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Abstract

The choice of the over-complete dictionary that sparsely

represents data is of prime importance for sparse coding-

based image super-resolution. Sparse coding is a typical

unsupervised learning method to generate an over-complete

dictionary. However, most of the sparse coding methods for

image super-resolution fail to simultaneously consider the

geometrical structure of the dictionary and corresponding

coefficients, which may result in noticeable super-resolution

reconstruction artifacts. In this paper, a novel sparse cod-

ing method is proposed to preserve the geometrical struc-

ture of the dictionary and the sparse coefficients of the data.

Moreover, the proposed method can preserve the incoher-

ence of dictionary entries, which is critical for sparse rep-

resentation. Inspired by the development on non-local self-

similarity and manifold learning, the proposed sparse cod-

ing method can provide the sparse coefficients and learned

dictionary from a new perspective, which have both re-

construction and discrimination properties to enhance the

learning performance. Extensive experimental results on

image super-resolution have demonstrated the effectiveness

of the proposed method.

1. Introduction

In visual information processing, in order to obtain more

information about an image, high-resolution (HR) images

are always desired [14]. Unfortunately, due to the physical

limitation of relevant imaging devices, it is difficult to ac-

quire HR images in some cases. Hence, when physical man-

ners cannot afford high spatial resolution image from an un-

derlying scene, the signal processing methods have to be se-

lected to restore potential information hidden in the source.

For this purpose, a great number of attempts, named image

super-resolution (SR) reconstruction methods [6, 15], have

been proposed.

Generally, image SR methods can be classified into

three categories: interpolation-based [21], multi-image-

based [15], and learning-based [5, 6, 9, 17, 19] methods.

Interpolation-based SR can be simply achieved with con-

ventional interpolation algorithms, such as bilinear, bicubic

or other resampling methods [21]. For interpolation meth-

ods, much denser pixels in the HR grids can be achieved by

applying a base function to obtain the final SR image. How-

ever, simple and effective interpolation-based methods are

usually prone to yield overly smooth images as the magnifi-

cation becomes large. The image SR capability of this kind

of methods is thus very limited.

Multi-image-based methods can be specialized for mul-

tiple low-resolution (LR) images [15]. The precondition of

this kind of methods needs adequate LR images with sub-

pixel shifts. However, these methods are still limited to

small increase in spatial resolution [1].

The limitations aforementioned have been broken by

learning-based methods [6, 5, 19]. This kind of methods

presume that the high-frequency details lost in a LR image

can be predicted by learning from a specified training data

base. Freeman et al. [6] address image SR as the prob-

lem of predicting the input LR image into the desired scale.

Then, the nearest neighbor (NN) based estimation of high-

frequency image is performed and a Markov network is ex-

ploited to resolve the compatibility of output patches[10, 7].

A manifold assumption proposed by Chang et al. [5] points

out that the manifolds of LR image patches and the corre-

sponding HR ones are located in two similar local geome-

tries in their respective feature space. According to this as-

sumption, neighbor embedding (NE) [5] partly utilizing lo-

cally linear embedding (LLE) [16] is proposed to estimate

HR image patch by linearly combining these HR counter-

parts of LR image patches found in the training database.

Recently, sparse coding methods [18, 19] are employed to

perform image SR. In their works, by enforcing ℓ1-norm

sparsity prior regularization, LR image patches are coded

with respect to an over-complete dictionary, and a sparse

978-1-4673-1228-8/12/$31.00 ©2012 IEEE 1648



vector is obtained to linearly combine corresponding HR

counterparts to perform image SR reconstruction.

This paper mainly focuses on studying the sparse

coding-based methods for image SR [18, 19]. It can be seen

in [5] that learning performance and better reconstruction

results can be obtained by preserving local topology struc-

ture in data space. Recently, although some sparse coding

methods consider the geometrical structure of sparse repre-

sentation [20, 22], they fail to consider the incoherence of

dictionary entries. In fact, the reconstruction results depend

on the incoherence between dictionary bases [11]. Hence,

it is important to preserve the incoherence of the dictionary

when we consider the geometrical structure of data. In this

paper, we simultaneously consider the geometrical structure

of the dictionary and the corresponding coefficients. In this

case, the intrinsic geometrical structure of the data can be

captured and the incoherence between dictionary bases can

be preserved in sparse decomposition.

Motivated by the recent development in non-local self-

similarity and manifold learning, this paper proposes a

novel sparse coding method, which simultaneously consid-

ers the geometrical structure of the learned dictionary and

the corresponding sparse coefficients to capture the intrinsic

geometrical structure of the data. The proposed method is

a two-step method including computing sparse coefficients

and dictionary learning. Given an input data, in the first

step, based on the idea of the non-local self-similarity, the

proposed method learns the sparse coefficients by taking ad-

vantage of the intrinsic geometric detail of the data. In the

second step, the intrinsic geometric structure of the cluster

centers of the data can be exploited to encode the seman-

tic structure of the basis vectors by using spectral graph

techniques. Each cluster centroid denotes the representa-

tive mode of the corresponding cluster and the cluster cen-

ters are incoherent. The relationship between dictionary

entries are determined by mapping the weighted graph of

cluster centroids. Thus, the incoherence of dictionary en-

tries can be preserved accordingly. Moreover, the learned

dictionary can change smoothly along the geodesics of the

manifold. Extensive experimental results on image super-

resolution have demonstrated the effectiveness of the pro-

posed method.

The rest of this paper is organized as follows. Sec-

tion 2 provides a brief review of the original sparse coding

method. In Section 3, the proposed work is introduced, as

well as the optimization scheme, including learning sparse

coefficients and learning the dictionary. The experimental

results on image super-resolution and the comparison with

other methods are presented in Section 4. Finally, Section 5

concludes this paper.

2. Original Sparse Coding

In this section, the original sparse coding method is

briefly reviewed.

Let X = [x1, . . . , xn] ∈ R
m×n be the data matrix.

Let D = [d1, . . . , dk] ∈ R
m×k be the dictionary matrix,

where each di represents a basis vector in the dictionary.

Let S = [s1, . . . , sn] ∈ R
k×n be the coefficient matrix,

where each si represents a sparse coefficient for a data point

xi. Sparse coding aims to make each data point xi approx-

imate by a sparse combination of those basis elements of

the dictionary. The coefficient matrix together with dictio-

nary should best approximate X , which can be represented

as min
D,S

‖X −DS‖. The objective function of sparse coding

can be defined as:

min
D,S

‖X −DS‖2 + λ‖S‖1

s.t. ‖di‖
2 ≤ c, i = 1, 2, . . . , k, (1)

where λ is the regularization parameter, the term ‖S‖1 is

to enforce sparsity, and the term ‖di‖
2 constraint on di re-

moves the scaling ambiguity.

Although Eq.1 is not convex in bothD and S, it is convex

in fixing D only or fixing S only. Hence, borrowing the

idea of [12, 22], an iterative theme is adopted to minimize

the Eq.1 on one variable while fixing the other one.

3. Proposed Work

In this section, a novel sparse coding method is proposed

to take advantage of the geometrical structure of the data

space. The proposed sparse coding method has two fea-

tures. Firstly, the learned dictionary and the coefficients

can both capture the intrinsic geometrical structure of the

data. Secondly, the coefficient for the corresponding dictio-

nary is sparse and the incoherence of dictionary entries can

be preserved. In the following, the proposed sparse coding

method is adopted for image SR.

3.1. Objective Function

Recently, researches have shown that the geometrical

structure of the data can improve the performance of sparse

coding [4, 8, 22]. However, these sparse coding methods

fail to simultaneously consider the geometrical structure of

the data and the incoherence of learned dictionary entries.

In this paper, a novel method is proposed to simultaneously

consider the geometrical structure of the dictionary and the

corresponding coefficients. The proposed method can pre-

serve the incoherence of the dictionary when we consider

the geometrical structure of the learned dictionary and the

corresponding sparse coefficients to capture the intrinsic ge-

ometrical structure of the data.the proposed sparse coding

method can be divided into two steps to preserve the geo-

metrical structure of data.
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Firstly, one important prior is that the data matrix of-

ten contains repetitive structures and patterns [3]. Because

sparse decomposition has the potential instability, similar

data often have different estimates, which results in notice-

able reconstruction artifacts [13]. In this case, it is necessary

to exploit the property of non-local self-similarity to stabi-

lize the sparse decompositions. Hence, an assumption can

be generated that if a given m-dimensional data point xj is

the j-th most similar (vectorized) data point to xi in a non-

local neighborhood, then the corresponding coefficient sj is

also the j-th most similar (vectorized) coefficients for si in

a non-local neighborhood. This assumption is represented

as non-local self-similar property, which has been success-

fully applied into image denoising [3]. Based on the above

assumption, a non-local self-similarity quadratic constraint

is defined as:

n
∑

i=1

‖si −
∑

j

wjisj‖
2, (2)

where wji is the weight assigned to sj and si represents a

sparse coefficient for a data point xi. Given a set of m-

dimensional data points X = [x1, . . . , xn], the data point

xj is selected if it is within the first K (K = 5 in our ex-

periments) closest data points to xi. The weight wji can be

denoted as:

wji =
1

ci
· e−

‖xi−xj‖
2

h , (3)

where h is a parameter enforcing the similarity and ci is the

normalization factor. Eq.2 can be transformed as:

n
∑

i=1

‖si −
∑

j

wjisj‖
2

= ‖S − SW‖2 = ‖(S − SW )T ‖2

= Tr(S(I −W )(I −W )TST )

= Tr(SMST ), (4)

where I is the unit matrix and M = (I −W )(I −W )T . W
is defined as:

Wji =

{

wji, if xj is within the first K closest to xi,

0, otherwise. (5)

By incorporating Eq.4 into the original ℓ1 sparse coding,

the optimization problem is reformulated as:

min
S

‖X −DS‖2 + λ‖S‖1 + αTr(SMST )

s.t. ‖di‖
2 ≤ c, i = 1, 2, . . . , k, (6)

where α is the regularization parameter.

Secondly, based on the idea of manifold learning, the

new dictionary can be learned by exploiting the intrinsic

geometric structure of the data. Given a high dimensional

data set, sparse coding is equivalent to a large-scale ma-

trix factorization problem that can effectively “compress”

the data by finding a learned dictionary and the correspond-

ing coefficient over the given dictionary. In the process of

“compress”, these cluster centers can be used to represent

the original data matrix. It is known that good reconstruc-

tion property of the dictionary is critical for sparse represen-

tation [11]. We build the relationship between the cluster

centroids and the bases in dictionary. Each cluster centroid

denotes a representative mode of the corresponding clus-

ter and the cluster centers are incoherent. The relationship

between dictionary entries are determined by mapping the

weighted graph of cluster centroids. Thus, the incoherence

of dictionary entries can be preserved accordingly, which

improves reconstruction performance. In this case, it not

only makes the dictionary capture the intrinsic geometric

structure of the data, but also utilizes the incoherence of the

cluster centroid to reduce the coherence of the bases in the

dictionary. If the size of the dictionary is k, the data is di-

vided into k clusters accordingly. Let C = [c1, . . . , ck] be

the cluster center matrix, where ci is the center of the i-th
class. Our goal is to learn a dictionary by exploiting the

cluster centers of data. Thus, an assumption is presented

that if a data point ci is selected as a similar data point to

cj , then di and dj are also close to each other. Based on

this assumption, the learned dictionary has powerful capa-

bility for reconstruction and discrimination. This assump-

tion is usually regarded as manifold assumption, which can

be applied in several image processing applications such as

image classification [8] and clustering [22].

Given a set of m-dimensional points c1, c2, . . . , ck, a

nearest neighbor graph G can be constructed with k ver-

tices, where each vertex represents a point. Let W ′ be

the weight matrix of G. If ci is among the K ′-nearest

neighbors of cj or cj is among the K ′-nearest neighbors

of ci (K ′ = 5 in our experiments), W ′
ij = 1, otherwise,

W ′
ij = 0. The degree of ci is defined as Bi =

k
∑

j=1

W ′
ij , and

B = diag(B1, B2, . . . , Bk).

Considering mapping the weighted graph G to the coef-

ficients S, an appropriate map is selected by minimizing the

objective function [20]:

1

2

∑

ij

‖di − dj‖
2W ′

ij

=
∑

i

‖di‖
2B′

ii +
∑

j

‖dj‖
2B′

jj − 2
∑

ij

dTi djW
′
ij

= 2Tr(DLDT ), (7)

where L = B − W ′ is the Laplacian matrix. By adding

the Laplacian regularizer Eq.7 into Eq.6, the final objective

1650



function is formulated as:

min
D,S

‖X −DS‖2 + λ‖S‖1 + αTr(SMST )

+ βTr(DLDT )

s.t. ‖di‖
2 ≤ c, i = 1, 2, . . . , k. (8)

Similar to the solution of Eq.1, the proposed method is

divided into two steps: learning sparse coefficients S (fixing

D), and learning dictionary D (fixing S).

3.2. Computing Sparse Coefficients S

Fixing the dictionary D, Eq.8 becomes:

min
S

‖X −DS‖2 + λ‖S‖1 + αTr(SMST )

s.t. ‖di‖
2 ≤ c, i = 1, 2, . . . , k. (9)

Since S may contain values of 0, the traditional uncon-

strained optimization methods can not solve Eq.9 with ℓ1-

regularization. An optimization method based on coordi-

nate descent is introduced to solve this problem.

Each vector si is updated individually, while considering

all the other vectors as constant. To optimize over each si,
the Eq.9 is rewritten in a vector form.

The reconstruction error ‖X−DS‖2 can be rewritten as:

n
∑

i=1

‖xi −Dsi‖
2. (10)

The regularizer Tr(SMST ) can be rewritten as:

Tr(SMST ) = Tr(

n
∑

i,j=1

Mijsis
T
j ) =

m
∑

i,j=1

Mijs
T
i sj . (11)

Combining Eq.10 and Eq.11, Eq.9 can be rewritten as:

min
s1,...,sn

n
∑

i=1

‖xi −Dsi‖
2 + α

n
∑

i,j=1

Mijs
T
i sj +

n
∑

i=1

λ‖si‖1.

(12)

Fixing the other vectors {sj}j 6=i, the optimization prob-

lem to update si is represented as:

min
si

f(si) = ‖xi −Dsi‖
2

+ αMiis
T
i si + sTi hi + λ

k
∑

j=1

|s
(j)
i |, (13)

where hi = 2α(
∑

j 6=i

Mijsj) and s
(j)
i is the j-th coefficient

of si.
According to the feature-sign search method proposed

in [12, 22], the subdifferential of the Eq.13 is discussed

in the situation for different values of the coefficient s
(j)
i .

Firstly, for simplification, h(si) is defined as ‖xi−Dsi‖
2+

αMiis
T
i si + sTi hi, then f(si) = h(si) + λ

k
∑

j=1

|s
(j)
i |. It is

known that making the subdifferential as the zero vector is

a necessary condition for a parameter vector to be a local

minima. ∇
(j)
i |si| is defined as the subdifferentiable value

of the j-th coefficient of si.
In each feature-sign step [12, 22], the analytical

solution ŝnew
i is calculated by the Eq.13 under the

current active set and signs. The solution, the active

set and the signs can be updated by using an effi-

cient discrete line search between the current solution

and ŝnew
i . The corresponding algorithm for comput-

ing sparse coefficients S is summarized as Algorithm 1.

Algorithm 1: Computing Sparse Coefficients.

Input: The data points X = [x1, . . . , xn], the dictionary

D, the matrix M , the parameters λ and α. For 1 ≤ i ≤ n

1. Initialize step:

si =
−→
0 , θ =

−→
0 , and active set A = {}, where θj ∈

{−1, 0, 1} denotes sign(s
(j)
i ).

2. Activate step:

From zero coefficient of si, choose j =

argmax
j

|∇
(j)
i h(si)|. Add j to the active set,

namely:

If ∇
(j)
i h(si) > λ, set s

(j)
i = −1,A = {j} ∪ A.

If ∇
(j)
i h(si) < −λ, set s

(j)
i = 1,A = {j} ∪ A.

3. Feature-sign step:

• Let D̂ be a submatrix of D that includes only the

columns corresponding to the active set. Let ŝi
and ĥi be subvectors of si and hi. Let θ̂ be θ
corresponding to the active set.

• Calculate the solution via the Eq.13:

ŝnew
i = (DTD+αMiiI)

−1(D̂Txi−
(λθ̂ + ĥi)

2
).

(14)

• Perform a discrete line search on the closed line

segment from ŝi to ŝnewi : Examine the objective

value at ŝnewi and all points where any coefficient

transforms sign, and update ŝi to the point with

the lowest objective value.

• Remove zero coefficients of ŝi from the active set

and update θ = sign(si).

4. Check the optimality conditions step:
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• Condition (a): Check optimality condition for

nonzero coefficients: ∇
(j)
i h(si) + λsign(s

(j)
i ) =

0,∀s
(j)
i 6= 0 If condition (a) is not satisfied, go to

Step 3 (without any new activation); else check

condition (b).

• Condition (b): Check optimality condition for

zero coefficients: |∇
(j)
i h(si)| ≤ λ,∀s

(j)
i = 0 If

condition (b) is not satisfied, go to step 3; other-

wise return si as the solution, redenoted as s∗i .

end for

Output: The optimal coefficient matrix S∗ = [s∗1, . . . , s
∗
m].

3.3. Learning Dictionary D

Fixing the coefficient matrix S, Eq.8 becomes a least

square problem with quadratic constraints:

min
D

‖X −DS‖2 + βTr(DLDT )

s.t. ‖di‖
2 ≤ c, i = 1, 2, . . . , k. (15)

In this paper, a Lagrange dual method [2] is adopted to

optimize the dictionary D. Consider the Lagrangian as:

L(D,µ) = ‖X −DS‖2 + βTr(DLDT )

+

k
∑

i=1

µi(‖di‖
2 − c), (16)

where µ = [µ1, . . . , µk] and µi is a dual variable. Let

∂L(D,µ)/∂D equals to 0, the optimal solution D∗ can be

gotten as:

D∗ = XST (SST + Λ+ βL)−1, (17)

where Λ = diag(µ). Putting Eq.17 into Eq.16, the Lagrange

dual function becomes:

g(Λ) =Tr(XTX − 2XST (SST + Λ+ βL)−1SXT )

+ Tr((SST + Λ+ βL)−1SXTXST − cΛ)

=Tr(XTX)− cTr(Λ)

− Tr(XST (SST + Λ+ βL)−1SXT ). (18)

This leads to the following Lagrange dual function:

Λ∗ = max
Λ

Tr(−XST (SST + Λ+ βL)−1SXT − cΛ)

s.t. ηi ≥ 0, i = 1, 2, . . . , p. (19)

Eq.19 can be solved by Newtons method or conjugate

gradient. After maximizing Eq.19, the optimal D∗ =
XST (SST + Λ∗ + βL)−1.

3.4. Sparse Coding for Image SR

In this section, the proposed sparse coding algorithm is

used for image SR. Let Y h = [y1, . . . , yn] be the training

HR patch matrix and Zl = [z1, . . . , zn] be the correspond-

ing training LR patch (feature) matrix. Let T = [t1, . . . , tm]
be a testing LR image patch matrix and R = [r1, . . . , rm]
be the corresponding testing HR ones (unknown). Sparse

coding for image SR is summarized in Algorithm 2.

Algorithm 2: Sparse Coding for Image SR.

Input: training dataset Y h and Zh, a testing dataset T the

regularization parameter λ, α and β.

1. Learning Coupled Dictionaries Dl and Dh, Dl for

training LR patch matrix, Dh for HR ones.

• Use Eq.8 to compute the LR dictionary Dl and

the corresponding coefficient matrixW of the LR

patch matrix Zl:

{Dl, Ŵ} = arg min
D,W

‖Zl −DW‖2 + λ‖W‖1

+ αTr(WMWT ) + βTr(DLDT )

s.t. ‖di‖
2 ≤ c, i = 1, 2, . . . , k.

• Utilize the HR patch matrix Y h and the coeffi-

cient matrix Ŝ to compute the HR dictionary Dh:

Dh = argmin
D

‖Y h −DŴ‖2

s.t. ‖di‖
2 ≤ c, i = 1, 2, . . . , k.

2. For each testing LR patch ti in T

• Compute the sparse coefficient v̂i of ti from

Eq.6:

v̂i = argmin
vi

‖ti −Dvi‖
2 + λ‖vi‖1

+ α‖vi − Ŵmi‖
2,

where mi is the non-local self-similar weight of

ti with respect to the training LR image patch

matrix Zl = [z1, . . . , zn]

• Generate the testing HR patch ri = Dhv̂i.

Output: The testing HR image R = {r1, . . . , rm}.

4. Experimental Validation

In this section, we verify the performance of the pro-

posed sparse coding method on image SR.
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4.1. Training Set and Model Parameters

It is known that different images have different contents,

but the micro-structures of different images can be repre-

sented by a few of structural elements, such as edges, line

segments and elementary features. In order to utilize sparse

coding method to learn these micro-structures, a large num-

ber of patches need be extracted from some training images.

In this paper, training images are collected from [19]. These

training images contain different types, such as plants, hu-

man faces, architectures and animals and so on.

This paper randomly samples 50000 HR and LR patch

pairs from the training images to learn the over-complete

dictionary. For the LR images, the size of LR patch is 3× 3
(up-sampled to 6 × 6), with an overlap of 1 pixel between

adjacent patches, corresponding to 9× 9 patches with over-

lap of 3 pixels for HR patches. The dictionary size is al-

ways fixed as 1024 in all our experiments, which balances

between computation complexity and image quality [19].

4.2. Experimental Results on Image SR

In this subsection, we will study non-local self-similar

regularization term and graph regularization term to respec-

tively affect the image SR results. For the sake of compari-

son, we implement the closely related sparse coding method

based on the ℓ1 penalty (or Yang’s method) [19]. This paper

calls Yang’s method as SC. The change of the luminance

can provide more sensitivity to the human visual system

[7]. Hence, we only apply the SR methods to the luminance

component and use the simple bicubic interpolator for the

chromatic components.

(a) (b) (c)

(d) (e) (f)

Figure 1. Reconstructed HR images (scaling factor 3) of Leaves by

different methods. Local magnification in red rectangle is shown

in the upper-left corner in each example. (a) LR image; (b) original

image; (c) SC; (d) SC-NLSS; (e) SC-Graph; (f) SC-NLSS-Graph.

Firstly, we consider the influence of the non-local self-

similar regularization term. Fixing β = 0, we empirically

set λ = 0.1 and α = 0.2. The sparse coding method that

only considers the non-local self-similar regularization term

is named as SC-NLSS. Secondly, the influence of the graph

regularization term is considered. When α is set by 0, λ and

β are empirically set as 0.1 and 0.02 respectively. Similar-

ily, the sparse coding method that only considers the graph

regularization term is named as SC-Graph. Finally, the in-

coherence of the dictionary is measured in the experiments.

The correlation coefficients R between dictionary bases can

be used for measuring the incoherence of the dictionary.A

smaller coefficient R between two entries of the dictionary

indicates they are larger incoherence.The largest correlation

coefficient R can be computed from all the pairs of the two

dictionaries learned from the proposed method and L1 al-

gorithm, which ignores the regularizer terms in Eq.7 and

Eq.4. The experimental dictionary size is 144× 1024. The

experimental results show that the value R of the dictionary

obtained by our method is 0.9023, while the value R of the

dictionary obtained by L1 algorithm is 0.9798. This shows

that our method learns a better dictionary. In this paper, our

proposed method is called by SC-NLSS-Graph.

(a) (b) (c)

(d) (e) (f)

Figure 2. Reconstructed HR images (scaling factor 3) of Lena by

different methods. Local magnification in red rectangle is shown

in the upper-left corner in each example. (a) LR image; (b) original

image; (c) SC; (d) SC-NLSS; (e) SC-Graph; (f) SC-NLSS-Graph.

To objectively assess the quality of the SR reconstruc-

tion, PSNR and SSIM [18] are adopted to evaluate the qual-

ity of SR reconstruction. Since the SR process is only per-

formed on the luminance component of the color image,

we only compare the quantitative difference of this part be-

tween the original and the SR results. Table 1 shows the

PSNR and SSIM indices of eleven testing images. In Table

1, The PSNR and SSIM values of SC-NLSS, SC-Graph and

SC-NLSS-Graph is superior to SC. The average PSNR im-

provements of SC-NLSS, SC-Graph and SC-NLSS-Graph

over SC are 0.3426dB, 0.2384dB and 0.5244dB respec-

tively. The average SSIM improvements of SC-NLSS, SC-

Graph and SC-NLSS-Graph over SC are 0.0233, 0.0138

and 0.0257 respectively. These improvements show that

the non-local self-similar property on the sparse coefficients

has the more influence than the graph property on the ba-

sis vectors from the dictionary. It states that using graph
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Table 1. PSNR AND SSIM for 3 scale factor. For each column, we have two rows. The first row is PSNR, the second is SSIM.
Images Bike Butterfly Flower Girl Hat Leaves Lena Parrots Parthenon Plants Raccoon Average

23.3606 24.7092 27.7563 32.7706 29.7974 23.9306 30.4856 28.7726 26.1136 31.6618 28.4473 27.9823
SC

0.7297 0.8242 0.7970 0.8022 0.8351 0.8127 0.8410 0.8831 0.7013 0.8798 0.7296 0.8032

23.5482 25.0394 28.1172 33.0018 30.1735 24.6293 30.8427 29.0799 26.2824 32.1635 28.7076 28.3260
SC-NLSS

0.7415 0.8400 0.8172 0.8125 0.8478 0.8438 0.8527 0.8916 0.7096 0.8920 0.7437 0.8266

23.4920 24.8275 28.0896 33.0543 29.9981 24.3865 30.7459 28.9571 26.3368 31.8197 28.7206 28.2207
SC-Graph

0.7457 0.8298 0.8155 0.8161 0.8417 0.8315 0.8567 0.8952 0.7167 0.8862 0.7520 0.8170

23.7787 25.4764 28.2994 33.1259 30.2922 24.7833 31.0275 29.1980 26.4438 32.3286 28.8101 28.5067
SC-NLSS-Graph

0.7665 0.8566 0.8289 0.8188 0.8544 0.8583 0.8638 0.9001 0.7287 0.8994 0.7582 0.8303

(a) (b) (c)

(d) (e) (f)

Figure 3. Reconstructed HR images (scaling factor 3) of Butter-

fly by different methods. Local magnification in red rectangle is

shown in the upper-left corner in each example. (a) LR image;

(b) original image; (c) SC; (d) SC-NLSS; (e) SC-Graph; (f) SC-

NLSS-Graph.

property indeed improves the discrimination power of the

learned dictionary. However, the property of non-local self-

similarity to stablize the sparse decompositions is the key

influence for image SR. The proposed method, that is SC-

NLSS-Graph, takes full advantage of these two property

and obtains the best PSNR and SSIM values.

For visual illustration, we conduct the same experiment

on the Leaves, Lena and Butterfly images. In Fig.1, some

”ghost” artifacts for the edges can be found by using SC.

Since SC-NLSS and SC-Graph fully utilize the geometrical

structure of training image patches, they reduce the artifacts

and obtain better visual quality. SC-NLSS-Graph simulta-

neously inherits the advantages of the SC-NLSS and SC-

Graph and obtains the best visual quality. Similarly, Fig.2

and Fig.3 give the same conclusion as Fig.1.

4.3. Experimental Results on A 200­Image SR

To more comprehensively test the robustness of the pro-

posed SR method, extensive SR experiments are performed

on a large dataset that contains 200 natural image of various

contents. To establish this dataset, 200 high-quality natu-

ral images are randomly downloaded form the internet. A

200*200 subimage is extracted from each of these 200 im-

age in the experiments. Fig.4 shows some example images

in the dataset.

As follows, we perform extensive SR experiments on

200 natural images to compare SC-NLSS-Graph with SC,

SC-NLSS and SC-Graph. The average PSNR and SSIM

values of the SR images by the testing methods are shown

in Table 2. To better illustrate the advantages of our pro-

posed method (SC-NLSS-Graph), we also plot the improve-

ment of PSNR and SSIM values of each image over SC in

Fig.5. From Table 2 and Fig.5, we can see that SC-NLSS-

Graph achieves excellent performance. It demonstrates that

the sparse method based on the non-local self-similar and

graph property can effectively deal with image SR.

(a) (b) (c) (d)

Figure 4. Some example images in the established 200-image

dataset.

Table 2. Average PSNR and SSIM results of the reconstructed HR

images on the 200-image dataset. For each column, the first row

is PSNR, and the second is SSIM.

Method SC SC-NLSS SC-Graph SC-NLSS-Graph

28.5140 28.9220 28.8818 29.0546
Average

0.8287 0.8471 0.8441 0.8533

5. Conclusion

This paper propose a novel sparse coding method, which

simultaneously consider the geometrical structure of the

dictionary and corresponding sparse coefficients. The non-

local self-similar and graph method are incorporated as two

regularization terms. The purpose of simultaneously impos-

ing these two regularization term is to design a novel sparse

coding algorithm for having both reconstruction and dis-

crimination properties, which can enhance the learning per-

formance. Experimental results on image SR show that our

proposed method obtains excellent image SR performance.
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ment of PSNR; (b) the improvement of SSIM.
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