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Abstract

Combining multiple low-level visual features is a proven
and effective strategy for a range of computer vision tasks.
However, limited attention has been paid to combining such
features with information from other modalities, such as au-
dio and videotext, for large scale analysis of web videos. In
our work, we rigorously analyze and combine a large set of
low-level features that capture appearance, color, motion,
audio and audio-visual co-occurrence patterns in videos.
We also evaluate the utility of high-level (i.e., semantic) vi-
sual information obtained from detecting scene, object, and
action concepts. Further, we exploit multimodal informa-
tion by analyzing available spoken and videotext content
using state-of-the-art automatic speech recognition (ASR)
and videotext recognition systems. We combine these di-
verse features using a two-step strategy employing multiple
kernel learning (MKL) and late score level fusion methods.
Based on the TRECVID MED 2011 evaluations for detect-
ing 10 events in a large benchmark set of ∼45000 videos,
our system showed the best performance among the 19 in-
ternational teams.

1. Introduction
There has been considerable interest in recent years for

developing techniques that can rapidly analyze a large num-
ber of user-generated videos in websites like YouTube [34,
24, 32, 25]. Bag-of-words approaches [6] based on low-
level visual features have shown promise in large scale im-
age retrieval and action recognition in unstructured videos
[31, 15]. However, limited attention has been paid to com-
bining such features with information from other modali-
ties, such as audio and videotext, for large scale analysis of
web videos. Further, there are typically far more negative
examples than positive examples (e.g., MED’11 dataset),
which induces a strong bias toward the negative class in
many traditional machine learning approaches.

In our work, we present an approach to address these

challenges using a two stage feature fusion strategy. In the
first stage, we combine multiple low-level audio and visual
features using a state-of-the-art, fast multiple kernel learn-
ing (MKL) approach presented in [29]. We evaluate the
individual performance of different low-level features mod-
eling motion [11, 31], grayscale appearance [16, 1], color
[27] and audio [7], as well as different combinations of
them. As expected, combining diverse feature sets produces
the best performance, but even combining similar features
like STIP [11] and HoGHoF3D [31] produces better per-
formance than individual features. To avoid learning trivial
classifiers that declare all examples as negative, we perform
an extensive grid search of parameters in MKL. At each pa-
rameter setting, we estimate a detection threshold using k-
fold validation and evaluate performance using a metric cor-
responding to a weighted sum of missed detection and false
alarm rates. This framework allows us to learn robust clas-
sifiers that show good generalization on unseen test data.
Furthermore, it can be used to optimize for other metrics
such as area under curve (AUC) or mean average precision
(MAP).

In the second stage, we combine multiple MKL-based
subsystems using a late, score-level fusion strategy. We
do this in two steps: first, we use a double sigmoid score
normalization to model the large number of negative sam-
ples clustered in a small range below the detection thresh-
old, and the small number of positive samples distributed
in a large range of scores above the threshold; and in the
second step, we combine the normalized score from mul-
tiple sub-systems to get the final event detection score for
each video. For this step, we tested a Bayesian model com-
bination (BayCom) [23] approach using parametric models
learned from training data, and we also propose a novel non-
parametric fusion strategy based on video specific weighted
average fusion. We compare our approach to several stan-
dard techniques based on average, maximum and voting of
system scores, and found weighted average fusion to con-
sistently outperform other approaches, including BayCom.
The use of a large set of low and high level visual and audio
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features and advanced early and late fusion strategies con-
trast our work from earlier studies, such as [25].

The rest of the paper is organized as follows - Sections
2 and 3 describe the suite of low-level audio and visual fea-
tures that we use and different coding and pooling strate-
gies. Sections 4∼6 describe our approaches to exploit ob-
ject content, speech and videotext, respectively. Section 7
and 8 describe fusion strategies. Section 9 presents experi-
mental results, and section 10 summarizes our work.

2. Low-level Features
We extract a large set of low-level features from video,

which can be grouped into four broad classes: Appearance,
Color, Motion and Audio.

2.1. Appearance Features

Appearance features model local shape patterns by ag-
gregating quantized gradient vectors in grayscale images.
We use the following appearance features in our system:
SIFT [16]: These features are among the most widely used
in vision and use a difference of Gaussians (DoG) approach
to detect interest points at different scales. A 128 dimen-
sional feature descriptor is then extracted at each point to
capture local image gradients. These descriptors are scale
invariant and robust to affine distortion.
SURF [1]: The speeded-up robust features (SURF) are sim-
ilar in principle to SIFT, but are several times faster to ex-
tract. They compute sums of 2D Haar Wavelet response and
are potentially more robust to image transformations com-
pared to SIFT.
D-SIFT [2]: This is a dense version of SIFT where, in-
stead of detecting interest points, the 128-dimensional fea-
ture vectors are extracted by uniformly sampling over the
image. D-SIFT typically generates 3 times the number of
points generated by SIFT and has been shown to outper-
form SIFT for image classification [2].
CHoG [3]: The compressed histogram-of-oriented gradi-
ent features use a low bit-rate feature descriptor with a 20
times reduction in bit-rate compared to SIFT and other fea-
tures. They have shown competitive performance in image
retrieval tasks.

2.2. Color Features

These features, proposed in [27], extend SIFT features
by splitting the image into color planes, computing descrip-
tors in each plane, and then concatenating them for each
detected interest point. We consider 3 different color fea-
tures:
RGB-SIFT: This feature splits an image in the RGB color
space and computes SIFT descriptors for each interest point,
in each of the color planes, before concatenating them.
Opponent SIFT: Similar to RGB-SIFT, but splits each im-
age in the Opponent color space.

C-SIFT: Builds on Opponent SIFT by using C-invariants to
eliminate intensity in the opponent space.

2.3. Motion Features

We use two features for modeling motion patterns:
STIP [11]: The Space-Time Interest Points (STIP) extends
the notion of spatial interest points to the spatio-temporal
domain by detecting 3D corners, then computing scale-
invariant spatio-temporal descriptors from image gradients
and optical flow.
HoGHoF3D [31]: These features are similar to STIP, ex-
cept that the points are sampled from a uniform spatio-
temporal grid. They are the slowest features in our system
to extract and take 3X as long as STIP to extract.

2.4. Audio Features

We extract the following low-level features from the au-
dio stream:
MFCC [7]: The mel-frequency cepstral coefficients are
widely used in speech processing and transform the raw au-
dio into a 45 dimensional feature stream using the following
steps. Features are extracted from overlapping frames of au-
dio data, and each frame is windowed with a Hamming win-
dow to compute a power spectrum for the frequency band
80-6000 Hz. From this, 14 Mel-warped cepstral coefficients
are computed. These base cepstral features with their first
and second derivatives, together with audio energy and its
first and second derivatives, compose the 45-dimensional
feature vector.
FDLP [17]: We also incorporate the Frequency Domain
Linear Prediction (FDLP) feature into the system. The
FDLP model, in contrast to the short-term analysis by
MFCC, is based on linear prediction on different frequency
bands, and describes the perceptually dominant peaks and
removes the finer-scale details. The resultant FDLP feature
has 588 dimensions and has been shown to perform well
when channel distortion varies.
Audio Transients [5]: In contrast to MFCC, these fea-
tures do not have uniformly-spaced frames and instead fo-
cus on audio transients. First, spectrograms are extracted
with varying window lengths and high-magnitude in any of
the frequency bins of these windows proposes a candidate
transient event. At each event time, a spectrogram is ex-
tracted from the temporal neighborhood, and represented
using a vector representation.

3. Coding and Pooling Strategies
We represent the information from different feature de-

scriptors using the popular bag-of-words representation.
This consists of two steps - coding, where the descriptors
are projected to a pre-trained codebook of descriptor vec-
tors, and pooling, which aggregates the projections to a
fixed length feature vector. Following the notations in [2],
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let a video V be represented by a set of low-level descriptors
xi, where i ∈ {1 . . . N} is the set of locations. Let M de-
note the different spatial/spatio-temporal regions of interest
[13, 12], andNm denote the number of descriptors extracted
within region m. let f and g denote the coding and pool-
ing operators respectively. Then, the vector z representing
the whole video is obtained by sequentially coding, pooling
over all regions and concatenating:

αi = f(xi) i = 1..N (1)
hm = g ({αi}i∈Nm

) m = 1, . . . ,M (2)
zT = [hT1 . . . h

T
M ] (3)

Coding: In hard quantization, we assign each feature vector
xi to the nearest codeword, from a codebook learnt using k-
means or a similar unsupervised clustering algorithm:

αi ∈ {0, 1}K , αi,j = 1⇔ j = arg min
k≤K
||xi − ck||2 (4)

where ck is the kth codeword. In soft quantization [28],
the assignment of the feature vectors to codewords is dis-
tributed as

αi,j =
exp

(
−β||xi − cj ||2

)∑K
k=1 exp (−β||xi − ck||2)

(5)

where β controls the soft assignment. Sparse coding [18]
uses a linear combination of a small number of codewords
to approximate xi. One popular approach that we use is to
optimize:

min
α
||x− Dα||2, s.t. ||α||0 ≤ k (6)

Pooling:The two most popular pooling strategies are aver-
age and max. In average pooling, we take the average of
the αi assigned to different codewords for different feature
vectors as

h =
1

N

N∑
i=1

αi. (7)

In max pooling, we take the maximum of the αi’s as

h = max
i=1..N

αi. (8)

These pooling techniques, in effect map the set of projec-
tions to a codeword, to a single scalar value and have shown
good performance for image classification tasks, where we
pool hundreds of feature projections. In videos, the number
of interest points extracted is of the order of 105 ∼ 106 and
pooling all these features to a single scalar is suboptimal.
Recently, a pooling technique called alpha histogram was
introduced in [30], where the αi values are aggregated in a
histogram, and showed promising results for a video classi-
fication task. In our work, we evaluate performance of these
different coding and pooling strategies for each feature type.

4. Object Detection

Intuitively, object cues seem likely to be important for
activity analysis; there have been several studies in recent
years, e.g., [9] showed the mutual dependence between
movement dynamics and objects involved in the action, and
[26] extended bag-of-words models with object and scene
context and applied it the challenging Hollywood 2 action
dataset. In a related study [14] used a large set of 200 ob-
ject detectors for high-level scene classification using the
maximum response of the detectors as a feature.

Drawing upon work such as [26] and [14], we define a
probabilistic representation of object detections, referred to
as spatial probability map, and computed as follows. A
state-of-the-art object detector [8], is used to compute de-
tections in each video frame and the pixels within the detec-
tions’ bounding boxes are set to 1 to create a detection mask
for each object concept. The detections masks are averaged
over the duration of the video, and normalized to an n × n
grid to get the spatial probability map. The feature provides
robustness to missed and false detection due to averaging
over time, and encodes the expected location and spatial
extent of the various object concepts. In our experiments,
a 16 × 16 grid was used giving a 256 dimensional vector
for each video for each object concept. Figure 1 shows
an example frame from a “vehicle getting unstuck” video
with the detection results, and the spatial probability map
obtained by average over the duration of the video. Notice
how the map encodes presence of two “blobs” and their ap-
proximate locations.

Figure 1. Example car detection result and spatial probability map.

5. Automatic Speech Recognition

Human language content is often present in consumer
videos in the form of the spoken content in the audio track.
Such content could potentially provide useful information
for detecting events of interest. For example, in videos
of tutorials about making dishes and documentaries about
particular expeditions, the accompanying spoken narrative
provides information about the category of the video. Be-
sides, the semantic information from human language is
typically complementary to the information from low-level
visual features. Our approach for using the spoken language
information in the audio track involves the following three
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modules.
First, within the video clips, the speech segments are

identified by a speech activity detection (SAD) system.
The SAD system employs two Gaussian mixture models
(GMM), for speech and non-speech observations respec-
tively. A small subset of 101 video clips is annotated for
speech segments, which are used for training the speech
GMM. Besides the non-speech segments in this set, we also
use 500 video clips with no speech at all to enrich the non-
speech model, in order to handle the heterogeneous audio
data in MED’11.

Second, we apply a large-vocabulary automatic speech
recognition (ASR) system to the speech data to produce a
transcript of the spoken content. This system is adapted
from an ASR system trained on 1700-hour broadcast news.
In particular, we adapt the lexicon and language model us-
ing text descriptions of the events of interest and related web
text data. The acoustic models are adapted during ASR de-
coding for each video clip in an unsupervised fashion.

Finally, to leverage the hypothesized speech transcripts
in event detection, we use the distribution of a set of event-
discriminating keywords within each video clip. The hy-
pothesized speech transcripts, stop words removed, are nor-
malized and then stemmed by the Porter stemmer [21]. We
identify event-discriminating keywords according to a re-
vised TF-IDF criteria:(n

t

)a
log

(
d

h

)
(9)

where n is the number of times a word appears in a video
clips belonging to a particular event category; t is the to-
tal number of words in that category; d is the total number
of categories considered; h is the number of categories con-
taining the word; a is an exponential weight. For each video
clip, the counts of these keywords are normalized to form a
histogram of keywords within that clip. We choose a to be
0.25 and the top 2251 keywords are selected, forming a his-
togram of length 2251.

6. Videotext Recognition
We detect text in videos, namely, videotext and use it in

our overall system. Unlike speech, the occurrence of video-
text is quite sparse. Hence, it is difficult to learn sophis-
ticated dictionary and language models from the available
training data. Therefore, we create a small 128-word dictio-
nary based on words occurring in short textual descriptions
of each event. In order to reduce the false positives from
videotext, we also construct salient word pairs the co-occur
in each event’s description.

During classification, given a test video, we perform
videotext detection/OCR and eliminate all the special char-
acters to get the final OCR output for event detection. We
then match each wordw in the output with dictionary words

d using string edit distance. These scores are then normal-
ized using word lengths to get the normalized edit distance
NED(w, d) measure.
Then we compute co-occurrence scores for each word pair
(w1,w2) occurring in a frame, with each chosen dictionary
word pair (d1,d2) as

(1−NED(w1, d1)) ∗ (1−NED(w2, d2)). (10)

Finally, for each event we compute the probability of an
event by taking the maximum of the co-occurrence scores
corresponding to that event over the entire video.

7. Kernel-based Feature Fusion

For our early fusion strategy, we combine multiple fea-
tures using p−norm Multiple Kernel Learning (MKL), with
p>1. For each feature, we first compute χ2 kernels using
the samples in the training set as

K(x, y) = e
−ρ

∑
i

(xi−yi)
2

xi+yi . (11)

Given a set of kernels {Kk} for a set of features, our
aim is to learn a linear combination of the base kernels as
K=
∑
kdkKk. This is equivalent to concatenating the corre-

sponding weighted feature maps
√
dkφk and then learning

a standard support vector machine (SVM) classifier. The
primal of the MKL problem can be formulated as

min
w,b,ξ≥0,d≥0

1

2

∑
k

wtkwk + C
∑
i

ξi +
λ

2

(∑
k

dpk

) 2
p

s.t. yi

(∑
k

√
dkwtkφk(xi) + b

)
≥ 1− ξi. (12)

This primal can be made convex by substituting wk for√
dkwk to get

min
w,b,ξ≥0,d≥0

1

2

∑
k

wtkwk/dk + C
∑
i

ξi +
λ

2

(∑
k

dpk

) 2
p

s.t. yi

(∑
k

wtkφk(xi) + b

)
≥ 1− ξi. (13)

With this formulation, smaller values of p, close to 1 learns
a sparse set of kernels, while larger values of p choose
denser kernel combinations. Recently, an efficient algo-
rithm for optimizing this objective function was proposed
in [29]. This allows use of the sequential minimal optimiza-
tion (SMO) [20] for training large scale SVMs, within the
MKL framework. This is done by first computing the La-
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grangian

L =
1

2

∑
k

wtkwk/dk +
∑
i

(C − βi) ξi +
λ

2

(∑
k

dpk

) 2
p

−
∑
i

αi

[
yi

(∑
k

wtkφk(xi) + b

)
− 1 + ξi

]
(14)

and then computing the lp-MKL dual as

D = max
α∈A

1tα− 1

8λ

(∑
k

(
αtHkα

)q) 2
q

(15)

where 1
p+ 1

q=1, A={α|0≤α≤C1,1tYα=0},Hk=Y KkY and
Y is a diagonal matrix with labels on the diagonal. The
kernel weights can then be computed as

dk =
1

2λ

(∑
k

(αtHkα)
q

) 1
q−

1
p

(αtHkα)
q
p . (16)

Since the dual objective (equation (15)) is differentiable
with respect to α, the SMO algorithm can be applied by
selecting two variables at a time and optimizing until con-
vergence.

A key challenge in web video retrieval is the large imbal-
ance in the available training data for positive and negative
examples. In our experiments on the MED’11 dataset, the
ratio of positive to negative examples is about 1:49. Since
the MKL optimization function in equation (12) optimizes
for accuracy, the solution often converges to the trivial clas-
sifier that declares all examples as negative, which has 98%
accuracy in our case. To address this, we train models
for combining multiple features by performing an extensive
grid search overC and p. At each parameter setting, we per-
form a k-fold validation on the available training data and
estimate a threshold that minimizes the Normalized Detec-
tion Cost (NDC) score that is defined as

f = min
Th
{wMDPMD(Th) + wFAPFA(Th)} (17)

where, Th is the detection threshold, PMD(Th) and
PFA(Th) are the missed detection and false alarm rates
at the detection threshold, and wMD, wFA are the relative
weights for missed detections and false alarms. This score
is often used in machine learning with imbalanced datasets
and for the TRECVID MED dataset, different systems are
compared with wMD=1.0, wFA=12.49.

8. Score Level Late Fusion
Late fusion of scores from multiple systems has been

shown to improve performance in several studies (e.g., [4]).
In our work, we combine different combinations of features
using MKL, and then combine these different subsystems
using score level fusion.

8.1. Score Normalization

One challenge with score fusion is that different sys-
tems have different detection thresholds and score pro-
files. Normalizing scores from different systems has been
widely studied, particularly in biometrics [10]. z-norm and
sigmoid-norm, which normalize scores using a Gaussian
and sigmoid function respectively, have been the most pop-
ular. In recent work, a w − score based on extreme value
theory was proposed in [22] for score normalization, which
does not make any assumption on the score distribution.
We normalize score p′i for system i, given the original score
pi and threshold Thi, by using a double sigmoid function
as

p′i =


(
1 + e

− 2(pi−Thi)

Thi

)−1
pi < Thi(

1 + e
− 2(pi−Thi)

1−Thi

)−1
pi ≥ Thi .

(18)

The double sigmoid normalizes the scores around 0.5,
which enables score level fusion of multiple systems.

8.2. Bayesian Model Combination

Scores obtained from multiple systems can be combined
using Bayesian decision theoretic approach (BayCom) as
suggested in [23]. Let M be the number of models to com-
bine, and ri=(ci,si) denote the output generated by model i.
Here, ci is the classification by system i, and si is the confi-
dence score. Let C be the set of unique classes proposed by
all systems. Then, the model selects the optimal hypothesis
according to

c? = argmax
c∈C

P (c | r1, . . . , rM ). (19)

Using Bayes theorem, we have

P (c | r1, . . . , rM ) = P (c)
P (r1, . . . , rM | c)
P (r1, . . . , rM )

. (20)

Assuming that the system hypotheses are independent of
each other and ignoring the denominator since it is inde-
pendent of c, equation (20) becomes

P (c)
M∏
i=1

P (ri | c) = P (c)
M∏
i=1

P (si | ci, c)P (ci | c). (21)

The first term P (c) is the prior probability of c being the
correct class. The second term P (si | ci, c) is the con-
ditional score distribution and can be decomposed in two
disjoint events. If ci = c, then this term denotes the proba-
bility the system i is correct with a score si. If ci 6= c, then
this term denotes the probability the system i is incorrect
with a hypothesis ci and a score si. Similarly, the third term
P (ci | c) can be decomposed in two disjoint events.
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The approach followed in the original BayCom formula-
tion [23] assumes that the the conditional probabilities are
independent of the particular hypothesis ci and determined
only by whether the hypothesis is correct or incorrect. In
this work, we use class specific conditional probabilities.
To overcome data sparseness we smooth the conditional
probabilities with the class independent probabilities using
the Witten-Bell smoothing [33]. For example, we smooth
P (ci | c) as

P (ci | c) = (1− λ) ∗ PML(ci | c) + λ ∗ P (ci) (22)

where PML(ci|c) is the Maximum Likelihood (ML) esti-
mate of the conditional probability and

λ =
Nci,c

Nci,c +
∑
ci
c(ci, c)

(23)

where Nci,c = |{ci : #(ci, c) > 0}|. The term P (ci) in
equation 22 denotes the class independent probability.

8.3. Weighted Average Fusion

The second late fusion strategy we consider is weighted
average fusion. The BayCom approach, as well as sev-
eral other fusion techniques (e.g., [4]) use a fixed weight
based on the overall performance on validation data, for
each system using a parametric model learnt from training
data. This approach has two limitations - first, the confi-
dence of a system’s detection score for a particular video
can be significantly different from the average system per-
formance. For example, on the small set of videos with
relevant speech/videotext, the output of these features have
high performance. But overall, these systems have low per-
formance since most videos do not have such content. Sec-
ond, learning the parameters for late fusion requires a large
training set. This should be separate from the set used for
training the individual systems, to estimate generalizable
models. Given the limited amount of training data, it is chal-
lenging to obtain suitable partitions.

To address these limitations, we adopt a novel weighted
average fusion strategy that assigns video specific weights
based on each system’s detection threshold. This is based
on the intuition that a system has low confidence when its
score for a particular video is close to the detection thresh-
old, and high confidence when the scores are significantly
different from the threshold. Given the confidence score pi
from system i for a particular video, the weight for that sys-
tem is computed as

wi =

{
Thi−pi
Thi

pi < Thi
pi−Thi

1−Thi
pi ≥ Thi .

(24)

This weighting matches our intuition and assigns higher
weights to systems whose scores are much higher or lower

than the detection threshold Thi and lower weights to sys-
tems with weights closer to the threshold, for each video.
Further, if we use normalized scores from equation (18),
the system thresholds are normalized to 0.5, and the sys-
tems are weighted based on the absolute distance from the
threshold. Given these weights, we compute the final score
P for a video as

P =

∑
i wipi∑
i wi

. (25)

We also explore generalizations of the weighted average
fusion technique using polynomials and Lp norms of the
scores, respectively as

〈
∑
i

pi,
∑
i

p2i , . . . ,
∑
i

pki 〉 and

〈
∑
i

pi, (
∑
i

p2i )
1/2, . . . , (

∑
i

pki )
1/k〉.

These feature vectors are fed to a linear SVM. We observed
that the obtained results were comparable to those obtained
by weighted average fusion defined above.

9. Experimental Results
We tested our approach on a large, benchmark dataset

of ∼45000 videos used in the TRECVID MED 2011 eval-
uations [19]. It consists of a 13000 video development set
containing ∼2000 videos from 15 events of interest, with
100-200 examples per event, and the rest of the videos are
from the background class. The evaluation set consists of
∼32000 videos, with∼100 videos from each event of inter-
est, and the rest from the background class.

9.1. MKL-based Feature Fusion

In the first set of tests, we trained different feature combi-
nations using MKL on a train partition and tested on a dev
partition. Overall, using a diverse set of features (3 color
features, D-SIFT, STIP, MFCC) produced the best perfor-
mance. However, even combining somewhat redundant fea-
tures like SIFT/D-SIFT and STIP/HoGHoF3D, which dif-
ferent only in feature point detection strategy produces con-
sistent gains as illustrated in figure 2. The same pattern gen-
eralized to the final 32000 evaluation set as well.

9.2. Impact of High-Level Features

Next, we evaluated the impact of using high level infor-
mation from object detection and speech. Figure 3, com-
pares the performance of classifiers trained using person/car
detector and ASR, with RGB-SIFT, which is the best indi-
vidual low-level feature. As can be seen, for class 8, which
corresponds to the event ”Getting a vehicle unstuck” with
a large number of vehicles, car detection is the single best
feature. Further, ASR has the best performance for 4 of the
15 classes.
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Figure 2. Performance summary of MKL-based low level feature combinations in terms of Average ANDC.

Figure 3. Performance summary of MKL-based high level feature
combinations

9.3. Comparison of Late Fusion Strategies

Next, we combined different sub-systems trained using
MKL-based early fusion using different late fusion strate-
gies. Overall, the weighted average fusion approach had the
best NDC score. BayCom on the other hand had the low-
est false alarm, but higher missed detection rate. Both these
late fusion approaches improved over our low-level feature
based system (LLFeat). This is illustrated in Figure 4.

Figure 5 summarizes the relative performance of our sys-
tems compared to all other systems evaluated in MED’11,
in terms of NDC at the detection threshold. Weighted av-
erage system has the best NDC score. Further, MKL-based
low level feature system has strong performance. This indi-
cates that low-level features have strong stand-alone perfor-
mance. However, high-level information from ASR, video-
text, and object detection produce large gains over the low-
level features.

10. Conclusion
To summarize our work, we evaluated a large set of low-

level audio and visual features as well as high-level infor-
mation from object detection, speech and video text OCR.
We combined multiple features using a multi-stage feature

Figure 4. Performance comparison of individual features and three
different fusion systems.

Figure 5. Performance of our MED’11 runs and all 60 official sub-
missions. The vertical axis shows the performance measured by
average ANDC scores across the 10 MED’11 events.

fusion strategy with feature level early fusion using mul-
tiple kernel learning (MKL) and score level fusion using
Bayesian model combination (BayCom) and weighted av-
erage fusion using video specific weights. We conducted
rigorous evaluation of different features and fusion strate-
gies on a large benchmark dataset of ≈45000 unstructured
web videos used in the TRECVID MED 2011 evaluations.
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Our results indicate that low-level audio and visual fea-
tures have strong performance and form the core of our sys-
tem. Combination of multiple, diverse features produce sig-
nificant improvements over the individual features. More
importantly, combining even similar features such as SIFT
and SURF, or STIP and HoGHoF3D improves over the indi-
vidual features. Further, score level fusion of multiple early
fusion systems produce additional performance gains. The
novel video-specific weighted average fusion strategy we
presented outperforms several standard late fusion strate-
gies. High level visual features from object detection are
promising but performance gains from them are inconsis-
tent. Speech and videotext OCR provide complementary
information and produce large gains over the low-level fea-
tures. We plan to build on these results by developing
more robust high-level visual features to effectively lever-
age scene, object and action concepts.
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