the Euclidean one.

The next section introduces a solver that can accelerate

learning by using the PQ sparse features.

4. Efficient learning with bundle methods

Modifying the linear SVM learning problem (1) to use

the sparse feature Φ(x) of Sect. 2.1 and the corresponding

non-diagonal inner product 〈·, ·〉KZZ
yields the objective

E(w) =
λ

2
w⊤KZZw +

1

n

n∑

i=1

Li(w
⊤KZZΦ(xi)). (10)

To exploit the sparsity of the data Φ(x) in the calculation

of the loss (second term), one can lump together the dense

factors in v = KZZw and consider the equivalent objective

E(v) =
λ

2
v⊤K†

ZZv +
1

n

n∑

i=1

Li(v
⊤Φ(xi)). (11)

To handle efficiently non-diagonal regulariser K†
ZZ as well

as the the sparse data we propose to modify the cutting-

plane/bundle solver of [9, 22]. This starts by collecting all

the individual loss terms in (11) into a single loss function

L(v⊤Φ(X)) =
1

n

n∑

i=1

Li(v
⊤Φ(xi))

2323

where Φ(X) = [Φ(x1), . . . ,Φ(xn)], and then solving the

convex optimisation problem

min
v∈RD,ξ∈R

λ

2
v⊤K†

ZZv + ξ, ξ ≥ L(v⊤Φ(X)). (12)

This is called one-slack formulation [9] because ξ is a single

scalar slack variable capturing the loss averaged over all ex-

ample data points. The idea is then to construct a sequence

of approximated solutions v1, . . . ,vt, . . . corresponding to

a progressively more refined piecewise linear lower approx-

imation of the loss function

max
i=1,...,t

bt − 〈at,v〉 ≤ L(v⊤Φ(X)),

where (at, bt) are the parameters of the plane added at iter-

ation t. Each plane is tangent to the loss at L(v⊤Φ(X)) at

vt:

at = −Φ(X)∇L(v⊤
t Φ(X)), bt = L(v⊤

t Φ(X))+v⊤
t at.
(13)

Note that the planes are under-estimators of the loss due to

the convexity of the latter; if the loss is not differentiable,

then one simply takes a sub-gradient instead of the gradient

in (13).

Given the current solution vt, the next one vt+1 is found

as the minimiser of the convex problem

min
v∈RD,ξ∈R

λ

2
v⊤K†

ZZv + ξ,

ξ ≥ bi − 〈ai,v〉, i = 1, 2, . . . , t.

(14)

The dual of this problem is given by

max
α∈R

t

+
,‖α‖1=1

b⊤
α− 1

2λ
α

⊤(A⊤KZZA)α (15)

where α are the dual variables, A = [a1, . . . ,at], b =
[b1, . . . , bt]

⊤ and v = KZZα/λ at the optimum (strong

duality condition). The size of the dual problem is equal to

the iteration index t and unrelated to the number of training

samples n. Since typically t ≪ n, this explains the effi-

ciency of the method. Note also that the term A⊤KZZA
involves multiplying by the kernel matrix KZZ instead of

the pseudo-inverse K†
ZZ that appears in the primal (11).

Assuming that the algorithm converges at t≪ n, as typ-

ical, the cost of each iteration is O(Pn +D2), where P is

the number of non-zero components in the data. O(Pn) op-

erations are required to generate the new plane (at, bt) by

scanning the dataset, and O(D2) operations are required to

compute the product ãt = KZZat.

By comparison, using the equivalent dense features Φ̄(x)
with diagonal regulariser (Sect. 2.1) requires O(Dn) oper-

ations. Hence the sparse features use D/P times less mem-

ory and are faster provided that Pn+D2 < Dn. While the

latter is always true for sufficiently large n (since P ≪ D
by construction), we see next how this complexity can be

significantly reduced by exploiting the structure of KZZ .

Exploiting the structure of KZZ . The bottleneck in the

bundle algorithm is the multiplication KZZai. For exam-

ple, for PQ with d/G blocks and D = 2bG codewords

per block, this multiplication requires O(dD2/G) oper-

ations (for all the blocks). Fortunately, this calculation

can be significantly accelerated by using the factorisation

KZZai = Z⊤(Zai), as this requires only O(dD) opera-

tions. With this improvement, using the sparse PQ features

with the bundle solver (which we call delayed expansion)

uses a fraction

d2bG + dn/G

dn
=

1

G
+

2bG

n
(16)

of the operations that would be required by expanding

points on the fly (immediate expansion) as in [19], or by

using directly dense features. Since the last term becomes

rapidly negligible for a large number of data points n, this

algorithm is roughly G times faster, where G is the size of

the PQ blocks.

As a second example, consider the intersection kernel

approximation (8). In this case the kernel matrix KZZ has

the form

KZZ = V ⊤V, V =

0 1 1 . . . 1
0 0 1 . . . 1

. . .
0 0 0 . . . 1

 . (17)

Since the products V v and V ⊤(V v) are cumulative sums,

these can be computed in time O(D) rather than O(D2).

Comparison with stochastic gradient descent. Stochas-

tic gradient methods such as PEGASOS [21] are some-

times preferred to bundle methods because they offer simi-

lar convergence speed but simpler implementation. For ex-

ample, [14] apply PEGASOS to the optimisation of (11),

which results in the simple update equation

v← v − ηt

(
λK†

ZZv + δiΦ(xi)
)

(18)

where ηt is the learning rate and δi = L̇i(v
⊤Φ(xi)) is the

derivative of the loss. However, since K†
ZZ is full, the SGD

update is not sparse. While this can be alleviated by op-

timisations such as the use of mini-batches [21], it is still

a significant bottleneck, especially if the multiplication by

KZZ requires O(D2) operations as in the general case.

To summarise, the bundle solver performs a dense op-

eration only after each complete pass over the data, and

therefore seems more suitable to handle sparse represen-

2324

tations with non-isotropic regularisers.1 The next section

demonstrates applications to the efficient learning of image

classifiers and object detectors.

5. Experiments

5.1. PQ for image classification

This section evaluates the PQ compression technique on

the PASCAL VOC 2007 classification challenge [3]. The

task is to classify twenty object categories and the perfor-

mance is measured as mean Average Precision (mAP). Each

image is represented by the Fisher encoding xi obtained as

described in [19]: first, dense SIFT features are extracted

every three pixels (using the vl_phow function of [26])

and compressed from dimension 128 to 80 by using PCA;

then a Gaussian mixture model with 256 components is fit-

ted to sample PCA-SIFT descriptors and used to generate

a Fisher encoding of the image for 3 × 1 spatial subdivi-

sions [11, 19], for a total of 2 × 256 × 80 × 3 = 40,960
dimensions. The dataset totals about 5,000 training images

and occupies about 2GB of memory.

The baseline system works as well as [19] (about 59%

mAP) and can be improved slightly by increasing the num-

ber of spatial subdivisions (up to about 62% in our experi-

ments). This is a very solid baseline which, combined with

PQ, let [19] top the ImageNet classification challenge in

2011 [2, 7]. In fact, PQ allows for a tenfold reduction of

memory usage (from 2GB to about 100MB in our case,

see Fig. 2) with minimal impact on the classification perfor-

mance (less than 1% mAP).

Our sparse PQ features (delayed expansion) further im-

prove this excellent system by a 5–10 fold speedup in

training, compared to decompressing the data on the fly

(immediate expansion) [19]. As predicted by (16), the gain

is larger for larger block sizes G, which also results in bet-

ter accuracy. As the number of codewords 2bG increases,

the term 2bG/n starts to dominate and the speedup becomes

smaller (16). This indicates that our technique is particu-

larly useful for a very large number n of training samples.

5.2. PQ for object detection

This section proposes a new application area of PQ,

namely deformable parts models (DPM) [6] for object cat-

egory detection. A DPM is a collection of spring-connected

parts whose appearance is described by HOG [1] templates.

Matching a part to an image location requires multiplying

the part template by the HOG descriptor extracted at that

location. The latter is a collection of w×h HOG cells, each

1A second problem not discussed in [14] is the choice of a learning rate.

While ηt = 1/(λt) is optimal for a SVM with isotropic regulariser λ [21]

(which is also the difference between PEGASOS and standard SGD), han-

dling (11) is trickier. For example, K†
ZZ

for the intersection kernel (17)

does not have full rank, meaning that the objective function is not even

strongly convex. In practice, we found this tuning to be delicate.

of which is a d-dimensional feature vector (where d = 32
in [6]), so this costs O(whd) operations. Detecting with the

model requires matching all parts at all locations and scales,

a costly multi-dimensional convolution operation, and is the

main bottleneck in testing [15]. Learning a DPM is even

more expensive, as this entails testing multiple times on the

training data in order to identify the negative support vec-

tors (mining of hard negatives) [6, 27].

PQ can be used to encode HOG cells with a sin-

gle codeword index (Sect. 3). To test this idea, we re-

implemented [6] from scratch, using a bundle solver rather

than the original SGD method [6]. This solver has the ad-

vantages discussed above (Sect. 5.1) and was found to be as

fast as SGD in the standard (uncompressed) case. The code

is run on a machine with twelve cores, parallelising opera-

tions such as mining for the hard negative examples. Other

refinements from [6], such as bounding box regression and

contextual rescoring, are not used in our experiments.

Space saving. Space is used to store the hard negative ex-

amples (about 1GB) and the pre-computed HOG features

for all training images (about 14GB). For D = 256 and

D = 512 PQ codewords a modest drop in detection accu-

racy (about 3% mAP) was observed. However, encoding

each HOG cell with logD bits rather the 32 × 32 = 1,024
required by IEEE single precision floats gives a 113 fold

reduction of storage for D = 512. Compared to using

the common trick of remapping the feature components to

bytes, as done in [13] and in Fig. 3 for the baseline re-

sults, PQ still results in a 28-fold saving. In order to further

simplify our implementation, we simply used 32 bits to en-

code each HOG codeword index (for D = 512 this wastes

32− 9 = 23 bits). Even so, the observed storage reduction

is more than tenfold, from a dozen GBs to less than one.

Time saving. Testing can be up to d = 32 times faster

with PQ because convolving a part filter requires now just

wh operations rather than whd (because each HOG cell is

represented by a P = 1 sparse vector). Yet each of the

wh operations involves a non-local memory access. More-

over, our sparse convolution code is not as optimised as the

routine that we use for the dense case (which uses a fast

BLAS implementation). Overall, the sparse convolution is

“just” twice as fast than the standard method (Fig. 3). This

speedup is orthogonal to others such as [4, 15] and can be

combined with them. Since testing is an integral part of

training, and in fact is its bottleneck, this speedup transfers

to training too. Finally, the bundle solver benefits from us-

ing PQ, as indicated by (16), and is three times faster than

using the uncompressed data.

6. Related methods

This section summarises existing methods for the con-

struction of approximate feature maps for kernels.

2325

50

52

54

56

58

60

Bit rate (compression factor)

Accuracy (AP %)

0
.1

2
 (

2
5
6
)

0
.1

7
 (

1
9
2
)

0
.2

5
 (

1
2
8
)

0
.3

3
 (

9
6
)

0
.5

 (
6
4
)

0
.6

2
 (

5
1
)

0
.7

5
 (

4
3
)

1
 (

3
2
)

1
.2

 (
2
6
)

1
.5

 (
2
1
)

2
 (

1
6
)

3
 (

1
1
)

4
 (

8
)

5
 (

6
)

6
 (

5
)

plain

pq−immediate (G = 1)

pq−immediate (G = 4)

pq−immediate (G = 6)

pq−immediate (G = 8)

pq−delayed (G = 1)

pq−delayed (G = 4)

pq−delayed (G = 6)

pq−delayed (G = 8)

10MB

50MB

100MB

200MB

500MB

1GB

2GB

Bit rate (compression factor)

Memory

0
.1

2
 (

2
5
6
)

0
.1

7
 (

1
9
2
)

0
.2

5
 (

1
2
8
)

0
.3

3
 (

9
6
)

0
.5

 (
6
4
)

0
.6

2
 (

5
1
)

0
.7

5
 (

4
3
)

1
 (

3
2
)

1
.2

 (
2
6
)

1
.5

 (
2
1
)

2
 (

1
6
)

3
 (

1
1
)

4
 (

8
)

5
 (

6
)

6
 (

5
) 10

1

10
2

10
3

10
4

Bit rate (compression factor)

Time (s)

0
.1

2
 (

2
5
6
)

0
.1

7
 (

1
9
2
)

0
.2

5
 (

1
2
8
)

0
.3

3
 (

9
6
)

0
.5

 (
6
4
)

0
.6

2
 (

5
1
)

0
.7

5
 (

4
3
)

1
 (

3
2
)

1
.2

 (
2
6
)

1
.5

 (
2
1
)

2
 (

1
6
)

3
 (

1
1
)

4
 (

8
)

5
 (

6
)

6
 (

5
)

Figure 2: PQ for classification. Plain linear SVM (heavy black horizontal line), PQ SVM with immediate expansion (solid

lines, [19]) and our PQ SVM with delayed expansion (dashed lines, Sect. 3). From the left to right: mAP classification

accuracy on PASCAL VOC 2007, memory, and learning time. PQ allows for a substantial compression (> 40 times) with

minimal accuracy loss (1% mAP). Delayed expansion results in a significant speed-up (up to 10 times) compared to the

usual immediate expansion method [19]. In principle, delayed expansion is G times faster than the plain (uncompressed)

SVM too, but this is not observed due to implementation details (the standard SVM learning code uses an optimised BLAS

library, while our delayed expansion code does not). Crucially, however, the plain solver cannot be used efficiently if the

uncompressed data does not fit in central memory [19].

aerop bicyc bird boat bottl bus car cat chair cow dinin dog horse motor perso potte sheep sofa train tvmon mean

AP [%] 30.6 58.1 10.0 12.7 21.2 52.1 55.0 20.1 19.4 22.1 20.5 11.3 56.4 43.6 38.8 10.8 14.8 25.6 43.8 43.8 30.5

neg. mining [min] 173 173 96 169 171 174 143 127 115 160 156 96 161 163 42 136 172 152 176 168 146

solver [min] 6.1 6.2 12.5 6.7 6.8 5.4 8.9 11.2 13.9 7.2 8.3 14.0 7.1 9.1 17.9 9.8 6.3 9.5 6.5 8.2 9.1

neg. mined [GB] 1.02 1.09 1.27 1.05 1.06 1.05 1.05 1.10 1.15 1.06 1.10 1.11 1.13 1.10 1.19 1.04 1.03 1.13 1.11 1.09 1.10

data [GB] 14.0 13.6 15.0 13.2 12.5 13.6 17.8 15.8 14.5 13.1 13.6 16.6 15.1 14.3 34.6 13.3 13.1 13.7 14.7 12.6 15.2

AP [%] 27.9 55.2 9.5 10.4 16.4 47.6 52.0 16.0 13.5 18.6 20.7 10.7 53.4 39.7 37.3 10.4 12.7 19.7 41.7 40.9 27.7

neg. mining [min] 97 100 68 75 89 103 84 63 63 75 88 64 90 93 28 58 90 82 104 94 80

solver [min] 2.4 2.1 3.9 2.1 2.8 1.8 2.3 4.2 4.8 2.7 2.7 4.8 2.6 3.9 4.8 3.2 2.0 3.1 2.3 2.3 3.0

neg. mined [GB] 0.04 0.04 0.05 0.04 0.04 0.04 0.04 0.05 0.05 0.04 0.05 0.05 0.04 0.04 0.05 0.04 0.04 0.04 0.04 0.04 0.04

data [GB] 0.9 0.9 1.0 0.9 0.8 0.9 1.2 1.1 1.0 0.9 0.9 1.1 1.0 1.0 2.4 0.9 0.9 0.9 1.0 0.8 1.0

Figure 3: PQ for detection. Space and time complexity of learning deformable parts model [5] on the PASCAL VOC

2007 data for the twenty classes: the detector accuracy as AP on the test data, the time required to mine the hard negative

examples, the time spent in the bundle solver, the space required to store the hard negatives, and the space required to stored

the pre-extracted HOG features for the training data. Top: standard method. Bottom: sparse features from PQ.

Nyström’s (PCA) approximations. Most feature construc-

tions are variants of Nyström’s approximation [29], whose

geometry is also related to the one of our sparse features

(Fig. 1). Given a data distribution p(x), this approxima-

tion seeks directly the feature map Φ : X → R
D that

minimises the average reconstruction error of the kernel

K. This is given by projecting the exact feature Ψ(x)
on the top D principal components of the weighted kernel

K(x,x′)p(x)p(x′) [29] (Fig. 1d).The corresponding coor-

dinate functions (Sect. 2.1) Φi(x) = κiui(x) are propor-

tional to the eigenfunctions ui(x) of the kernel with the D
largest eigenvalues κ2

i [29].

Nyström’s construction is often considered a theoretical

tool as the density p(x) is not known analytically. An ex-

ception is [28] that, by assuming a simple form of p(x), use

this construction to derive closed form features for kernels

such as χ2 and intersection.

Alternatively, the distribution p(x) can be approximated

empirically by the training samples X = (x1, . . . ,xn)
(Fig. 1.c). Finding the kernel eigenfunctions reduces to

a n × n discrete eigenproblem, but encoding a new point

x is quite slow as it requires computing the projections

K(x,x1), . . . ,K(x,xn). This approximation is equivalent

to computing the dense feature map (5) with representative

points Z = X followed by PCA. It can be accelerated sig-

nificantly for additive kernels [16] because in this case the

coordinate functions have a scalar argument and can be pre-

computed.

Sampling. Other popular techniques are based on sampling

ideas [18], but the resulting features can be high dimen-

sional and slow to compute in practice (an exception are

once more the additive kernels [12]).

2326

7. Summary

We have presented a general method to construct sparse

approximate feature maps for arbitrary kernels, relating

it to dense constructions based on Nyström’s approxima-

tion. These representations are based on non-diagonal inner

products which can be handled efficiently by bundle optimi-

sation methods. We proposed two applications of the the-

ory: the encoding of additive kernels and accelerating learn-

ing with product quantisation. The latter technique is able

to reduce significantly the memory needed for large scale

learning in classification and detection as well as accelerat-

ing optimisation and inference, with only a minor impact on

accuracy.

Acknowledgments. This work was supported by the Ox-

ford Violette and Samuel Glasstone Research Fellowships

in Science and the ERC grant VisRec no. 228180.

References

[1] N. Dalal and B. Triggs. Histograms of oriented gradi-

ents for human detection. In Proc. CVPR, 2005.

[2] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and

L. Fei-Fei. ImageNet: A Large-Scale Hierarchical Im-

age Database. In Proc. CVPR, 2009.

[3] M. Everingham, A. Zisserman, C. Williams, and L. V.

Gool. The PASCAL visual obiect classes challenge

2007 (VOC2007) results. Technical report, Pascal

Challenge, 2007.

[4] P. F. Felzenszwalb, R. Girshick, and D. McAllester.

Cascade object detection with deformable part mod-

els. In Proc. CVPR, 2010.

[5] P. F. Felzenszwalb, R. B. Grishick, D. McAllester, and

D. Ramanan. Object detection with discriminatively

trained part based models. PAMI, 2009.

[6] P. F. Felzenszwalb, D. McAllester, and D. Ramanan. A

discriminatively trained, multiscale, deformable part

model. In Proc. CVPR, 2008.

[7] http://www.image net.org/challenges/LSVRC/2011/results.

[8] H. Jégou, M. Douze, and C. Schmid. Product quanti-

zation for nearest neighbor search. PAMI, 33(1), 2011.

[9] T. Joachims. Training linear SVMs in linear time. In

Proc. KDD, 2006.

[10] T. Joachims, T. Finley, and C.-N. J. Yu. Cutting-plane

training of structural SVMs. Machine Learning, 77(1),

2009.

[11] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bag

of features: Spatial pyramid matching for recognizing

natural scene categories. In Proc. CVPR, 2006.

[12] F. Li, C. Ionescu, and C. Sminchisescu. Random

fourier approximations for skewed multiplicative his-

togram kernels. In Proc. DAGM, 2010.

[13] D. G. Lowe. Object recognition from local scale-

invariant features. In Proc. ICCV, 1999.

[14] S. Maji and A. C. Berg. Max-margin additive classi-

fiers for detection. In Proc. ICCV, 2009.

[15] M. Pedersoli, A. Vedaldi, and J. Gonzàlez. A coarse-

to-fine approach for fast deformable object detection.

In Proc. CVPR, 2011.

[16] F. Perronnin, J. Sánchez, and Y. Liu. Large-scale im-

age categorization with explicit data embedding. In

Proc. CVPR, 2010.

[17] F. Perronnin, J. Sánchez, and T. Mensink. Improving

the fisher kernel for large-scale image classification.

In Proc. ECCV, 2010.

[18] A. Rahimi and B. Recht. Random features for large-

scale kernel machines. In Proc. NIPS, 2007.

[19] J. Sánchez and F. Perronnin. High-dimensional signa-

ture compression for large-scale image classification.

In Proc. CVPR, 2011.

[20] B. Schölkopf and A. J. Smola. Learning with Kernels.

MIT Press, 2002.

[21] S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos:

Primal estimated sub-GrAdient SOlver for SVM. In

Proc. ICML, 2007.

[22] A. J. Smola, S. V. N. Vishwanathan, and Q. V. Le.

Bundle methods for machine learning. In Proc. NIPS,

2008.

[23] E. Snelson and Z. Ghaharamani. Sparse Gaussian pro-

cesses using pseudo-inputs. In Proc. NIPS, 2006.

[24] E. Snelson and Z. Ghaharamani. Local and global

sparse gaussian process approximations. In Proc. AI-

STAT, 2007.

[25] C. H. Teo, S. V. N. Vishwanathan, A. Smola, and Q. V.

Le. Bundle methods for regularized risk minimization.

Journal of Machine Learning Research, 1(55), 2009.

[26] A. Vedaldi and B. Fulkerson. VLFeat – An open and

portable library of computer vision algorithms. In

Proc. ACM Int. Conf. on Multimedia, 2010.

[27] A. Vedaldi and A. Zisserman. Structured output re-

gression for detection with partial occulsion. In Proc.

NIPS, 2009.

[28] A. Vedaldi and A. Zisserman. Efficient additive ker-

nels via explicit feature maps. In PAMI, 2011.

[29] C. K. I. Williams and M. Seeger. Using the Nyström

method to speed up kernel machines. In Proc. NIPS,

2001.

[30] J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid.

Local features and kernels for classification of texture

and object categories: A comprehensive study. IJCV,

2007.

2327

