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Abstract

In this paper, we present a unified statistical frame-
work for modeling both saccadic eye movements and visual
saliency. By analyzing the statistical properties of human
eye fixations on natural images, we found that human at-
tention is sparsely distributed and usually deployed to lo-
cations with abundant structural information. This new ob-
servations inspired us to model saccadic behavior and vi-
sual saliency based on Super Gaussian Component (SGC)
analysis. The model sequentially obtains SGC using projec-
tion pursuit, and generates eye-movements by selecting the
location with maximum SGC response. Beside human sac-
cadic behavior simulation, we also demonstrated our supe-
rior effectiveness and robustness over state-of-the-arts by
carrying out dense experiments on psychological pattern-
s and human eye fixation benchmarks. These results also
show promising potentials of statistical approaches for hu-
man behavior research.

1. Introduction

Attention guided saccadic eye-moment is one of the most
important mechanisms in biological vision systems, based
on which the viewer is able to actively explore the environ-
ment with high resolution fovea sensors. Benefitting from
such unique behavior, human beings, as well as most pri-
mates, are able to efficiently process the information from
complex environments. For the last four decades, extensive
research works have been done by means of theoretical rea-
soning and computational modeling, trying to uncover the
principles that underlie the deployment of gaze. Compared
with theoretic hypotheses, computational models of visual
attention and saccadic eye-movement not only help us bet-
ter understand the mechanism of human cognitive behavior
but also provide us powerful tools to solve various vision
related problems such as video compression [1], scene un-
derstanding [2], object detection and recognition [3] etc.

In this paper, our goal is to establish a statistical frame-

Figure 1. What are we looking for when viewing a scene? Our s-
tudies suggest that the answer to this question could be revealed vi-
a statistical analysis of human eye fixations. One possible answer
named Super Gaussian Component is investigated in this paper.

work for both saccadic behavior simulation and visual
saliency analysis. Different with previous works that drew
inspirations from the existing neurobiological knowledge or
mathematical theories, we directly make assumptions based
on the statistical analysis of the ground truth human eye-
fixations. By means of statistical analysis, we try to find out
“what components in visual images draw fixations” which
is similar but more reachable compared with the traditional
question of “what properties draw attention”. The analy-
sis is conducted on eye fixation data captured from human
observers using an eye tracking device during task indepen-
dent free viewing of natural images. In such bottom-up s-
cenario, we have found an interesting phenomenon, which
might further be proved as a general principle, that stimuli
with a super Gaussian distribution is more likely to gather
human gaze. Based on this finding, human saccadic be-
havior can be modeled as a function of active information
pursuit targeting at the statistical components with desired
properties such as super Gaussianity.

In our framework (Figure 2), visual data is represented
as an ensemble of small image patches. Kurtosis maximiza-
tion is adopted to search for the Super Gaussian Component
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Figure 2. The proposed framework. The input signal is first processed into a patch-based representation. The patch matrix is then whitened
in order to simplify the subsequent process. Aiming at super-Gaussianity maximization, projection pursuit is performed iteratively on the
whitened data resulting in multiple Super Gaussian Components (SGC). Finally, the model generates eye-movements and estimates visual
saliency based on the response maps of the SGCs.

(SGC). A response map is then obtained by filtering the o-
riginal image with the found SGC. Based on the response
map, we adopt a well known principle named winner-takes-
all (WTA) to select and locate the simulated fixation point.
Gram-Schmidt orthogonal method is applied at the begin-
ning of each selection to avoid convergence at the same lo-
cation. Along with the saccadic simulation, a saliency map
can also be estimated using either the selected fixations or
the response maps. The proposed framework enables fast
selection of a small number of fixations, which give pro-
cessing priority to the most important components of the
visual input. Different from low-level feature-based salien-
cy driven approaches, the proposed gaze selection method
is guided by high-level feature-independent statistical cues,
which is supported by findings observed from real-world
fixation analysis.

1.1. Related Works

In the literature, it is widely agreed that eye-movement is
guided by both bottom-up (stimulus-driven) and top-down
(task-driven) factors [2, 4].

The bottom-up stimulus-driven research mainly focus-
es on saliency-driven approaches, in which a saliency map
is pre-computed using low-level image features to guide
task independent gaze allocation. These methods have been
proven to be very effective in predicting eye fxations cap-
tured from human subjects while viewing natural images
and video sequences. Itti et al. [2] proposed a computa-

tional attention model based on Koch and Ullman’s atten-
tional selection architecture [5], in which visual saliency
is measured by spatial center-surround differences across
several feature channels and different scales. In the mod-
el of [2, 6], two principles named winner-takes-all (WTA)
and inhibition-of-return (IoR) are adopted to select fixa-
tions based on saliency maps. This technique is widely
used for scanning visual scene or generating artificial sac-
cades. Bruce and Tsotsos [7] proposed a framework based
on image sparse representation and the principle of infor-
mation maximization, where visual saliency is measured by
the self-information of the sparse coefficients. Also based
on sparse coding, Hou et al. [8] argued that visual saliency
should be dynamically measured by the incremental cod-
ing length of the sparse features. Wang et al. [9] adopt Site
Entropy Rate as a saliency measure based on some well ac-
knowledged biological facts with respect to both sparse cod-
ing and neuron activities in human vision system. Integrat-
ed with more biological factors, Wang et al. [10] extended
their model to simulate saccadic scanpaths on natural im-
ages. Despite the above models, there are also many oth-
er works which present insightful saliency measures such
as Bayesian Surprise [11], Center-Surround Discriminan-
t Power[12], Spatially Weighted Dissimilarity [13] etc.

For top-down research, there are also extensive studies of
human saccadic behavior during different real-world tasks
such as making a sandwich, fixing a cup of tea or learn-
ing and matching a shape. Most studies indicate that eye-
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movements are probably made to collect task-relevant in-
formation [14]. Foulsham et al. [15] ask the participants
to view color photographs of natural scenes in preparation
for a memory test. Eye movements were recorded during
the viewing and testing process. Analysis on these eye-
tracking data indicates that saliency model work much bet-
ter than random models but still may be missing out on se-
quential aspects of oculomotor control that could potential-
ly predict fixation much better than saliency alone. Based
on these previous findings, we construct our framework not
only based on statistical factors but also considering the se-
quential aspects of human perception.

2. Statistical Analysis of Human Fixation Data
Although there are many research works that address

the problem of saliency detection, the statistical analysis
of saliency is still non-trivial cause there are no recordable
“ground truth” saliency maps. In [7], a fixation density map
is produced for each image based on human eye fixation
points. The fixation density map comprises the probabili-
ty of each pixel in the image being sampled by human ob-
servers based on their eye fixations. Taking fixation density
as the approximation of saliency makes it possible for us to
quantitatively analyze the statistical properties of saliency.
Specifically, we use eye fixation data from two benchmark
datasets (Bruce et al. [7] and Judd et al. [16]) for intuitive
and statistical analysis of human saccades. As discussed in
[16], for some images, all viewers fixate on the same loca-
tions, while in other images viewers’ fixations are dispersed
all over the image. To minimize the disturbance caused by
the subjects’ personal factors, we manually filter out images
with large subject-wise inconsistency. Figure 3 shows some
example images along with the eye fixation points and the
corresponding density maps. We also give a comparison
on the probability density distribution between saliency and
pixel values. From intuitive and statistical observation, we
found two interesting characteristics of visual saliency:

• Saliency is very sparse, which means the saliency of
most locations is zero and only a small portion of the
image has obvious high saliency value;

• High saliency value tends to be located surrounding
the regions with abundant structural information.

According to feature integration theory [17], saliency is ob-
tained by integration of multiple feature channels. Thus,
features used for saliency detection should share similar s-
tatistical characteristics with saliency. From a statistical
point of view, the above characteristics of saliency share
great similarity with super-Gaussianity, which is synony-
mous with “sparse” and “structurized” in statistics. Consid-
ering the above issues, we proposed the primary assumption
that Super Gaussian Components (SGC) of the scene are ex-
actly what we are looking for during the viewing process.

(a)

(b) (c)

Figure 3. Real-world distribution of bottom-up visual saliency. In
(a), Top: natural images; Middle: images covered with human eye
fixations (red dots); Bottom: eye-fixation density maps. (b) shows
the probability density of saliency (blue) and image pixels (green).
(c) is the corresponding cumulative distribution of (b).

3. The Model

In this section, we present two major components of our
model in details including sequential gaze selection and vi-
sual saliency estimation. The sequential aspects missing in
previous works and the statistical assumption we made in
Section 2 are both considered in our model.

3.1. Sequential gaze selection

There is one statistical technique named projection pur-
suit that shares a similar sequential selection behavior with
saccadic eye-movement. As a simple yet powerful tool,
projection pursuit is widely used for high-dimensional da-
ta visualization and statistical component analysis, e.g. ICA
[18]. In the case of saccadic modeling, we adopt projec-
tion pursuit to search for the SG components, which are
further used for gaze localization and saliency estimation.
From a signal processing point of view, this scheme can
also be regarded as unsupervised function that dynamical-
ly separates the image data into a salient gaze-favored part
and non-salient unattractive part. Technique details are de-
scribed in 3.1.1 and 3.1.2.

1554



3.1.1 Super Gaussian Component Analysis

Data preparation Given an image I , we first turn it into
a patch-based representation X by scanning I with a slid-
ing window from top-left to bottom-right. X is stored as a
M × N matrix, in which each column vector corresponds
to a reshaped image patch. PCA based decorrelation and
whitening are then applied to X, resulting in a new matrix
Z which will simplify the subsequent calculations [18].

Single SGC pursuit In statistics, the super-Gaussianity
of a random variable is usually measured by the kurtosis
function which is defined as:

kurt(y) = E{y4} − 3(E{y2})2, (1)

where y is the given random variable, E{.} is the expecta-
tion function. If y is a gaussian random variable, kurt(y)
will be 0. If kurtosis is positive, the variable is called
super-Gaussian which is also an alternative definition of
sparsity. For whitened variable y, its standard deviation
E{y2} = 1. So the kurtosis function can be further simpli-
fied as E{y4} − 3. To maximize the kurtosis, i.e. maximiz-
ing super-Gaussianity, we can start from a random select-
ed projection w, and iteratively change its direction using
fixed-point iteration method based on the available samples
denoted as Z. Now we give a formal objective function Gp

for single SGC pursuit:

Gp(w) = kurt(wTZ). (2)

The gradient of Gp has the following form:

∂Gp

∂w
= 4[E{(wTZ)3ZT} − 3wT∥wT∥2]. (3)

During optimization, the iteration reaches convergence
when the gradient vector and the projection vector have the
same direction. Let Equation 3 be equal to w, we have:

wT ∝ [E{(wTZ)3ZT} − 3wT∥wT∥2]. (4)

Equation 4 leads to a fixed-point iteration algorithm:

w← E{Z(ZTw)3},
w = w/∥w∥.

(5)

Based on Equation 5, we can get a projection vector which
maximizes the super-Gaussianity of the projected data.
There are two conditions that will make the iteration stop:1.
∥△w∥ < ϵ, where △w is the difference of w after one it-
eration and ϵ is a convergence threshold; 2. Optimization
didn’t converge within a limited number of iterations.

Multiple SGC pursuit Based on the single componen-
t pursuit method, multiple SGC pursuit can be implemented
by applying the same optimization method under the con-
strain that the new SGC should be orthogonal to the pre-
vious ones. The orthogonal constrain prevents the opti-
mization process from converging on the same directions of
the previous pursuit processes. Practically, we use Gram-
Schmidt orthogonal method for orthogonalization. Given
a set of predefined projections: w1,w2, ...,wp, we ensure
the orthogonal constrain by adding the following orthogo-
nalization procedure:

wp+1 ← wp+1 −
p∑

j=1

(wT
p+1wj)wj . (6)

The normalization w = w/∥w∥ in Equation 5 can be repo-
sitioned at the end of each iteration. Based on Equation 5
and 6, multiple SGC pursuit can be performed in a one-by-
one manner.

3.1.2 WTA based Gaze Localization

For each SGC, we generate a response map by treating the
component as a linear filter.

RMi = wT
i Z (7)

where RMi(j) denotes the response value of jth patch for
the ith SGC. Similar with [2], we select the location with
largest response value as the gaze point following the WTA
principle. Figure 4 shows the visualized gaze selection pro-
cess on natural images, along with the attended sub-regions.
Similar gaze selection behavior between human observer
and the proposed model could be observed in Figure 5.

Figure 4. Eye-movements generated by our model. For each image
we show the scanpath with five saccades and the corresponding
focused regions.

3.2. Visual Saliency Estimation

We measure saliency by self-information of the super
Gaussian components. As the SC components are acquired
sequentially in our model, the saliency map is estimated
also in a dynamical manner. The more SG components
are involved, the more details will appear in the saliency
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Figure 5. Comparisons of fixation density maps between the pro-
posed model and human observers. Top: input images; middle:
fixation density maps generated by our model using 75 fixations
per image; bottom: fixation density maps of human eye fixations.

map. Given k response maps: RM1,RM2, ...,RMk, the
bottom-up saliency of jth patch is defined as:

S(j) = − log

k∏
i=1

pi(RMi(j)) = −
k∑

i=1

log pi(RMi(j)),

(8)

where pi(.) is the probability density function of the ith S-
GC. For simplicity, we estimate pi(.) by histogram method.
An implementation for both gaze selection and saliency es-
timation is presented in Algorithm 1 with default parameter
settings.

Algorithm 1: Gaze selection and saliency estimation
Input: M ×N data matrix Z, M ×M zero matrix B,

maximum iteration θ = 500, convergence threshold
ϵ=0.0001

Output: Fixation sequence F , Saliency map S
1 Set projection index k = 1;
2 while k < M do
3 Generate random vector w = [w1, w2, ..., wM ];
4 Orthogonalize w by w = w −BBTw;
5 w = w/∥w∥, j = 1;
6 while j < θ and ∥w′ −w∥ < ϵ do
7 w′ = w;
8 w = Z(ZTw)3/N ;
9 w = w/∥w∥;

10 j = j + 1;
11 end
12 Replace the kth column of B by w;
13 RMk = wTZ;
14 F = F

∪
< k, argmaxRMk >;

15 k = k + 1;
16 end
17 Generate S based on Equation 8;
18 Smooth S with a gaussian filter (5× 5, σ = 2);
19 return F,S;

4. Experiments

4.1. Response to psychological patterns

Response to psychological patterns adopted in attention
related experiments can indicate the biological plausibility
of the tested models. As shown in Figure 6, our method
generates reasonable responses to not only normal pattern-
s such as density, orientation, color, curve, insertion and
inverse-intersection, but also patterns with conjunctive fea-
tures.

Input Ours QPFT [19] AIM [20]

(a) Patterns with single salient feature

Input Ours QPFT [19] AIM [20]

(b) Patterns with conjunctive features

Figure 6. Response to psychological patterns. From left to right,
we present the input image, saliency maps generated by our
method, QPFT [19] and AIM [20]. Red circles indicate the lo-
cation of the maximum saliency. Test images are from [19, 20]
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4.2. Human Eyefixation Prediction

This experiment is designed for evaluating the consis-
tency between human eye fixations and the saliency map
generated by the tested models. Experiments are conducted
on two data sets: static image data from Bruce et al. [7]1

and dynamic video data from Itti et al. [11]2. Models listed
for comparisons are selected by 2 criterions: 1. commonly
used benchmark and 2. open source. Following the propos-
al of [7, 11], we adopt area under the ROC curve (AUC)
and K-L divergence for quantitative evaluation.

4.2.1 Experiment on Static Natural Images

Fixation dataset from Bruce and Tsotsos [7] contains 11,999
eye fixations captured from 20 human subjects free view-
ing 120 natural images for 4 seconds each. To reduce the
influence caused by the subjects’ personalized factors, we
filter out spatially isolated saccades using the fixation den-
sity maps which are included in the dataset package. Each
fixation density map is normalized to [0,1]. Fixations with
density value greater than 0.5 are preserved, resulting in a
sub fixation dataset containing 4339 samples.

Bruce et al. [7] proposed to use Area Under ROC curve
(AUC) as a quantitative evaluation criterion for this exper-
iment. However, the original AUC evaluation is largely
affected by the “edge effect” due to center bias caused by
the central composition of interesting objects. Zhang et al.
[21] pointed out that a simple gaussian blob fitted to the eye
fixations has a AUC score of 0.80 which exceeds most of
the reported models on Bruce’s data set [7]. To eliminate
the interference caused by the “edge effect”, we follow the
proposal of Zhang et al. [21], and use a refined evaluation
procedure to compute the AUC score. Specifically, we first
compute the true positives from the saliency maps based on
the human eye fixation points. In order to calculate false
positives, we use the human fixation points from other im-
ages by permuting the order of images. This permutation of
images is repeated for 100 times. Each time, we compute
an AUC score by regarding the eye fixations from original
image as the positive samples and the fixations from permu-
tated images as the false samples.

We compared our model against the state-of-the-art
models including Itti et al. [2], Bruce and Tsotsos [20],
Zhang et al. [21], Hou et al. [8], Wang et al. [9] and Murray
et al. [22]. Saliency maps of all tested methods are generat-
ed using their default parameter settings. Table 1 shows the
mean and standard error of AUC scores and KL-divergence.
Our method outperforms all state-of-the-art models in both
AUC and KL evaluation. Figure 7 shows more visual com-
parisons.

1http://www-sop.inria.fr/members/Neil.Bruce
2http://crcns.org/data-sets/eye

Method AUC (SE) KL (SE)
Itti and Koch [2] 0.6249 (0.0008) 0.1300 (0.0026)
Bruce and Tsotsos [20] 0.7547 (0.0013) 0.4140 (0.0045)
Zhang et al. [21] 0.7345 (0.0015) 0.2972 (0.0050)
Hou and Zhang [8] 0.7708 (0.0013) 0.5320 (0.0058)
Wang et al. [9] 0.7594 (0.0012) 0.4812 (0.0052)
Murray et al. [22] 0.7707 (0.0013) 0.4528 (0.0056)
Our Method 0.7903 (0.0012) 0.5374 (0.0054)

Table 1. Experimental results on static natural images

Input images

Itti and Koch [2]

Bruce and Tsotsos.[20]

Zhang et al. [21]

Hou et al. [8]

Wang et al. [9]

Murray et al. [22]

Our Method

Fixation Density Maps

Figure 7. Visual comparisons of different saliency detection meth-
ods. From top to bottom: input images, saliency maps generated
by previous models [2, 8, 9, 20, 21, 22], saliency maps generated
by our model and fixation density maps generated by eye fixations.
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4.2.2 Experiment on Dynamic Videos

Video processing is slightly different from static image pro-
cessing: 1. the size of each image patch is [3 × 3 × 3 × 3]
(Height×Width×Color×Frame) which is also reshaped in-
to 1-D vector during the feature decomposition stage; 2. to
compare saliency of the same visual content over time, we
use Equation 9 to normalize the saliency maps.

S(x) = δ(ηS(x)/S̄),

δ(x) =

{
1 If x > 1
x else .

(9)

where S̄ is the mean value of S, η = 0.3 is a scale param-
eter and fixed in the following experiment. Eye tracking
data from Itti et al. [11] are recorded from 8 human subject-
s aged at 23-32 with normal vision. 50 video clips consist-
ing various categories of dynamic scenes, including outdoor
scenes, television broadcast and video games, are used for
constructing the data set. 7 video clips of Berkeley outdoor
scene consisting of 568 saccade points are used for evalua-
tion. The KL score produced by our model is 0.692±0.053
which is much better compared with 0.530 ± 0.045 for It-
ti’s saliency [2] and 0.589 ± 0.045 for surprise [11]. The
AUC score of our model is 0.803±0.009 which also outper-
forms the other two models (0.775±0.011 for Itti’s saliency,
0.776±0.010 for surprise).

4.3. ProtoObject Detection

A candidate that have been detected but not yet identified
as an object is defined as a proto-object. In this experiment,
we test the model’s ability of detecting proto-objects in un-
constrained natural scenes. The image data set, human la-
bel masks and evaluation codes used for this experiment are
provided by Hou et al. [23]. Hit Rate (HR) and False Alarm
Rate (FAR) are used for evaluating the saliency maps. High-
er HR and lower FAR imply a better detection performance.
Quantitative comparisons between different saliency mod-
els are shown in Table 2. We give two groups of results, one
with the fixed HR and the other the fixed FAR. Our mod-
el provides an overall better performance compared to Hou
et al. [23] and Seo et al. [24]. Figure 8 shows some visual
examples of the detection results.

4.4. Robustness Test

We test our model with manually modified images which
contain commonly encountered visual distortions. As
demonstrated in Figure 9, our model is basically not in-
fluenced by various distortions including salt noise, gaus-
sian noise and brightness change. For the case of contrast
change, the mean value of the resulting saliency map be-
came larger, so the target region was not very salient a-
gainst the surrounding regions compared with the other cas-
es. Practically, it is acceptable because the distortion of low

Figure 8. Examples of proto-object detection. From left to right:
input image, saliency map, proto-object mask, human label mask.

Table 2. Proto-object Detection

Our model Seo et al. [24] Hou et al. [23]
HR 0.7227 0.5933 0.4309

Fixed FAR 0.1433 0.1433 0.1433
Fixed HR 0.5076 0.5076 0.5076

FAR 0.0816 0.1048 0.1688

contrast has similar interference to human vision system. In
addition, the most salient region indicated by our saliency
map remains the same despite the contrast changes.

5. Conclusions and Future Works

In this paper, we present an unified statistical model
for saccadic eye movements and visual saliency. Different
from previous works that mostly aim to reproduce the ex-
act mechanisms of visual perception, we draw inspirations
from the statistical characteristics of real-world human be-
havior. Experimental results demonstrate our superior per-
formance over the state-of-the-art approaches and implies
the promising potential of statistical models for human be-
havior analysis. In further studies, we will continue our ef-
fort to analyze human saccadic behavior considering oth-
er factors such as scale change and individual differences.
Applying the framework to other computer vision problems
such as anomaly detection and pattern discovery etc. will be
another direction of our future works.
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Figure 9. Our model is robust to various distortions including contrast and brightness change, salt and gaussian noise.
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