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Abstract

Human activity recognition is central to many practical
applications, ranging from visual surveillance to gaming
interfacing. Most approaches addressing this problem are
based on localized spatio-temporal features that can vary
significantly when the viewpoint changes. As a result, their
performances rapidly deteriorate as the difference between
the viewpoints of the training and testing data increases. In
this paper, we introduce a new type of feature, the “Han-
kelet” that captures dynamic properties of short tracklets.
While Hankelets do not carry any spatial information, they
bring invariant properties to changes in viewpoint that al-
low for robust cross-view activity recognition, i.e. when
actions are recognized using a classifier trained on data
from a different viewpoint. Our experiments on the IXMAS
dataset show that using Hanklets improves the state of the
art performance by over 20%.

1. Introduction
Recognition of actions in video is central to many ap-

plications, including visual surveillance, assisted living for
the elderly, and human computer interfaces [1, 4, 17, 28]. A
significant portion of the most recent work in activity recog-
nition [5, 19, 20, 12] has been inspired by the success of
using bag of features (BoF) approaches for object recogni-
tion. Other approaches are based on time-series using tra-
jectories or a combination of local features and trajectories
[27, 23, 29, 14]. While these approaches are quite success-
ful in recognizing actions captured from similar viewpoints,
their performance suffer as the viewpoint changes due to
the inherent view dependence of the features used by these
methods.

In contrast, there is a smaller body of work address-
ing the problem of multi-view action recognition. Some
of these approaches rely on geometric constraints [32],
body joints detection and tracking [22, 21], and 3D mod-
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els [30, 31, 8, 15]. More recent approaches transfer fea-
tures across views [16, 7] or use self-similarities as quasi-
view invariant features [10, 11]. However, the performances
for these approaches are still far below the performances
achieved for single view activity recognition.

1.1. Paper Contributions

In this paper, we propose Hankelets – the Hankel ma-
trix of a short tracklet – as a new feature to use with a BoF
approach to recognize activities across different viewpoints.
Hankelets provide an alternative representation for activities
that carries viewpoint invariance by capturing their dynam-
ics instead of simple spatial gradient information. They are
easy to extract and do not require camera calibration, 3D
models, body joint detection, persistent tracking or spatial
feature matching. Because building a codebook of Han-
kelets requires comparisons of millions of these features,
we also propose a simple and fast to compute dissimilar-
ity score that can be used for this purpose. We tested the
proposed approach with the IXMAS dataset [30] and our
experiments show a performance improvement of 20% over
the state of the art. A somewhat similar approach using
bags of dynamic systems was proposed in [24] for view-
invariant dynamic texture recognition. However, their ap-
proach used dense cubes of pixels, required nonlinear di-
mensionality reduction, system identification and solving a
Lyapunov equation. In contrast, our approach uses track-
lets, does not require system identification or prior knowl-
edge of the dynamics involved and only requires computing
matrix traces.

The paper is organized as follows. Section 2 gives a brief
summary of background material on dynamical systems and
Hankel matrices. Section 3 gives the details of the proposed
approach and section 4 discusses experimental results com-
paring the proposed approach against previously reported
results. Finally, section 5 gives final remarks.

2. Background: Hankel Matrices
Dynamic systems have been recently used in a wide

range of computer vision applications, including dynamic
texture recognition, target tracking, and activity recogni-
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Figure 1. Sample frames of activities observed from five different
view points from the IXMAS dataset.

tion. Their main appeal is that they can capture the essence
of the temporal evolution of the data in a compact way that
it is suitable for both analysis (i.e. dynamic texture or ac-
tivity recognition) and synthesis (i.e. prediction of target
location for tracking, synthesis of dynamic textures, etc.).
While sometimes the dynamic model is assumed a priori,
for example brownian motion for tracking applications, it is
often more desirable to estimate the dynamic model directly
from the available data as explained below.

Given a temporal sequence of a measurement vector
yk ∈ Rn, the goal is to model its temporal evolution
as a function of a relatively low dimensional state vector
xk ∈ Rd that changes over time. The simplest dynamical
model is a linear time invariant (LTI) system of the form:

yk = Cxk + wk

xk = Axk−1, xo given (1)

where both the state and the measurement equations are lin-
ear, the matricesA and C are constant over time, and where
wk ∼ N(0, Q) is uncorrelated zero mean Gaussian mea-
surement noise. The dimension of the state vector, d, is the
order (memory) of the system and is a measure of its com-
plexity.

Unfortunately, an important limitation to the practical
use of models of the form (1) in computer vision, is that one
must assume or estimate the dimensions and values of the
matrices A and C and the initial vector xo. Further, given
a finite number of measurements of yk, the set of triples
(A,C,xo) that could have generated this data is not unique1

and trying to jointly identify the dynamics (A,C) and the
initial condition xo leads to computationally challenging
non convex problems. These difficulties can be avoided by
working with the Hankel matrices of the data as proposed
in [14] and summarized below.

Given a sequence of output measurements from the sys-
tem (1), yo, . . . ,yr+s, its associated (block) Hankel matrix

1This is related to the concepts of consistency set and diameter of
information [25], Chapter 10.
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Figure 2. Hankelets represent a tracklet by stacking the coordinates
(xi, yi)

′ of the data points from overlapping subsequencies into a
Hankel matrix that has constant block-antidiagonals.

Hs,r
y is:

Hs,r
y =


yo y1 y2 . . . yr

y1 y2 y3 . . . yr+1

...
...

...
...

...
ys ys+1 ys+2 . . . yr+s

 (2)

Note that the columns of the Hankel matrix correspond to
overlapping subsequences of the data, shifted by one, and
that the block anti-diagonals of the matrix are constant as
visualized in Figure 2. As explained in [14], this special
structure of this matrix is what encapsulates the dynamic
information of the system. In particular, a well known re-
sult from realization theory [9, 18] is that, under mild con-
ditions, the rank of the Hankel matrix is the order n of the
system rank(Hs,r

y ) = n provided that r, s ≥ n. Further-
more, writing yk using an nth order autoregressive model
of the form:

yk = a1yk−1 + a2yk−2 + . . .+ anyk−n (3)

and setting r = n in (2), it is easy to see that the last column
of the Hankel matrix is a linear combination of the previous
ones and that the coefficients of this combination are pre-
cisely the coefficients of the auto regressor. That is,

Hs,n
y

[
aT −1

]T = 0

In this paper, we will use two useful properties of the
Hankel matrix:

Dynamic Subspace Invariance to Initial Condi-
tions.The columns of two Hankel matrices corresponding to
two trajectories of the same dynamical system in response
to potentially different initial conditions span the same lin-
ear subspace, in the absence of noise. This property can
be easily shown [14] by factoring the Hankel matrix into
H = ΓX where Γ is the system observability matrix

Γ =
[
CT . . . (CAm)T

]T and X =
[
xo . . . xm

]
is a matrix with columns given by the state trajectories.

Dynamic Subspace Invariance to Affine Transforma-
tions. The columns of two Hankel matrices corresponding
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to a trajectory and its affine transformation, span the same
linear subspace which is orthogonal to the auto regressor
vector of the trajectories

[
aT −1

]T ∈ Rn+1. This prop-
erty can be easily shown [2] by writing Yk =

∑
aiYk−i

and using the fact that affine transformations yk = ΠYk

are linear. Then,

yk = Π
∑

aiYk−i =
∑

aiΠYk−i =
∑

aiyk−i

and hence the two given Hankel matrices Hy and HY share
the same auto regressor.

3. Action Representation Using Hankelets
In this section we describe an approach for cross-view

activity recognition, where the system is trained using data
from one viewpoint and is tested using data captured from
a different viewpoint. Our approach is inspired by the ac-
tivity recognition method using Hankel matrices proposed
in [14] and motivated by the affine invariance property of
Hankel matrices introduced in [2]. Indeed, the affine invari-
ance property of Hankel matrices suggests that they should
be good features to use for recognizing activities from dif-
ferent viewpoints. However, the original approach in [14]
relies on Hankel matrices of video-long trajectories of fea-
tures, such as cuboids or histogram of gradients (HOG),
which are then compared using canonical correlations be-
tween their spanned subspaces, called dynamic subspace
angles (DSA). A drawback of the DSA approach is that
it requires persistent tracking through out the whole video,
something that it is difficult to achieve in cluttered scenes
with complex activities, and a problem that is exacerbated
when considering videos from multiple viewpoints. On the
other hand, the initial condition invariance property intro-
duced in [14] suggests that one could use pieces of trajec-
tories, i.e. tracklets, without loss of performance. Thus,
we propose a modification of this approach, in the spirit of
bag of words approaches, that instead uses many more, but
densely distributed, and much shorter, tracklets. The advan-
tage of using shorter tracklets is that they are easier to ob-
tain, and by using large numbers of them, it is more likely
that some of these tracklets may be visible from different
viewpoints. However, before we can do this, we must ad-
dress the issue of how to efficiently compare large numbers
of (noisy) Hankel matrices since using the DSAs as pro-
posed in [14] becomes prohibitive as the number of Hankel
matrices increases2.

3.1. Local Dynamic Features: Hankelets

The primary features used in our approach are Hankel
matrices of relatively short tracklets that we call “Han-
kelets”. To obtain Hankelets from a video, we first obtain

2 Each comparison requires estimates of the ranks of the Hankel ma-
trices and three singular value decompositions.

Figure 3. Dense tracklets for the sample frames in Figure 1 (code
provided by the authors of [29]). Red dots indicate point positions
in the current frame, while tracklets are shown in green.

densely distributed short (typically 15 frames) trajectories
of features sampled on a grid, tracked at different scales.
The trajectories consist of a set of temporally ordered 2D
normalized velocities

1∑t+L−1
j=t ‖∆pj‖

(∆pt,∆pt+1, . . . ,∆pt+L−1)

where L + 1 is the number of tracked frames and ∆pt =
(xt+1 − xt, yt+1 − yt)T is a vector with the two compo-
nents of the velocity of the tracked feature at time t [29].
Both, static trajectories and trajectories with sudden large
displacements are discarded. Finally, Hankelets are ob-
tained by assembling the velocity trajectories into Hankel
matrices using equation (2) and normalizing them using the
Frobenius norm (‖M‖2F = trace(MTM)) :

Ĥp =
Hp

‖HpHT
p ‖

1/2
F

3.2. Comparing Hankelets

Given two Hankelets Ĥp and Ĥq we would like to de-
termine if the corresponding trajectories were generated by
the same dynamical system. In principle, one could use an
idea similar to that proposed in [14] and define a distance
between Hankelets in terms of the angles of the subspaces
spanned by their columns. However, a difficulty here is that
this approach requires accurately estimation of these sub-
spaces from noisy data3. To avoid this problem, in this pa-
per we will use the following dissimilarity score function to
compare Hankelets:

d(Ĥp, Ĥq) = 2− ‖Ĥp.Ĥ
T
p + Ĥq.Ĥ

T
q ‖F (4)

The intuition behind this definition is to exploit the triangle
inequality to capture the degree of “alignment” of the col-
umn subspaces of Ĥp and Ĥq in a computationally efficient

3To illustrate this point, note that generically, if two tracklets p and q
are corrupted by noise to q̂ = q + ηq and p̂ = p + ηp, the correspond-
ing Hankelets Ĥp̂ and Ĥq̂ will have full column rank. Hence the angle
between the subspaces of the noisy Hankelets is zero, even if p and q
correspond to different activities.
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Figure 4. The histogram of dissimilarities for a typical cluster in
the dictionary of Hankelets resembles a Gamma distribution.

way, while de-emphasizing the effect of directions poten-
tially associated with noise. Note that, from the fact that the
Hankelets are normalized, it follows that d ≥ 0. Next, con-
sider the singular value decompositions Ĥp = UpΣpV

T
p ,

Ĥq = UqΣqV
T
q , and define Ûp

.= UpΣp, Ûq
.= UqΣq and

Θp,q
.= ÛT

p Ûq. It is easy to see that, due to the normaliza-
tion of the Hankelets, ‖Θp,q‖F ≤ 1, and that in terms of
this matrix, d can be rewritten as:

d(Ĥp, Ĥq) = 2−
√

2 + 2‖ΘT
p,qΘp,q‖F

Thus, d = 0 if and only if Θp,q = 1, or, equivalently,
〈Ûp, Ûq〉 = trace(ÛT

p Ûq) = 1. Further, from the defini-
tion of Ûp and Ûq it follows that directions corresponding
to small singular values of Ĥp and Ĥq have little effect in
d. Thus, d ≈ 0 for Hankelets corresponding to noisy mea-
surements of the same dynamical system.

3.3. Codebook of Hankelets

Like in the traditional bag of features framework, mil-
lions of low level features from training data need to be
clustered to build a codebook or dictionary. The algorithm
most commonly used for this step is the K-means algo-
rithm. However, in our case the local features are Han-
kelets representing linear dynamic systems and computing
their mean would be meaningless. Thus, we modified the
K-means algorithm to work using the set of dissimilarities
D = {dpq = d(Ĥp, Ĥq)} between all pairs of Hankelets.
Then, a Hankelet is assigned to the cluster with the small-
est dissimilarity between its “representative” and the given
Hankelet, where the “representative” of each cluster is se-
lected as follows. Let Dw = {dw1, dw2, . . . , dwnw} be the
dissimilarity scores for all the Hankelets in cluster w with
respect to an arbitrarily selected Hankelet in the same clus-
ter and µw be their mean. Then, the Hankelet in the clus-
ter that has the dissimilarity score closest to µw is selected
as the “representative” or “center” of the cluster. Figure 4
shows a typical histogram of the dissimilarity scores with
respect to the center of a cluster. As seen there, the distribu-
tion closely resembles a Gamma distribution, with a large

number of Hankelets with very small dissimilarities and the
number of Hankelets exponentially decreasing for increas-
ing dissimilarities. Thus, we will represent each cluster w
by its representative Hankelet Ĥw and a Gamma pdf:

p(d|w) =

{
abdb−1

(b−1)! e
−ad for d ≥ 0

0 otherwise

with mean µw = b/a and variance σ2
w = b/a2 estimated

from the data. Furthermore, each cluster w has a prior prob-
ability P (w) where

P (w) ≈ Number of Hankelets in cluster w
Total Number of Training Hankelets

3.4. Bags of Hankelets and Activity Recognition

Each activity video is represented with a Bag of Han-
kelets (BoHk) – i.e. a histogram of words from the dic-
tionary of K Hankelets. This is done by assigning to each
Hankelet in the video the label of the cluster with the maxi-
mum a posteriori probability:

label(Ĥ) = arg max
w

p(d(Ĥ, Ĥw)|w)P (w) (5)

where Ĥw is the representative Hankelet of cluster w and
P (w) is the prior probability of cluster w. Then, the entire
video is represented by a BoHk given by the histogram of
these labels. Finally, activities can be recognized by training
a support vector machine (SVM) using BoHks from training
data as feature vectors.

3.5. Bi-Lingual Hankelets

Now consider the problem of activity recognition when
videos from multiple view points are available. In this case,
we seek to relate knowledge about an activity as seen from
one view to knowledge of the same activity as seen from a
different view.

As shown in [2] the dynamic subspace associated to a
Hankel matrix, and hence to a Hankelet, is invariant with
respect to affine transformations. Thus, Hankelets of cor-
responding features across views can be explained by the
same regressor and hence have small dissimilarity, provided
that the cameras are far enough4 to disregard perspective
distortion effects. Using the multi-lingual analogy intro-
duced in [16], one can think of Hankelets of trajectories as
“bi-lingual” words that have the same “meaning” in the lan-
guages of the two viewpoints.

It should be noted that, in general, not all features visible
in one view are visible in the other, due to self-occlusions
and limited field of view overlap. Thus, videos of the same
action but seen from different viewpoints can have very dif-
ferent BoHks. Nevertheless, when the field of view of the

4This is usually the case in most surveillance systems.
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Figure 5. Bilingual Hankelets: Green and blue tracklets indicate
bi-lingual and no-bilingual Hankelets, respectively, and red points
indicate the ending position in the current frame for each tracklet.
See text for discussion.

two cameras partially overlap, many features are likely to
be visible from both views for at least a short period of
time (for 30 fps videos, a tracklet only lasts 0.5 seconds).
Thus, this problem can be easily overcome by restricting
the label of bi-lingual to only those Hankelets that are vis-
ible from both points of view. Figure 5 shows examples
from the IXMAS dataset for two views of three different
activities, where green and blue tracklets indicate bi-lingual
and not bi-lingual Hankelets, respectively. There, it is seen
that even for very large differences of viewpoint (top exam-
ple) or significant self-occlusion (middle example) there are
many bi-lingual Hankelets. As shown in Figure 5 and cor-
roborated by our experiments in section 4, bi-lingual words
occur often enough that a dictionary made entirely of bi-
lingual words is sufficiently rich to capture the meaning of
the activities across different views.

Bi-lingual Hankelets can be easily learned from unla-
beled videos captured simultaneously from the different
viewpoints by matching Hankelets across views. A Han-
kelet from one viewpoint is assigned a match on the other
view if both Hankelets start at the same time and their dis-
similarity is less than a selected threshold. In the cases when
there is more than one candidate match, the one with the
smallest dissimilarity is selected. It should be emphasized
that the videos do not need to be labeled and that the match-
ing is purely done on the Hankelets, not their image location

or any other spatial features or geometrical constraints. In-
tuitively, the purpose of the matching process is to implicitly
learn a rough mapping between the different views. Once
bi-lingual Hankelets have been identified, it is possible to
use them as a common vocabulary between the two views,
so that a classifier trained on data from one view is capable
of recognizing activities in the other view.

3.6. Cross-view Activity Recognition

In this section we describe the details for training and
testing a system for cross-view activity recognition us-
ing bags of bi-lingual Hankelets (BoBHk), given a labeled
database consisting of c classes of actions, with Nc sam-
ple videos for each class captured from two cameras, the
“source” and the “target” viewpoints. For a better compar-
ison to previous approaches the procedures follow the ex-
perimental protocol proposed in [7]. The protocol uses a
leave-one-action-class-out strategy, which means that each
time only one action is used for testing in the target view
and that the data from that action is not used to learn the
codebook of Hankelets.

Training Procedure
1. Learn Bi-lingual Hankelets. Extract Hankelets from

the unlabeled source and target videos and match them us-
ing (4). Do not include any data of the activity to be tested
in this step.

2. Build Codebook of Bi-lingual Hankelets. Using
the modified K-means algorithm, build a dictionary with K
words by clustering the bi-lingual Hankelets.

3. Label Hankelets in Source Data. Assign a label
from the codebook to every Hankelet in all the source data
using (5)5. Each video is represented using a BoBHk.

4. Train Classifier using Source Data. A SVM is
trained to classify one activity against all others using the
BoBHks from labeled data from the source view.

Testing Procedure
1. Label Hankelets in Target Data. Assign a label from

the codebook to every Hankelet in all the target data using
(5)5. Each video is represented using a BoBHk.

2. Classify Target Data. Using the classifier trained on
the source data, classify the data from the target view.

4. Experimental Results
The proposed approach was tested on the IXMAS multi-

view action data set [30] which consists of 11 daily-life ac-
tivities (check watch, cross arms, scratch head, sit down,
get up, turn around, walk, wave, punch, kick, and pick up.).

5If the a posteriori probability is below a threshold, the Hankelet is not
used.
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Table 1. Classification accuracy for KTH (testing sets) using Hankelets.

Boxing HClapping HWaving Walking Running Jogging
95.71 95.48 99.09 99.52 91.52 94.05

The activities were performed by 12 different actors and ob-
served from 5 different viewpoints (four side views and one
top view). While the focus of the proposed approach is for
cross-view activity recognition, we also tested the perfor-
mance of Hankelets to recognize activities from a single
viewpoint to have a baseline. The test was performed us-
ing six types of human activities (walking, running, boxing,
hand waving, hand clapping, and jogging) from the widely
used KTH activity dataset [26].

4.1. Implementation Details

We use 15 frames long tracklets extracted with the code
provided by the authors of [29]. A typical video has approx-
imately 15,000 tracklets with an average of 20 tracklets per
frame. The tracklets are then assembled into 16 × 8 Han-
kelets. To compute the dissimilarity scores between Han-
kelets we use a fast implementation of (4) that exploits the
structure of the Hankel matrices (i.e. their anti-diagonal
blocks are constant). For single view activity recognition
we used a codebook of 300 Hankelets. For cross-view ac-
tivity recognition, we only use bi-lingual Hankelets, i.e.
Hankelets that appear both in the source and target views
(approximately 80% of all Hankelets for most views). Bi-
lingual Hankelets were clustered into codebooks with K =
1, 000, with one codebook for each pair of views and each
testing activity (to keep the testing activity out of the train-
ing data). For classification we use a one-against-all SVM
with histogram Chi-Squared Kernel. The final results are
reported in terms of average accuracy for all classes of ac-
tivity for each view.

4.2. Single View using BoHks

We tested the use of BoHks to recognize the six activi-
ties in the KTH dataset. The activities were performed by
25 subjects in four scenarios: outdoors, outdoors with scale
variation, outdoors with different clothing, and indoors. All
sequences have an homogeneous background and were cap-
tured by a stationary camera. The experiments were done
following the most commonly used experimental protocol,
described in the original paper [26]. Table 1 shows the
recognition accuracy for the six activities using Hankelets
and Table 2 compares the overall performance to the state
of the art. There we can see that using Hankelets alone,
without any kind of spatial feature, resulted in very compet-
itive accuracy with a small improvement of 0.87% over the

current state of the art.

Table 2. Comparison of overall performance for KTH dataset using
experimental protocol defined in [26]

Algorithm Perf.
Ours 95.89

Cao et al. [3] 95.02
Wang et al. [29] 94.2

Le et al. [13] 93.9
Li et al [14] 93.6

4.3. Cross-View using BoHks

In these experiments, we learn a codebook of 1000 Han-
kelets and train a one-against-all classifiers using data from
videos captured from each of the five source views in the
IXMAS dataset. Then, we test these classifiers on videos
captured from the remaining four target views, without
any data transfer between the views (i.e. we use all Han-
kelets, not just bi-lingual Hankelets). The results of the ex-
periments are summarized in Table 3 where the rows and
columns correspond to training (source) and testing (target)
views, respectively, and the columns Ours and A show the
average accuracy using BoHks and cuboids without model
transfer as reported in [16], respectively. The average ac-
curacy using BoHks is 56.4% while using cuboids is only
10.9%, that is an over 400% improvement. The vastly su-
perior performance using Hankelets clearly shows the ro-
bustness of the proposed features with respect to changes in
viewpoint. Not surprisingly, the top view (Camera 4) has
the worst performance since this viewpoint is very different
from the others. However, even for this view the BoHks
perform three times as better than cuboids.

Table 3. Classification accuracy without data transfer between
views. The rows and columns correspond to training (source)
and testing (target) views, respectively. The columns Ours and
A show the average accuracy using BoHks and cuboids without
model transfer as reported in [16], respectively.

Cam 0Cam 0 Cam 1Cam 1 Cam 2Cam 2 Cam 3Cam 3 Cam 4Cam 4

Cam 0
Cam 1
Cam 2
Cam 3
Cam 4

Ours A Ours A Ours A Ours A Ours A
83.70 14.40 59.20 10.69 57.37 10.61 33.62 19.09

84.27 16.12 61.58 11.11 62.75 7.41 26.93 9.22
62.52 10.27 65.17 11.80 71.96 12.90 60.14 8.08
57.05 11.15 61.45 8.59 71.04 9.98 31.24 9.30
39.60 8.80 32.84 8.46 68.12 9.22 37.36 10.06
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Table 4. Classification accuracy for cross-view activity recognition using BoBHks on the IXMAS dataset for each activity. Minimum and
Maximum accuracy for a given source/target pair are indicated in yellow and green, respectively.

Check Watch Cross Arms Scratch Head Get Up Sit Down Turn Around

Ave: 92.1 87.9 91.7 90.9 90.4 90.5
MAX: 96.2 96.2 96.5 91.7 91.7 97.5
Min: 89.6 67.4 77.0 89.9 86.4 68.7

Walk Wave Punch Kick Pick Up

Ave: 88.4 91.8 94.0 92.1 86.5
MAX: 97.7 96.0 99.2 94.7 94.7
Min: 72.0 90.4 90.2 89.9 69.7

%% Cam0_TrainCam0_TrainCam0_TrainCam0_Train Cam1_TrainCam1_TrainCam1_TrainCam1_Train Cam2_TrainCam2_TrainCam2_TrainCam2_Train Cam3_TrainCam3_TrainCam3_TrainCam3_Train Cam4_TrainCam4_TrainCam4_TrainCam4_Train
Cam
1Test

Cam
2Test

Cam
3Test

Cam
4Test

Cam
0Test

Cam
2Test

Cam
3Test

Cam
4Test

Cam
0Test

Cam
1Test

Cam
3Test

Cam
4Test

Cam
0Test

Cam
1Test

Cam
2Test

Cam
4Test

Cam
0Test

Cam
1Test

Cam
2Test

Cam
3Test

Action1
Action2
Action3
Action4
Action5
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89.6 90.9 93.4 90.9 90.9 90.9 91.2 90.9 90.9 94.9 92.2 91.2 91.7 93.2 96.2 90.9 93.7 90.4 93.7 93.7
96.2 92.9 92.4 89.4 86.1 94.2 76.3 67.4 83.3 92.9 73.2 76.8 93.7 92.9 94.7 82.8 92.7 91.2 96.2 92.7
96.2 91.7 94.2 87.4 93.9 90.9 87.1 77.0 92.2 93.7 96.5 92.7 93.9 96.0 96.2 90.4 90.7 90.7 92.4 90.9
91.7 90.9 90.7 89.9 91.2 90.9 90.9 90.9 90.9 90.9 90.9 90.9 90.9 90.9 90.9 90.9 90.7 90.9 90.9 90.7
91.7 88.9 90.2 90.9 90.9 89.9 90.9 90.9 90.9 90.9 90.9 90.9 90.9 90.9 90.9 90.9 86.4 88.4 90.9 91.4
96.5 91.4 89.4 90.9 97.5 92.4 91.4 92.7 91.7 91.2 92.4 92.7 87.1 90.7 91.2 68.7 90.4 90.7 92.4 88.9
96.2 82.3 83.3 72.0 97.7 89.9 89.9 75.8 91.2 91.9 90.9 90.7 85.9 91.2 93.7 82.8 91.2 90.9 90.9 90.7
93.7 90.9 96.0 90.9 92.4 90.9 91.9 90.9 90.9 90.9 90.9 90.9 94.7 94.7 91.2 90.9 90.4 90.9 91.4 90.9
98.5 92.7 96.0 90.9 99.0 93.4 98.2 90.2 96.0 90.7 90.9 97.7 99.2 93.9 90.9 90.9 90.9 90.9 97.5 90.9
93.7 91.9 92.9 93.4 93.9 91.4 92.4 90.9 91.2 91.4 91.9 91.2 93.4 91.4 90.9 91.9 91.4 91.9 94.7 89.9
94.7 91.2 91.4 84.1 91.4 90.9 90.9 81.8 87.9 90.9 89.4 87.9 82.3 69.7 69.7 76.8 87.9 89.6 91.7 89.4

90.57
90.34Table 5. Comparison against state of the art of classification accuracy for cross-view activity recognition using model transferring on the

IXMAS dataset. Columns Ours, A, B, C, and D correspond to our approach, [16]’s approach, [7]’s approach, [10]’s approach, and [6]’s
approach, respectively. The overall average accuracies are 90.57%, 75.3%, 58.1%, 59.5% and 74.4%, respectively.

4.4. Cross-View using BoBHks

In this section we report the results of experiments test-
ing the effect of using dictionaries of bi-lingual Hankelets
on the IXMAS dataset. As described in section 3.6 in this
case, only bi-lingual Hankelets are used to build the code-
book used to train the classifier in the source view. The
main effect of this limitation is to focus the classifier on fea-
tures that are likely to be visible from the target and source
views. The summary of the classification accuracies for all
source/target views combinations for each activity, together
with the overall average, maximum and minimum accuracy

are given in Table 4. In average, the activity easiest to iden-
tify is “Punch” with an average accuracy of 94.4% and the
hardest is “Pick Up” with an average accuracy of 86.5%.
These results are not surprising, since Punch is one of the
activities with the most exaggerated motions while Pick Up
is affected by severe self occlusion. Table 5 gives side by
side the average accuracy using BoBHks with the accuracy
of previous approaches [16, 7, 10, 6]. The overall average
accuracy using BoBHks is 90.57%, a 20.28% improvement
over the state of the art performance reported in [16] and a
60.58% improvement over using BoHk.
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5. Conclusion

In this paper we proposed a new dynamics-based fea-
ture (Hankelet) for activity recognition and a simplified
score to compare them. Hankelets are easily formed from
very short tracklets which do not require persistent tracking,
and capture dynamic information that is invariant to affine
transformations. Our experiments show that Hankelets per-
form slightly better than the state of the art in the simple
scenario when the training and testing data were captured
from the same viewpoint. More importantly, Hankelets per-
form extremely well in the more challenging scenario when
the viewpoints of the training and testing data are signifi-
cantly different. Our experiments show that using Hankelets
alone improve performance by over 400% compared to us-
ing cuboids on the IXMAS database. Finally, compared to
other cross-view approaches that specifically address view-
point changes, using a subset of Hankelets (i.e. bi-lingual
Hankelets) to compensate for self-occlusions, results in an
average accuracy of 90.57% that is an over 20% improve-
ment over the best performance on the IXMAS dataset re-
ported so far.
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