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Abstract

We present a novel system that is capable of generat-
ing live dense volumetric reconstructions based on input
from a micro aerial vehicle. The distributed reconstruction
pipeline is based on state-of-the-art approaches to visual
SLAM and variational depth map fusion, and is designed
to exploit the individual capabilities of the system compo-
nents. Results are visualized in real-time on a tablet inter-
face, which gives the user the opportunity to interact. We
demonstrate the performance of our approach by capturing
several indoor and outdoor scenes on-the-fly and by evalu-
ating our results with respect to a ground-truth model.

1. Introduction
A variety of mobile, integrated image acquisition tools

such as micro aerial vehicles (MAVs) or tablet computers

have recently become available and affordable. The possi-

ble applications for 3D reconstruction in this context are

manifold; they reach from photogrammetric mapping of

cultural heritage sites over industrial inspection of danger

zones to thermal 3D imaging of buildings.

While powerful and accurate Structure–from–Motion

pipelines [16, 15] have been available for several years,

three major problems prohibited a wide-spread use of 3D

reconstruction on mobile devices: First, many approaches

are not suitable for devices with low computational capa-

bilities. Second, most systems lack real–time capabilities

which means that users cannot directly interact with the sys-

tem. Finally, typical representations in form of sparse 3D

point clouds are adequate for further processing, but do not

reflect the expectations of the potential users of such recon-

struction applications.

In an attempt to fulfill these requirements, we present the

first system that is capable of generating live dense volu-

metric reconstructions based on input provided by a remote

platform. Image acquisition and tracking is performed di-

rectly on a mobile device with restricted computational abil-

ities, and only selected keyframes are sent to a powerful

Figure 1. Our system is able to reconstruct a scene on-the-fly us-

ing a micro aerial vehicle. After automatic marker-based initial-

ization, a live preview (left) and a live dense reconstruction (right)

are streamed to a tablet for visualization. Best viewed in color.

server for sparse and dense mapping. The resulting triangu-

lated feature points are returned to the tracker, whereas the

dense reconstructions are sent to a tablet computer for live

visualization. The user can additionally monitor the track-

ing quality using a live preview and interact with the system

on a touch–screen (see Fig. 1). In contrast to existing 3D re-

construction pipelines,

• we propose a distributed reconstruction pipeline which

exploits the individual capabilities and requirements of

the system components,
• we can obtain dense reconstructions on-the-fly, so the

typical acquisition time for outdoor scenes including

real–time processing is below 10 minutes, and
• we provide an interface which allows the user to inter-

act with the reconstruction process.

Our system exploits several state-of-the-art algorithms for

tracking, mapping, and dense reconstruction [11, 9, 24, 23].

We demonstrate the performance of our approach using a

quad–rotor MAV in indoor and outdoor scenes, and evalu-

ate the quality of reconstructions using a publicly available

paper model as ground–truth.
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2. Related Work
A system capable of live, dense reconstruction of an en-

vironment, running on a remote mobile platform, requires

three major components: Simultaneous localization and

mapping (SLAM) for determining the pose of the camera,

a dense reconstruction approach to estimate the geometry

of the scene, and a communication framework for distribut-

ing the workload to the most suitable entities in the sys-

tem. The following paragraphs give an overview of selected

work from these very active research areas.

Simultaneous localization and mapping addresses the

problem of exploring a previously unknown environment.

This requires to determine the sensor pose given an esti-

mated map, and to optimize the map given the sensor in-

formation at the estimated pose; two tasks which highly

depend on each other and thus have to be solved simulta-

neously. Early SLAM systems using a single camera as the

main perceptual sensor were based on filtering approaches.

Davison [5] fused measurements from a sequence of images

by updating probability distributions over features and ex-

trinsic camera parameters using an Extended Kalman Filter

(EKF). This requires tracking and mapping to be closely

linked, as the camera pose and feature locations are up-

dated together at every single frame. In contrast, Klein and

Murray [11, 9] presented a real-time visual SLAM system

based on keyframes named Parallel Tracking and Mapping.

PTAM employs two separate threads, one for tracking the

camera pose through every single frame, and another for

mapping the environment by applying bundle adjustment to

a set of spatially distributed keyframes. The major draw-

back of filtering approaches, namely the limited number

of features that can be updated in between two frames, is

circumvented in PTAM by leaving more time to the par-

allel mapping process. Strasdat et al. [20] experimentally

showed that localization using a large amount of features

measured at low temporal frequency is in general superior

to a small amount of features measured at every frame, thus

keyframe-based methods typically outperform filtering ap-

proaches.

SLAM approaches are often not suitable for providing

input to dense reconstruction, as they maintain a map of

sparse feature points and do not store full frame informa-

tion. Newcombe and Davison [14] presented a method

which is able to generate a rough mesh based on sparse

visual SLAM features. The mesh is then successively re-

fined by depth information obtained using variational opti-

cal flow between tracked frames, which leads to physically

meaningful dense reconstructions. However, the topology

of possible reconstructions is limited by the initial mesh

and does not allow modeling of concave scenes contain-

ing holes or extrusions. Stühmer et al. [21] presented a

similar real-time system which robustly generates accurate

depthmaps based on variational optical flow, but their work

lacks depthmap fusion and is thus restricted to 2.5D geome-

tries. More recently, Graber et al. [6] presented a system

based on variational depthmap fusion [24, 23] which is

able to overcome the aforementioned limitations and works

with a set of keyframes instead of all tracked frames. They

propagate visibility information in a volumetric represen-

tation and extract the surface as zero level-set of a global

convex energy, which leads to smooth reconstructions with

arbitrary topology. All currently available live dense recon-

struction systems exploit general-purpose graphics process-

ing units (GPGPUs) to achieve real-time performance and

are therefore not directly applicable in a mobile system.

Mobile visual localization and mapping is mainly used

in augmented reality and robotics, where the computational

resources are often much lower than in a desktop setting.

A common approach to circumvent this problem is to use

model–based [18] or extensible tracking [3], where prior

knowledge about the scene is exploited to aid localization.

While this has been shown to help in indoor and outdoor en-

vironments, we focus on an approach where no prior knowl-

edge is necessary. Klein and Murray extended the original

PTAM approach to work with mobile phone cameras [10].

To compensate for the lack of processing power they had to

introduce several simplifications: First, they require corners

to be detected over multiple scales; this leads to less but

more stable features. Second, measurements are thinned

rather than densified as in original PTAM to limit the map

size. As a result, the pose estimate is far less robust and a

considerable amount of texture is required in the scene for

the tracking to work at all. In robotics, PTAM has recently

been used for providing position estimates for visual control

in indoor and outdoor settings [1]. Again, simplifications

in tracking and bundle adjustment were necessary for the

approach to run on a quad–rotor helicopter. Typically, such

approaches do not allow to send high–quality imagery to the

ground for real-time visualization or dense reconstruction

because this would require all available processing power.

In contrast, Reitinger et al. [17] presented an interactive

3D reconstruction system which uses a server–based recon-

struction pipeline for urban modeling. A human scout se-

lects suitable views and transmits the image and GPS posi-

tioning data to the server, which returns a dense point cloud

after some seconds. Lee et al. [12] showed a similar concept

on a mobile phone, featuring server–based pose estimation

and Shape–from–Silhouette reconstruction. In comparison,

our system performs pose estimation directly on the device

but outsources sparse and dense reconstruction to the server.

This allows on the one hand to process considerably more

input images and to continuously obtain pose estimates, on

the other hand the data transfer is restricted to high–quality

keyframes.

Several other state–of–the–art approaches exists, but

cannot be applied to our problem. First, stereo imaging has
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been successfully used in real–time, outdoor SLAM sys-

tems [13]. However, on the one hand the baseline available

to most mobile devices is too small for effective outdoor us-

age, and on the other hand the required processing power is

not available. Active sensors could be used as an alterna-

tive; real-time 3D reconstruction using a Microsoft Kinect

system has already been demonstrated [8]. Unluckily, the

structured light pattern projected by Kinect is only suitable

for indoor usage. Second, Pollefeys et al. [16] presented

an impressive reconstruction pipeline which relies on huge

amounts of imagery, additional GPS/INS data, and a lot of

processing power. In contrast, we would like to reconstruct

scenes with as little data as possible. Finally, Newcombe

et al. [15] recently introduced a system which is capable

of dense tracking and mapping, meaning that their system

does not rely on sparse feature tracking anymore. Their ap-

proach is highly sophisticated and delivers accurate depth

maps based on all captured frames; however, this is exactly

the reason why it cannot be used in our system as it would

require to transfer every single frame from client to server.

3. Live Reconstruction System
We present a distributed system that is capable of gener-

ating dense volumetric reconstructions based on input from

a mobile platform. In contrast to other approaches using of-

fline reconstruction, the user gets a live preview of the result

on a tablet computer and can thus interact with the process.

Interaction can circumvent the deficiencies of todays track-

ing and mapping algorithms by giving the user the chance

to supervise and (if necessary) correct the result.

3.1. System Overview

Matching our goal of aerial outdoor reconstruction we

choose a micro aerial vehicle with an on–board computer

for image acquisition; however, our approach is as well

perfectly suited for current tablet computers. The mobile

device is used to capture live video and to track the pose

of the camera in the environment. Having both capturing

and tracking in one place allows to make use of the full

frame rate delivered by the camera, and provides localiza-

tion without delay and the need for persistent connectivity.

This is for instance important when using a visual servoing

approach in robotics [1].

We further employ a server equipped with high–

performance hardware, including a state–of–the–art graph-

ics processing unit (GPU), for sparse and dense mapping.

The work of Klein and Murray [11] has shown that map-

ping can be done using keyframes only, which is the princi-

ple we rely on in this work. Keyframes are selected by the

mobile device based on the coverage of the current map and

transmitted in full quality to the server. Given the additional

pose estimate by the tracker, they are directly integrated into

the map and bundle adjustment is performed. Within sec-

onds, the updated map is sent back to the mobile device and

tracking continues on the updated map.

Additionally, we run a second thread on the server

for dense reconstruction. Starting at the minimum of

three keyframes, we estimate a depth map for every new

keyframe using multi–view plane sweep [4]. The depth

maps are then refined with variational denoising and in-

tegrated into a volumetric representation using variational

depth map fusion [24, 23]. The resulting smooth three-

dimensional surface is rendered on the GPU and transmitted

to the user if new data is added to the volume or if the user

triggers viewpoint changes.

Finally, the live tracking preview and the dense recon-

struction are visualized on the mobile device; for aerial ac-

quisition, this is a tablet computer on the ground. The user

can on the one hand control image acquisition and on the

other hand rotate and zoom the live dense reconstruction.

An example of the user interface can be seen in Fig. 1 and

in the accompanying video.

We want to stress that our system as described above and

depicted in Fig. 2 is very flexible in terms of hardware and

algorithms. The coupling between individual parts is very

loose and based on the robotic operating system (ROS)1 and

a wireless link. Our work as described in the following para-

graphs is based on the work of Klein and Murray [11, 9] as

well as Graber et al. [6], with some major changes relating

to the distributed operation. However, all parts can easily

be adjusted to reflect the application at hand or the future

developments in tracking and mapping.

3.2. Tracking

The tracking part of our system runs on the mobile de-

vice and has two important tasks: It has to deliver pose es-

timates for every input frame and it has to select keyframes

based on the the scene coverage of the map. Processing the

data directly avoids tracking on the ground, thus pose up-

dates are not delayed and the low transmission bandwidth

required enables operation over Wifi and 3G.

For every acquired frame, our tracking system extracts

FAST-10 [19] features on a four-level image pyramid. We

follow a two–stage tracking procedure which first searches

for the 50 largest features on coarse levels of the image

pyramid based on the prior pose estimate, updates the pose

accordingly, and then performs accurate tracking by search-

ing for 1000 features in finer levels. Due to computational

constraints, we use very simple 8×8-pixel patch descriptors

and match them to mapped descriptors at FAST corner loca-

tion within a circular search region. This is especially useful

when updating the map, because features do not need to be

stored separately but can be indexed directly by the triplet

(id, s,x2d), where id denotes the unique keyframe index,

s denotes the pyramid scale, and x2d the patch position in

1http://www.ros.org
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Figure 2. Overview of the distributed live dense reconstruction system, which exploits the individual capabilities and requirements of the

system entities. The tracker is run on the quad–rotor, sparse and dense mapping on the server, and visualization on the tablet.

the image. Undistortion is only applied on a per–feature ba-

sis to reduce computational effort. A detailed description

of the tracking and pose estimation process can be found in

the original PTAM work [11].

Keyframe selection on the mobile device is important to

avoid streaming too much data to the ground. To start the

tracking process, an initial map consisting of two keyframes

is necessary. PTAM requires the operator to select these

two frames manually, which has several issues: It requires

streaming the data to the ground, it requires some experi-

ence in moving the camera, and it results in maps with ar-

bitrary scale and origin. In contrast, we employ a single ar-

tificial marker with known dimensions to initialize the map

directly on the mobile device. We use ARToolkitPlus [22]

to obtain an accurate, metrical localization relative to the

marker. Once the marker is visible in the image, candidates

for the first keyframe are stored and SURF features [2] are

extracted. Candidates for the second keyframe are stored

when a baseline of more than binit has been robustly mea-

sured (i.e. over 10 frames). Once more than finit SURF fea-

tures can be successfully matched between any pair of can-

didates fulfilling the required baseline, the two keyframes

are transmitted to the server-based mapper. Given the two

poses obtained by ARToolkitPlus, the essential matrix is es-

timated. The initial map is triangulated and refined through

bundle adjustment. The resulting map with metrical scaling

and a defined origin in the center of the marker is finally re-

turned to the tracker. While marker-less initialization works

as well, the proposed process is more comfortable and typ-

ically takes less than 5 seconds.

A proper initialization to metrical scale also aids fur-

ther keyframe selection for expanding the map. We trans-

mit a keyframe to the server if the distance d to the nearest

keyframe in the map exceeds a minimum baseline bmap, or

if d > 0.25bmap and the rotation angle α relative to the

nearest keyframe exceeds a minimum angle αmap. Addi-

tionally, keyframes are only sent if the tracking quality is

good and if a certain time tmap has passed since the last

keyframe has been added. In comparison to PTAM, αmap

ensures that keyframes are also added when the mobile de-

vice rotates, and tmap compensates for the latency between

requesting a map update and actually receiving it, while at

the same time ensuring that the tracker does not freeze while

waiting for a map update.

Every time the tracker is lost or the received map con-

tains considerable changes, re-localization is necessary. We

employ a fuzzy image re-localization approach [9] sup-

ported by GPS and compass data (if available) for outdoor

usage. We store the initial GPS/compass pose of the mo-

bile device and insert all further keyframes relative to that.

The set of blurry, scale-reduced keyframes is ranked based

on the distance to the current GPS/compass pose and then

matched as in the original approach. As a result, our ap-

proach can re-localize in difficult outdoor scenes with repet-

itive features.

3.3. Mapping

The mapping part of our system runs on the server and is

responsible for providing a sparse three-dimensional struc-

ture which can be used for pose estimation by the tracker.

The mapper gets keyframes with an estimated pose and a

unique identifier id in irregular intervals from the remote

tracker. These images are transmitted uncompressed and

in full–resolution; an important detail that allows the map-

per to detect the same features as the tracker. New map

points are added by triangulation with neighboring views

and refined by local bundle adjustment as described in [11].

Global bundle adjustment is applied whenever the mapper

is idle, but interrupted if a new keyframe should be added.

Once local bundle adjustment has converged, the refined

map is ready to be sent back to the tracker. All keyframes

available to the mapper are already stored on the tracker,

so it is sufficient to transmit the vector (id, s,x2d,x3d) for

every new point, and for every point that was moved by

bundle adjustment by

‖x2d − x2d,old‖2 > ε2d or ‖x3d − x3d,old‖2 > ε3d. (1)

A typical map update can therefore be performed very

quickly and does not require high bandwidth. If large maps

need to be refined by bundle adjustment, we propose to iter-

atively update the map starting with points in the vicinity of

the current pose and proceeding with points further away.

When the map update is successful, the tracker automati-

cally resets and continues to track using the new map.
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Figure 3. Variational noise removal on the dense surface helps to cope with inaccurate or incomplete depth-maps. From left to right, λ =

{0.5; 0.3; 0.1; 0.01} decreases, i.e., smoothing is increased. The images show a scene where considerable amounts of data are missing;

however, the fusion algorithm can successfully gap the holes in the reconstruction.

3.4. Depth Map Creation

Quasi-dense depth-maps are computed based on the

keyframes stored by the mapper using a GPU-accelerated

multi-view version of the planesweep algorithm [4].

Keyframes might exhibit different lighting conditions,

therefore normalized cross correlation is used as robust sim-

ilarity measure for planesweep. Additionally, we discard

depth values with a correlation value below a threshold cmin

in order to get the most reliable depth hypotheses only. The

output of planesweep is typically noisy and contains outliers

as well as areas with missing data. To improve the subse-

quent fusion, raw depth-maps are smoothed using a total

variation (TV-L1) based image denoising model denoted by

min
ud

{∫
Ωd

|∇ud|dx+

∫
Ωd

λd|ud − fd|dx
}
. (2)

Here, ud is the unknown denoised image, fd is the input

and Ωd ⊆ R
2 is the image domain. Using total variation

as regularizer has the desired property of preserving edges

while smoothing the flat regions. The parameter λd controls

the amount of smoothing.

3.5. Depth Map Fusion

We employ a volumetric representation of geometry us-

ing a truncated signed distance function. In contrast to mesh

based representations, volumetric approaches allow solv-

ing for arbitrary 3D geometry, i.e. there is no constraint

concerning the genus of the surface topology. The recon-

struction algorithm is based on the method of [24, 23].

Using the signed distance formulation, the 3D surface is

represented implicitly as the zero level-set of a function

u : Ω → [−1, 1], where Ω is a subset of R3.

Depth-maps are converted to truncated signed distance

fields f and for memory reasons compressed into a his-

togram representation. Every voxel x has an associated

histogram h(x) which approximates the probability density

function of the truncated signed distance function. h(x, i)
denotes the histogram count of bin i, i.e. how often the value

di occurred in the distance fields f at voxel x.

Individual depth maps are fused together by minimizing

the convex energy functional

min
u

{∫
Ω

|∇u|dx+ λ

N∑
i=1

∫
Ω

h(x, i)|u(x)− di|dx
}
.

(3)

The regularization term
∫
Ω
|∇u|dx measures the total vari-

ation of the function u. It minimizes the surface area of the

level sets and hence effectively removes noise caused by the

outliers of the depth maps while simultaneously comput-

ing a minimal surface approximation in areas with missing

depth data (see Fig. 3). The data term measures the �1 dis-

tance of the solution to the individual distance fields. For

minimization, we employ a globally optimal primal–dual

approach as proposed by [6].

3.6. Visualization

Visualization is done through a GPU-accelerated ray-

caster which is capable of rendering iso-levels of u. The

advantage of this approach is that no additional data struc-

tures are necessary since the raycaster operates directly on

the implicit representation of geometry. Moreover, the re-

sult of raycasting is a single image which can be efficiently

transmitted, i.e. the mobile device used for supervision of

the reconstruction process does not require any special com-

putational capabilities.

4. Experiments
We conducted several indoor and outdoor experiments

using a ”Pelican” quad–rotor MAV by Ascending Technolo-

gies and a single industrial camera (IDS UI-1240SE) with

a maximum resolution of 1280 × 1024px, global shutter,

and an 8mm lens. The camera is connected via USB to a

1.6 GHz Intel Atom on–board computer with 1 GB RAM

and a wireless 802.11g link. Our server is equipped with a

2.54 GHz Quad-Core CPU and an NVIDIA GTX480 GPU

which is used for highly parallelized dense reconstruction.

The user interface is implemented on an Android-based

NVIDIA Tegra3 prototype tablet, which is again connected

by a wireless link.

A typical live reconstruction process starts with the cre-

ation of an initial map, which happens automatically if the

user has placed an artificial ARToolkitPlus marker [22] into

the scene. Then, the desired volume of interest for dense
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(a) Textured reconstruction (b) Difference to ground–truth (c) Maximum error

Figure 4. Reconstruction of the City of Sights model using an input resolution of 640×512px. The mean Hausdorff distance to ground–truth

is 2.4mm, the RMS distance is 3.9mm, and the maximum distance underneath the side gates of the Arc de Triomphe is 42.8mm.

(a) 1280 × 1024px (b) 640 × 512px (c) 320 × 256px
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Figure 5. Qualitative and quantitative evaluation of the input resolution. (a) to (c) show the reconstructed geometry for different input

resolutions with erroneous regions marked in red. The diagram (d) shows mean, RMS, and maximum Hausdorff distance compared to

ground–truth. The best result is obtained using an uncompressed keyframe resolution of 640 × 512px.

reconstruction, relative to the center and orientation of the

marker, has to be defined by the user. For outdoor exper-

iments, this process can be done on the ground or while

the aerial vehicle is airborne. Once the system is initial-

ized, reconstruction is fully automated and starts as soon as

a minimum of three keyframes is available.

In the following paragraphs we experimentally evalu-

ate the effect of different keyframe resolutions on the re-

construction. All other parameters can be interactively

tuned to obtain good reconstructions in different environ-

ments. However, for the evaluation we used the follow-

ing set of parameters: for initialization binit = 0.3m and

finit = 20, for keyframe selection bmap = 0.1m (indoors)

and bmap = 0.4m (outdoors), αmap = 20◦, and tmap = 3s,

for map updates ε2d =
√
2px, ε3d = 0.001m (indoors),

and ε3d = 0.01m (outdoors), for dense mapping N = 4,

λ = 0.4, λd = 0.5, and cmin = 0.65.

4.1. Model Evaluation

Typical evaluation datasets providing dense ground–

truth are not designed for SLAM, and thus tracking typi-

cally fails. We recorded our own evaluation data based on

standardized geometry and texture using the City of Sights
paper model [7], which allows us to demonstrate the quality

of our reconstructions by comparing to ground–truth. Digi-

tal blueprints and a virtual model of the scene are provided

online2. As proposed in the original paper, we use the Itera-

tive Closest Points method [25] to align the reconstructed

volume to the ground–truth mesh. We finally measure

the Hausdorff distance from reconstructed to ground–truth

points and visualize the residual in pseudo colors. Gruber

et al. [7] state that typical paper models have a mean devia-

tion of 3 mm compared to ground–truth, thus we denote our

reconstruction as correct within this limit. Errors of more

than 10 mm occur only in regions which are either seen by

a small number of views or which are hard to triangulate

due to missing texture. In the City of Sights model, this ap-

plies to the top of the Irish Round Tower and the inner part

of the Arc de Triomphe. A standard result for an input reso-

lution of 640×512px, as well as a pseudo–colored distance

image are shown in Fig. 4.

Our system can capture and process the full image reso-

lution of 1280×1024px with a frame rate of 5fps on–board

the quadrotor helicopter. Frame rates increase to 10fps
when lowering the image resolution to 640 × 512px, and

20fps for 320 × 256px. We compare the different resolu-

tions and frame rates by recording uncompressed video with

full resolution and 20fps on a desktop computer. The data

is then ported to a laptop, resampled to the correct resolu-

tion and frame rate, and used as input to the tracker which

sends keyframes over WiFi to the server. The rather com-

plicated setup perfectly simulates our system; however, re-

2http://cityofsights.icg.tugraz.at
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(a) Scene photo (b) Textured reconstruction

Figure 6. Office scene (indoor) with a reconstruction rotated to an

overhead view. Note that even weakly textured regions are recon-

structed. Volume size 320× 320× 320 voxels.

(a) Untextured reconstruction (b) Textured reconstruction

Figure 7. Dense reconstruction of complex geometry. Thanks to

our volumetric reconstruction approach, we obtain smooth sur-

faces and do not depend on topological constraints.

peated reconstructions might still differ due to network and

CPU workloads. Fig. 5 shows a qualitative and quantita-

tive comparison of reconstructions with different keyframe

resolutions based on the Hausdorff distance. While the full

resolution provides the smoothest result as expected, track-

ing often fails due to the low frame rate and some holes

remain. Medium resolution performs best, whereas the low

resolution of 320 × 256px cannot connect all extrusions in

the model.

Directly streaming the imagery to the server has also

been evaluated, and is possible with the same frame rate

for compressed medium resolution (80% JPG) and uncom-

pressed low resolution images. While low image resolution

has already been shown to be undesirable, compression also

affects the reconstruction quality (see Fig. 5(d)). Addition-

ally, the benefit of having latency-free pose updates on the

MAV is omitted.

Finally, when comparing to the non–distributed system

we did not see significant deviations in reconstruction qual-

ity. A difference is only apparent if the tracker has to

quickly update the map several times in a row, which re-

sults in a short-term loss of the map because of the network

latency. However, this is in general not an issue when op-

erating outdoors because the distance to the scene is larger

and less frequent map updates are required.

4.2. Real–World Evaluation

Our system has also proven to deliver very good results

in real–world scenes. We have successfully reconstructed

indoor office scenes by moving the micro aerial vehicle

(Fig. 6) and outdoor scenes by flying it (Fig. 8). The typi-

cal acquisition time is below 10 minutes for all the scenes

shown, and dense reconstruction is computed in real-time,

with visualization on the tablet. Our reconstruction ap-

proach is not tied to a specific topology but can visualize

very complex scenes as shown in Fig. 7. We can also handle

different input such as thermal imaging data, where colored

texture is ultimately required, and reconstruct the dense 3D

scene on–the–fly. More details can be found online3 in the

accompanying video.

5. Conclusion

We have presented the first system that is capable of gen-

erating live dense volumetric reconstructions based on input

provided by a mobile platform. We showed how existing

state-of-the-art approaches to tracking, mapping, and dense

reconstruction can be adapted to work in a distributed en-

vironment with modern technologies such as micro aerial

vehicles for image acquisition and tablet computers for vi-

sualization. Our work focuses on exploiting the individual

capabilities of the devices, which leads to an interactive sys-

tem that is able to tolerate mistakes of the individual parts.

In future work we will further extend the capabilities

of our system in outdoor reconstruction. Our current re-

sults could be further improved by adapting the tracking ap-

proach. Currently, re–localization needs to be run on many

frames to cope with repetitive patches. Additionally, we

propose to research multiple volumes which are indexed by

GPS, compass, and depth data to cope with the large spaces

in outdoor scenes.
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