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Abstract

In this paper, we present an active sampling method to
speed up conventional pixel-wise background subtraction
algorithms. The proposed active sampling strategy is de-
signed to focus on attentional region such as foreground re-
gions. The attentional region is estimated by detection re-
sults of previous frame in a recursive probabilistic way. For
the estimation of the attentional region, we propose a fore-
ground probability map based on temporal, spatial, and fre-
quency properties of foregrounds. By using this foreground
probability map, active attentional sampling scheme is de-
veloped to make a minimal sampling mask covering almost
foregrounds. The effectiveness of the proposed active sam-
pling method is shown through various experiments. The
proposed masking method successfully speeds up pixel-wise
background subtraction methods approximately 6.6 times
without deteriorating detection performance. Also real-
time detection with Full HD video is successfully achieved
through various conventional background subtraction algo-
rithms.

1. Introduction
Background subtraction is a process which aims to seg-

ment moving foreground objects from a relatively stationary

background[16]. Recently pixel-based probabilistic model

methods [2, 8, 19, 21, 6, 10] gained lots of interests and have

shown good detection results. There have been many im-

provements in detection performance for these methods un-

der various situations, but the computational time still takes

too much time. Computation time reduction issue is get-

ting more important in a systematic view, because the back-

ground subtraction is generally considered as a low level

image processing task, which needs to be done with little

computation, and video sizes are getting bigger.

To reduce computation time of background subtraction

methods, several approaches have been studied. The first

type of approach is based on optimizing algorithms. Al-

though the Gaussian mixture model (GMM) scheme pro-
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Figure 1. Background subtraction by active attentional sampling

mask. (a) Input video image (b) Foreground probability map (c)

Active attentional sampling mask (d) Sampled pixels (e) Fore-

ground detection result

posed by Stauffer and Grimson[19] works well for various

environments, it suffers from slow learning rates and heavy

computational load for each frame[10]. Lee [14] makes

the convergence fast by using a modified schedule that

gradually switches between two stage learning schemes.

Zivkovic[21] achieved a significant speed-up by formulat-

ing a Bayesian approach to select the required number of

Gaussian modes for each pixel in the scene. Gorur[10]

modified Zivkovic’s method[21] by windowed weight up-

date that minimizes floating point computations.

The second type of approach is using parallel compu-

tation. Multi-core processors in a parallel form, using

the OpenMP system are applied for speed-up[20]. Also

Graphical Processing Units (GPUs) are used to achieve

real-time performance[5] with computationally heavy algo-

rithms. Pham et al.[18] perform real time detection even in

full HD video using GPU. They could successfully achieve

speed-up, but special hardware resources are required.

A selective sampling based speed-up method is the third

type of approach. Park et al.[17] proposed a hierarchical

quad-tree structure to decompose an input image. Using

the image decomposition, they could achieve the computa-

tional complexity reduction. However, their algorithm may

miss small objects because they randomly sample from a

relatively large region. Kim et al.[13] presented a sam-

pling mask designing method which can be readily applied

to many existing object detection algorithms. Lee et al.[15]

proposed a two-level pixel sampling method. Their algo-

rithm provides accurate segmentation results without flick-

ering artifacts. Kim et al.[13] and Lee et al.[15] use com-

978-1-4673-1228-8/12/$31.00 ©2012 IEEE 2088



pactly designed grid pattern masks to detect small objects,

but these grid patterns still cause redundant operations.

In this paper, we propose a new method of the third

type of approach (sampling mask approach) which can be

utilized together with the other two approaches. We aim

to find an active attentional sampling solution which can

be generally applied to most conventional background sub-

traction methods. We design a foreground probability map

based on temporal, spatial and frequency properties of the

foreground region. Using previous foreground detection re-

sult, the foreground probability map is updated. A sequen-

tial coarse-to-fine approach, which involves sparse random

sampling and filling in a space in attentional region accord-

ing to the probability map, achieves a very significant re-

duction in computation time without degrading the detec-

tion performance. Figure 1 illustrates the process of the

proposed algorithm. By combining with conventional back-

ground subtraction methods, our method makes these meth-

ods even be able to handle full HD videos in real-time.

2. Overview

2.1. Motivation

We imitate the selective attention mechanism of

human[11], where previously recognized results are re-

flected in the focusing position of current frame. When a

guard monitors a CCTV camera, he/she does not concen-

trate on whole of the image since he/she has empirically

learned that the video image can be categorized into back-

ground region, unimportant dynamic scene region and im-

portant moving object apprearing region. Then he/she takes

his/her attention to the regions which have moving object

appearing intentionally and does a sparse scanning to the

other regions such as background or dynamic region. The

key idea of proposed approach is to simulate this selective

attention scheme.

In general, most pixels from surveillance video are back-

ground region, and foreground region takes very small por-

tion in both spatially and temporally. We have measured a

percentage of the foreground area of commonly used data

set in background subtraction papers. The tested data sets

are Wallflower1, VSSN20062, PETS20063, AVSS2007 i-

LIDS challenge4, PETS20095 and SABS[3]6. As we can

see in Table1, the proportions of foreground regions are

1http://research.microsoft.com/˜jckrumm/
wallflower/testimages.htm

2http://mmc36.informatik.uni-augsburg.de/
VSSN06$_$OSAC

3http://www.cvg.rdg.ac.uk/PETS2006/data.html
4http://www.eecs.qmul.ac.uk/˜andrea/avss2007$_

$ss$_$challenge.html
5http://www.cvg.rdg.ac.uk/PETS2009/a.html
6http://www.vis.uni-stuttgart.de/index.php?id=

sabs

Data Set # of tested frames Mean(%) Std.
Wallflower 7553 5.03 6.25

VSSN2006 16074 2.30 1.13

PETS2006 41194 1.04 0.26

AVSS2007 33000 3.36 1.02

PETS2009 2581 5.48 1.58

SABS 6400 2.42 1.83

Average 2.42 1.18

Table 1. Statistical foreground region ratio of several widely used

datasets. Only 2.42% of total pixels are foreground pixels.

very small. Hence, if background substraction can be fo-

cused on foreground area, necessary calculation would be

reduced significantly. In this paper we try to find attentional

region in a current frame considering foreground region de-

tected in a previous frame.

2.2. Overall Scheme of Proposed Algorithm

Figure 2 shows the overall scheme of the proposed

method. To get active sampling mask for background sub-

straction, we use three properties of foreground; temporal,

spatial, frequency properties. The temporal property is that

a pixel is more likely to be a part of the foreground region if

it has been a foreground pixel previously. The spatial prop-

erty is that a pixel has a high probability of being a fore-

ground pixel if its surrounding pixels are of the foreground.

The probability is proportional to the number of surround-

ing foreground pixels. This spatial ergodic property was

also used in [12][16] for background modeling. The fre-

quency property is that if foreground/background index of a

pixel is changed too frequently, then the pixel is more likely

to be a noise or dynamic background region. So the proba-

bility of being a stable foreground region is low. Based on

the properties, we make a foreground probability map PFG

(described in Section 3).

The active sampling strategy is updated in every frame

according to the foreground probability map (PFG)
t−1.

The strategy is composed of three sampling strategies such

as randomly scattered sampling, spatially expanding im-
portance sampling, and surprise pixel sampling, which are

performed sequentially. We make the sampling mask Mt

at every frame (described in Section 4). Using sampling

mask Mt, selective pixel-wise background subtraction is

performed, only for the pixels of Mt(n) = 1 where n indi-

cates the pixel index. This sampling mask can be combined

with any kind of pixel-wise background subtraction meth-

ods.

The background subtraction task finds a sequence of

detection masks {D1, ..., DT } using a sequence of video

frames {I1, ..., IT } and sampling mask {M1, ...,MT }.

Each video image It, sampling mask Mt and detection

mask Dt are composed of N pixels {It(1), ..., It(N)},
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Figure 2. Overall scheme of the proposed algorithm.

{Mt(1), ...,Mt(N)} and {Dt(1), ..., Dt(N)} respectively.

All the masks are binary masks. In this paper, selective

pixel-wise background subtraction is performed, only for

the pixels of Mt(n) = 1. The detection mask at pixel n
shall be denoted with the symbol D(n): D(n) = 0 if pixel

n belongs to the background and D(n) = 1 if it belongs to

the foreground.

There are several empirical and theoretical results sug-

gesting that use of data collected in early stages can be

significantly more efficient to guide the selection of new

samples [7, 9]. Conventional background subtraction algo-

rithms are based on passive sampling. The collection of

sample points is chosen independent to the labels, and a

prior probability distribution of foreground is assumed uni-

form. So, in order to detect unexpected foreground, the

sampling becomes a full search regardless of previous ob-

servations.

On the other hand, the active sampling scenario allows

the sample location to be chosen using the information col-

lected up to that point[4]. So the sampling becomes adap-

tive and flexible[7]. However, a prior information about the

dependency between samples and labels are necessary to

design the sampling strategy. In the following sections, we

describe a way how to design the sampling strategy using

the properties of attentional foreground region.

3. Foreground Probability Map Generation
3.1. Estimation of Foreground Properties

Estimation models are proposed to measure the tempo-

ral, spatial, and frequency properties of each pixel. The

three property measures are referred to as {MT ,MS , and

MF }. The temporal property measure MT is estimated

by the recent history of detection results. The spatial prop-

erty MS is estimated by the number of foreground pixels

around each pixel. The frequency property MF is esti-

mated by the ratio of detection result flipping over a period

of time. All estimation models are updated by a running

average method, with learning rates αT , αF and αS (all

learning rates are between 0 and 1). The estimation models

for the measures of the properties are given in the following.

• Temporal property MT : At each location n, a recent

history of detection mask results at that location are

averaged to estimate the property.

Mt
T (n) = (1− αT )Mt−1

T (n) + αTD
t(n). (1)

As the value of Mt
T (n) comes close to 1, the possibil-

ity of foreground appearance at the pixel is high.

• Spatial property MS : Detection results of nearby

pixels are used to measure the spatial coherency of

each pixel n.

Mt
S(n) = (1− αS)Mt−1

S (n) + αSs
t(n), (2)

(st(n) =
1

w2

∑
i∈N (n)

Dt(i)),

where N (n) denotes a spatial neighborhood around

pixel n (w × w square region centered at n). Mt
S(n)

closer to 1 means high probability of being a part of

the foreground.

• Frequency property MF : If detection results have

been changed twice during previous three frames, we

consider it as a clue of dynamic scene.

Mt
F (n) = (1− αF )Mt−1

F (n) + αF f
t(n), (3)

f t(n) =

⎧⎪⎨
⎪⎩
1 (Dt−2(n) �= Dt−1(n))

&(Dt−1(n) �= Dt(n))

0 otherwise .

where f t(n) denotes a frequently changing property

at n. Unlike the other measures, the pixel n has a high

probability of being a foreground, as the value Mt
F (n)

is close to 0.

3.2. Foreground Probability Map: PFG

By estimating the three foreground properties, we get the

three measurements, MT ,MS , and MF . Every measure-

ment has a value between 0 and 1. So we define the fore-

ground probability for a pixel n at frame t as

P t
FG(n) = Mt

T (n)×Mt
S(n)× (1−Mt

F (n)). (4)

The foreground probability map P t
FG is a composition of

{P t
FG(n)}Nn=1.

4. Active Sampling Mask Generation
The sampling mask Mt is obtained by a combination of

three masks by a pixel-wise ‘OR’ operation (⊕) as

Mt = Mt
RS ⊕Mt

SEI ⊕Mt
SP , (5)
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(e) (f) (g) (h)

Figure 3. Active attentional mask generation by foreground probability map. (a) is a current input video image. (b) shows the active

attentional mask used for background subtraction. The white points are randomly scattered sampling mask Mt
RS . The blue pixels represent

Mt
SEI and the red regions are Mt

SP . As we can see in (b), most of mask Mt become zeros. The mask, whose redundancy is removed,

optimizes the necessary computational load. (c) Foreground detection result by GMM method [19] with the active mask. (d) Foreground

detection result by GMM method [19] without the mask. (e) Temporal property Mt
T . (f) Spatial property Mt

S . (g) Frequency property

Mt
F . (h) Foreground probability map P t

FG

where Mt
RS , Mt

SEI and Mt
SP are sampling masks of

randomly scattered sampling (SRS), spatially expanding
importance sampling (SSEI ) and surprise pixel sampling
(SSP ) respectively.

At each sampling stage, the sampling masks are gen-

erated based on the foreground probability map PFG and

foreground detection result D. We design the active sam-

pling strategies as

Mt
RS = St

RS(M
t−1
RS , Dt−1, P t−1

FG ), (6)

Mt
SEI = St

SEI(M
t
RS , P

t−1
FG ), (7)

Mt
SP = St

SP (M
t
RS , D

t−1, P t−1
FG ). (8)

Figure 3 shows the foregorund property measurements,

corresponding sampling mask Mt and foreground detection

results with and without Mt. In the following, we describe

the details on the sampling strategies in (6), (7), and (8).

4.1. Randomly Scattered Sampling

First, 100 × ρ% (usually ρ 0.05 to 0.1) pixels of the

entire pixels are selected through randomly scattered sam-

pling. Uniform random sampling approximates that every

pixel is checked probabilistically on average once among

1/ρ frames. The number of random samples Ns is ρN .

This number is constant for all frames. However, some

of the random points generated in the previous frames are

worth to be preserved. The determination of these points

are based on the amount of information measured by the

(a) (b) (c)

Figure 4. Spatially expanding importance sampling mask MSEI

generation by foreground probability map PFG. (a) is PFG. (b)

For each point of MRS , the spatially expanding region width ζs
is calculated. (c) The mask MSEI is generated by setting all the

inside points of the square to 1.

foreground probability P t−1
FG . A sample point n which

was Mt−1
RS (n) = Dt−1(n) = 1 is used again in current

frame(Mt
RS(n) = 1). Therefore, the number of reused

samples Nreuse changes adaptively. Then, Ns − Nreuse

samples are resampled randomly across the entire image.

4.2. Spatially Expanding Importance Sampling

The randomly sampled mask Mt
RS is too sparse to con-

struct a complete foreground region and might miss small

objects. It is therefore necessary to fill the space between

sparse points in the foreground region. In order to fill the

space, we develop an appropriate importance sampling so-

lution focusing only on necessary region compactly.

Conventional importance sampling[1] draws samples

densely where the importance weight is high. In our case,
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(a) (b) (c)

Figure 5. (a) rt = 1, k = 1. (b) rt = P t
FG, k = 1. (c) rt =

P t
FG, k =

√
3.

the sampling mask should cover all of the foreground pixels

and so the dense sampling is not enough in the foreground

region. To solve this full coverage sampling problem, we

propose a spatially expanding importance sampling method

which expands the sampling area proportional to the impor-

tance weight at every point of Mt
RS = 1 as shown in Fig-

ure 4. The shape of the expanded region is a square with

width of ζt which depends on the importance weight at the

ith randomly scattered sample. Even though the square re-

gions are overlapped, they are depicted by one region with

Mt
SEI = 1 as shown in Figure 4.

If the proposal distribution is assumed as an uniform

distribution, importance weight of each randomly scattered

sample i (where Mt
RS(i) = 1) becomes rt(i) = P t

FG(i).
Proportional to rt(i), we expand the sampling region N (i)
with size of ζt(i)× ζt(i) centered at pixel i, i.e.

Mt
SEI(N (i)) = 1. (9)

The spatially expanding width ζt(i) is determined as

ζt(i) = round(rt(i)× ωs), (10)

ωs = k
√
N/Ns. (11)

ωs is an expanding constant with parameter k (usually

k is
√
3 or

√
5). Figure 5 shows how ωs is designed and

the effect of the parameter k. As shown in Figure 5(a),

the ωs with k = 1 and rt = 1 implies a width of one

square under an assumption that the image is equally de-

composed into Ns squares centered at regularly distributed

Ns samples. However, in actual situation, the Ns samples

are not distributed regularly and most of rt are less than 1.

So the sampling mask Mt
SEI can not cover the estimated

foreground region compactly as shown in Figure 5(b). The

parameter k (larger than 1) expands the sampling masks so

that the masks cover the foreground region compactly (Fig-

ure 5(c)). As we can see in Figure 3(b), high foreground

probability regions are widely sampled and most of ζt(n)
are 0 in low probability region.

4.3. Surprise Pixel Sampling Mask

Even if we estimate the foreground probability correctly,

the foreground detection still has unpredictability intrinsi-

cally. Abnormal foreground is caused by spontaneousness.

For example, a person or a car suddenly appears from a new

direction, or a thief enters into a restricted area. These sur-

prisingly appearing moving objects should be detected suc-

cessfully. In addition, rarely appearing very fast moving

objects could be lost, because the spatially expanded region

may not be wide enough.

The randomly scattered samples become important when

capturing these unpredictable cases. A pixel is defined as

a surprise pixel if it was foreground in the previous frame

even though its foreground probability is small. Because

the foreground object is not expected to exist there, the

observation of foreground pixel is very surprising. So by

widening the sampling area around the pixel in a current

frame can find new foreground pixels. For pixel i (where

Mt
RS(i) = 1), the surprise pixel index ξt(i) is given by

ξt(i) =

{
1 (P t−1

FG (i) < θt−1
th )&(Dt−1(i) = 1)

0 otherwise .
(12)

where θt−1
th = max(P t−1

FG /ωs). Surprise pixel sampling

mask is generated as Mt
SP (N (i)) = 1 for N (i) region

(ωs × ωs region centered at i if ξt(i) = 1).

5. Computational Efficiency Boundary

We calculate a computational efficiency of the proposed

method (CP ) comparing to the conventional full search

method (CF ). α and αstd imply an average ratio (from 0

to 1) of foreground pixels and its standard deviation in a

video, respectively. β is a computational complexity ratio of

each computation block (such as PFG,M
t
RS ,M

t
SEI ,M

t
SP

generation) of proposed method comparing to original de-

tection method. βmax and βmin are the largest and small-

est value, respectively. Other parameters (ρ and k) are de-

scribed above. Due to space limitation, we shall omit de-

riving the efficiency boundary. We will release a technical

note with this paper online for completeness. The derived

efficiency boundary is

(α− αstd) {βmin + (1− ρ)(1 + βmin)}+ ρ(1 + 2βmin)

<
CP

CF
< (α+ αstd)k

2 {βmax + (1− ρ)(1 + βmax)}
+ ρ(1 + 2βmax).

(13)

Figure 6 is a simulated result of efficiency boundary. We

have validated the analysis result (13) through actual exper-

imental values. In our implementation GMM[19] method

and SABS dataset [3] is used with βmin = 0.03, βmax =
0.33, k =

√
3 and ρ = 0.05. In this case, actual CP /CF is

0.25 which is between lower bound (0.06) and upper bound

(0.29) of analysis (13).
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Figure 6. Derived efficienty bound of CP /CF . (a) is a lower

bound and (b) is a upper bound.

6. Experimental Results
We evaluated the performance of the proposed method

on several video sequences of various resolutions and sit-

uations to prove its practical applicability. The results are

compared to the existing background subtraction methods

such as GMM[19], KDE[8], efficient GMM[14], shadow

GMM[6], Zivkovic[21]7, and Gorur[10].

We implemented our algorithm in C++ for simulation

with Intel Core i7 2.67GHz processor and 2.97GB RAM.

Throughout the whole experiments, we do not use any kind

of parallel processing methods, such as GPUs, OpenMP,

pthread, and SIMD(single instruction multiple data). We

have implemented the algorithm to be computed in a se-

quential way in a single core, to show its efficiency. The pa-

rameters of background subtraction methods are optimized

one by one for various videos as was in [3], but the pa-

rameters of the proposed method are the same regardless of

combining detection methods and testing videos. The used

parameters are αT = 0.1, αF = 0.01, αS = 0.05, ρ = 0.05
and k =

√
3.

6.1. Efficiency of Active Attentional Sampling

We have monitored sequential intensity changes of two

pixels (A and B) in Figure 7(a) (AVSS i-LIDS dataset is

used). A is from a road and B is a pixel of a building wall.

Active attentional sampling resulted in different number of

samples. As we have expected, the road pixels are more fre-

quently sampled. Also the effectiveness of active attentional

sampling is compared with uniform sampling. As shown

in Figure 7, the proposed sampling does not miss critical

points (such as radically changing values). We have mea-

sured the RMSE (root mean squared error) of two different

sampling methods in Table 2. The results show that the

proposed sampling catches pixel value changing moment

adaptively and accurately with much less samples.

6.2. Detection Performance Comparison

The SABS dataset[3] is used to test detection perfor-

mance of the proposed method over various situations. The

7implementation from author: www.zoranz.net
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Figure 7. The intensity of pixel A changes frequently because of

the crossing cars. The value of B remains almost unchanged. The

graphs show the intensity values and bars under the graphs indicate

the sampled positions. For pixel A, the active attentional sampling

samples 256 times and 25 times for pixel B during 500 frames.

The same number of samples are generated uniformly for each

sequence, and the piecewise constant interpolation is performed

to reconstruct the sequence. (b) and (d) show estimated intensity

graphs by proposed sampling method for A and B, respectively. (c)

and (e) are reconstructed graphs by uniform sampling. We can see

that the proposed one concentrate the sampling on the foreground

pixels in frames with moving objects.

Sampling Method A B
Uniform Sampling 20.09 3.04

Proposed Sampling 9.64 3.79

Table 2. Estimation accuracy comparison in RMSE.

SABS dataset is an artificial dataset for pixel-wise evalu-

ation of background subtraction method. For every frame

of each test sequence, ground-truth annotation is provided

as foreground masks. Even though it is generated artifi-

cially, there are realistic scenarios such as light reflection,

shadows, traffic lights and waving trees. When consid-

ering the fact that the best F1-Measure in [3] is just 0.8,

SABS datasets are difficult enough to evaluate the perfor-

mance of algorithm. The correctness of foreground detec-

tion is expressed by F1-Measure as in [3] which is a har-

monic mean of recall and precision. Detection results are
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Figure 8. Best F1-Measure for various background subtrac-

tion methods. Post image processing methods, such as open-

ing/closing, also can be used.

Figure 10. Computational time changes over foreground region ra-

tio. The foreground region varies from 0 % to 10%. Not only the

proposed method but also the original detection [19] takes more

time as the ratio of foreground region increases.

optimally tuned and the value of Figure 8 is an average of

each frames’s F1-Measure over whole sequences. The pro-

posed method can be successfully combined with various

background subtraction methods and post image processing

methods without performance degradation.

6.3. Speed-up Performance Comparison

Figure 9 shows computation time speed-up results. The

proposed method significantly shortens the detection time

(on average 6.6 times). Fast detection algorithms show rel-

atively small speed-up ratio than computationally heavy al-

gorithms. This is because the mask generation time be-

comes relatively large compared to the detection time.

Figure 10 shows computation time changes over frames.

GMM[19] method and SABS video[3] (bootstrap video) are

used for the test. The computational time of the proposed

method increases as the ratio of foreground region becomes

large. However, the original GMM also takes more time

when the foreground region increases. So the ratio of speed-

up is maintained uniformly.

Also, we have compared the computational complex-

ity reduction performance with similar selective sampling-

based methods; Park et al.[17], Kim et al.[13] and Lee et

al.[15]. All speed-up performance data are based on the

optimized values of the original paper. Figure 11 show

the average speed-up performances. The speed-up ratio of

our method outperforms the others. The other subsampling

strategies are pre-designed regardless of video situation. So

Figure 11. Comparison of selective sampling-based speed-up

methods. All the methods were commonly applied to GMM [19].

Method Original(FPS) Proposed(FPS)
GPU [18] 78.9 -

GMM[19] 1.6 18.6
KDE[8] 3.5 31.5

Efficient GMM[14] 3.4 23.5
Shadow GMM[6] 2.2 23.5

Zivkovic[21] 9.7 29.7
Gorur[10] 11.8 33.7

Table 3. Comparisons of detection time in full HD videos (1920×
1080) in terms of frame rate (FPS).

many unnecessary samplings are inevitable because of the

regularly designed sampling pattern. This causes redundant

calculations. The sampling strategy of our method is totally

different from the grid pattern based subsampling approach.

Proposed probabilistic sampling approach is more adaptive

to various video situations and becomes more efficient by

reducing redundant calculations.

6.4. Real-time Detection in Full HD Video

Until now, allegedly, using GPU is the only solution

of real time detection in full HD video[18]. However, as

shown in Table 3, our method makes it possible for the con-

ventional pixel-wise background subtraction methods to be

used for high resolution videos in real-time. The experi-

ments are performed with GeForce GTS 250 (128 CUDA

cores) for GPU version [18]8 and a single core processor for

the others. Every detection method is applied to a full HD

video (1920× 1080) with optimal parameters and detection

time is measured with and without our method, seperately.

7. Conclusions
The computational time problem of background subtrac-

tion is very critical because it is generally considered as a

lower level image processing task and the video size is get-

ting bigger. In this paper, we proposed a speed-up method

of conventional background subtraction algorithms using

active attentional sampling mask generation method based

on selective attention concept. The motionless background

region can be skipped by attentional sampling. We de-

signed a foreground probability map by measuring three

8implementation from http://www.codeproject.com/KB/
GPU-Programming/cubgs.aspx
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Figure 9. Comparisons of the computational time speed-up. The tests were performed with full HD videos. The speed-up ratio of computa-

tionally heavy algorithms, such as GMM[19], shadow GMM[6] and KDE[8], is approximately 8.5 and the speed-up ratio of fast detection

algorithms, such as Zivkovic[21] and Gorur[10], is approximately 3.

foreground region properties, and active attentional sam-

pling is performed to make a sampling mask. Various exper-

iments show that the proposed method can speed up about

6.6 times without detection performance deterioration. Also

our method makes it possible for the conventional back-

ground subtraction algorithms to perform real-time detec-

tion in Full HD videos with a single core processor.
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