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Abstract

Blind image quality assessment (BIQA) is an important
yet difficult task in image processing related application-
s. Existing algorithms for universal BIQA learn a mapping
from features of an image to the corresponding subjective
quality or divide the image into different distortions before
mapping. Although these algorithms are promising, they
face the following problems: 1) they require a large num-
ber of samples (pairs of distorted image and its subjective
quality) to train a robust mapping; 2) they are sensitive to
different datasets; and 3) they have to be re-trained when
new training samples are available. In this paper, we in-
troduce a simple yet effective algorithm based upon the s-
parse representation of natural scene statistics (NSS) fea-
ture. It consists of three key steps: extracting NSS features
in the wavelet domain, representing features via sparse cod-
ing, and weighting differential mean opinion scores by the
sparse coding coefficients to obtain the final visual qual-
ity values. Thorough experiments on standard databases
show that the proposed algorithm outperforms representa-
tive BIQA algorithms and some full-reference metrics.

Blind/no-reference image quality assessment (BIQA) is

of crucial importance in image processing and analysis in

practice. Especially, it is hard to develop a universal or gen-

eralized BIQA algorithm to handle different types of distor-

tions [11]. Technically, there are two major issues in de-

veloping a robust BIQA algorithm, which are features and

mapping model. The features are required to reflect the vi-

sual quality, and the mapping model needs to bridge the gap

between the image features and visual quality.

In recent years, two groups of universal BIQA algorithm-

s have been developed: 1) BLINDS [7, 8] directly maps im-

age features to subjective quality without distinguishing d-

ifferent types of distortions [4, 6]; and 2) BIQI [13, 14] and

LBIQ [20] first determine the distortion type of a test im-

age and then employ an associated distortion-specific BIQA

metric to predict the quality of the given image. Both group-

s of BIQA algorithms construct a black-box mapping from

the image features to the image quality, and perform well

on the LIVE II database.

However, these algorithms face the following three prob-

lems. First, they require a large number of expensive sam-

ples (pairs of distorted image and its subjective quality) to

train a robust BIQA metric, let alone it is impossible to ob-

tain a minimally sufficient number of training samples in

many practical applications. Secondly, they are sensitive

to different datasets. Given a BIQA metric trained on a

database, it usually performs poorly on another database.

That is because the algorithm contains database-specific pa-

rameters, e.g., BIQI and LBIQ need to select different mod-

els for different distortion subsets. Finally, they need to re-

train the metric when the new samples are available. It is

time-consuming and impractical for real time utilizations.

To address the aforementioned problems, we propose a

novel BIQA algorithm based on sparse representation (S-

R). It assumes that the feature space and subjective quality

space share an almost same intrinsic manifold. This mean-

s images of similar quality have similar features. In this

paper, we use natural scene statistics (NSS) to represent

images. The proposed new algorithm, or SRNSS for short,

can be sketched in the following steps. First, a dictionary

is constructed by combining a set of images with different

types of distortions. The NSS features of a test image are

then extracted and encoded in the dictionary via sparse rep-

resentation. Finally, the coding coefficients are utilized to

linearly weight the corresponding subject quality (differen-
tial mean opinion score, or DMOS for short) for predicting

the image quality.

The NSS features which are used in BIQA reflect the

self-similar and certainly less specific in representation of

image content. Hence, the proposed metric is not sensitive

to different datasets. The feature sparse representation can
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Figure 1. The proposed algorithm of the BIQA based on sparse representation in natural scene statistics.

effective avoid requirement of lots of samples. Furthermore,

when the new samples are available, what we need to do is

adding samples into dictionary and we do not retrain the

whole metric.

The performance of the proposed BIQA metric is thor-

oughly validated on the LIVE II database [18] and other

publicly available databases [10, 5, 1, 3]. The experimental

results demonstrate that SRNSS for BIQA is consistent with

the subjective quality, and outperforms some representative

BIQA algorithms [7, 8, 13, 20, 16] as well as some classical

full-reference image quality assessment metrics [23, 17].

The rest of the paper is organized as follows. Section

1 describes the proposed blind image quality assessment al-

gorithm in detail. Experimental results of the proposed met-

ric are given in Section 2. Section 3 concludes the paper.

1. Sparse Representation for BIQA
Figure 1 illustrates SRNSS for BIQA, which includes

four modules, i.e., NSS features extraction, dictionary

learning, sparse representation, and image quality quantifi-

cation.

1.1. NSS features extraction

Natural scenes are defined by images and videos cap-

tured by high-quality devices operating in the visual spec-

trum [16]. They contain particular structures which can

be described through natural scene statistics [24, 12, 19].

These NSS in the wavelet domain can be grouped into three

levels, which are primary properties, secondary properties,

and tertiary properties [12].

Primary properties reveal the significant statistical struc-

ture and can be further compacted in secondary properties

which consist of non-Gaussianity and persistency. Gener-
al Gaussian distribution (GGD) has been used to fit the

non-Gaussianity distribution of wavelet coefficients. The

persistency has been adopted to construct blind quality as-

sessment for JPEG2000 compression images [16]. These

features change significantly with different kinds of visu-

al content. Therefore, they are not pertinent for develop-

ing a universal BIQA. Fortunately, the tertiary properties of

the wavelet coefficients reflect the self-similar property of

scenes. And the most important feature is the exponential

decay across scales and it becomes stronger at fine scales.

In particular, the exponential decay is certainly less specif-

ic in their representation of a particular image, and thus is

suitable for representing the generalized behaviors of natu-

ral scenes.

An input image x is initially decomposed by the wavelet

transform into subband wavelet coefficients C. A number

of subbands are defined with the increasing of the wavelet

subband frequency. Due to the similarity in the statistics

of LH (low-high) and HL (high-low) subbands at the same

scale, we calculate the features (magnitude, variance, and

entropy) of the two subbands together, i.e., we do not dis-

tinguish LH and HL subbands at the same scale. By decom-

posing an image into 4 scales, we have 8 wavelet subbands

in total. For each subband, we calculate the magnitude mk

to encode the generalized spectral behavior, the variance vk
to describe the fluctuations of the energy, and the entropy
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ek to represent the generalized information, according to

mk =
1

Nk ×Mk

Nk∑
j=1

Mk∑
i=1

log2 |Ck(i, j)| , (1)

vk =
1

Nk ×Mk

Nk∑
j=1

Mk∑
i=1

log2 |Ck(i, j)−mk| , (2)

ek =

Nk∑
j=1

Mk∑
i=1

p[Ck(i, j)] ln p[Ck(i, j)], (3)

where Ck(i, j) stands for the (i, j) coefficient of the k-th

subband, Mk and Nk are the length and width of the k-th

subband, respectively; p[·] is the probability density func-

tion of the subband.

The vertical and horizontal subbands with an identical

mark in the same scale are combined through averaging af-

ter the above process. They can then be combined into a

single vector

f = [m1,m2, ...,m8, v1, v2, ..., v8, e1, e2, ..., e8]
T , (4)

where f represents the exponential decay and generalizes

the features of the natural images.

The distribution of magnitudes mk vs. the sequence of

subbands for the 29 original images in the LIVE II database

on the log-log axes are shown in Figure 2(a). Since the

magnitude spectra decay exponentially across scales, it is

approximately a straight line on the log-log axes. And

most of the reference images have similar exponential de-

cay characteristics across scales. Figure 2(b) shows a group

of distorted images with different qualities associated with

the same reference image. It is obvious that one reference

image and its corresponding distorted images have differ-

ent departures. The increase of distortion degree brings out

the sharper decrease and stronger persistence at fine scales.

Furthermore, the distorted images with the same DMOS (d-

ifferential mean opinion score) can be viewed roughly as

having a similar tendency across scales; the quality of an

input image can thus be estimated by a weighted average of

the quality of images with similar tendency. In this paper,

we solve this problem through applying the sparse represen-

tation to the extracted features.

1.2. Dictionary learning

In the proposed BIQA scheme, the dictionary learning is

very simple by directly combining features and DMOS of

the training images

[
D

DMOS′

]
=̇

[
f1

DMOS′
1
,

f2
DMOS′

2
. . . ,

fn
DMOS′

n

]
,

(5)

where the dictionary D is an m × n matrix (m = 24 and

n is the number of training images). Vector DMOS
′

is the

corresponding DMOS values of the training images.
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Figure 2. Magnitudes of the wavelet coefficients decay exponen-

tially across scales. (a) 29 original images, (b) A group of distorted

images from one original image, showing different DMOS at top-

right.

1.3. Sparse representation

Sparsity in human perception has been strongly support-

ed by studies of the human visual system (HVS) [9]. And

it is one of the most important features of HVS. In order to

represent certain structures of a signal in a compact form,

sparse representation can adaptively account for all or most

of the information of a signal with the linear combination

of a small number of elementary signals.

In this paper, sparse representation has been adopted to

solve the sparsest representation problem which is similar

to the cognitive behavior of object recognition and informa-

tion representation. The sparse representation can consider
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all possible supports and then adaptively choose the mini-

mal number of training atoms. Thus, it can reduce the dis-

turbance of images with large differences in visual quality

in the proposed BIQA algorithm.

We find the most approximate and the sparsest represen-

tation of the feature f of a test image by using the dictionary

D = [f1, f2, ..., fn] by solving

α∗ = arg min
α∈RN

‖α‖0 s.t. f = Dα, (6)

where α∗ is the sparse representation coefficient for f over

the dictionary D and N is the number of atoms in D.

Since the l0-minimization (6) is an NP-hard problem,

the approximate solution via l1-minimization [25] is usu-

ally used. Then we have

α∗ = arg min
α∈RN

‖α‖1 s.t. f = Dα. (7)

This problem can then be transformed into an unconstrained

optimization problem

α∗ = arg min
α∈RN

λ‖α‖1 + ‖f −Dα‖2, (8)

where the parameter λ is a positive constant balance the fi-

delity term and the sparse regularization term. The least ab-

solute shrinkage and selection operator [21] is used to solve

the unconstrained convex optimization problems (8).

1.4. Image quality quantification

Through the previous step, the sparse solution vector α∗

of f over the dictionary is obtained. According to the as-

sumption that if images have identical quality values their
features have similar distributions, the quality of the test

image can be quantified by the qualities of the training im-

ages, i.e.,

Q =

∑N
i=1 α

∗
iDMOS′

i∑N
i=1 α

∗
i

, (9)

where DMOS′
i is the differential mean opinion scores of

the i-th image in the dictionary. The estimation Q, ranging

from 0 to 100, is the final quality score of the test image,

and a lower value of Q implies a higher quality of the test

image.

2. Experiments
In order to validate the effectiveness of the proposed S-

RNSS for BIQA, we conduct four groups of experiments:

the consistency experiment, the rationality experiment, the

sensitivity experiment, and the extensibility experiment.

In experiments, LIVE II [18], TID [10], CSIQ [5], IVC

[1] and MICT [3] are used as the standard databases. Addi-

tionally, the model parameters of the proposed SRNSS are

trained on the LIVE II database.
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Figure 3. Predicted Q vs. subjective DMOS. 15 original images

and their associated distorted images as the training set, the rest as

the test set. The original images are removed.

VQEG provides the comparison criterion among the

metrics [22]. Two important evaluation criteria are then

used to compare the performance. Criterion 1 is the Pear-
son linear correlation coefficient (LCC) between the sub-

jective quality DMOS and the corresponding objective qual-

ity, which provides an evaluation of the prediction accuracy.

Criterion 2 is the Spearman rank-order correlation coeffi-
cient (SROCC) which estimates the test for agreement be-

tween the rank orders of DMOS and model predictions. It is

considered as a measure of the prediction monotonicity. In

addition, the root mean square error (RMSE) and the mean
absolute error (MAE) of the fitting procedure after the non-

linear mapping are calculated to quantify the direct errors.

2.1. Consistency experiment

In this experiment, the LIVE II database is utilized as the

benchmark database. First, part of original images and their

associated distorted images are randomly selected for BIQA

model training, with the rest for test. We run our algorithms

100 times in this way to verify that our algorithms are robust

to the image content. The performance evaluation metrics

of LCC, SROCC, RMSE and MAE are the average of the

100 random experimental results. The full-reference met-

rics: PSNR, SSIM [23], VIF [15], IFC [17], and the blind

metrics: BIQI [7], DIIVINE [8], BLINDS [13], BLINDS-II

[14], LBIQ [20], NSS [16] are compared with the proposed

SRNSS. The evaluation results for all the compared metrics

are given in Table 1.

Table 1 shows the performance of the metric on the five

subsets: JPEG2000, JPEG, WN, Gblur, FF and the entire
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Figure 4. Performances vs. number of original images. The images and their distorted images are selected randomly as the training set.

LIVE II database. Although VIF performs best among all

metrics, but it is a full reference IQA metric that needs the

reference image to evaluate the distorted images. For BIQA

metrics, we divide them into two groups by the number of s-

elected original images used in BIQA model training - 15 o-

riginal images named group-I and 23 original images named

group-II. The proposed SRNSS1 which belongs to group-I

obtains the best performance among the benchmarks: NSS,

BIQI, LBIQ and BLINDS. This is due to the effectiveness

of the tertiary NSS features of the natural images captured

by the statistical model and the rationality of sparse repre-

sentation. The statistical features reflect the visual quality

and the sparse representation can then find the best repre-

sentation for the features of the test image.

Group-II includes the proposed SRNSS2, DIIVINE and

BLINEDS-II which are the improved versions of BIQI

and BLINEDS, in which the performance of the proposed

SRNSS2 is better than DIIVINE for JPEG2000, JPEG, F-

F and the entire database. BLINDS-II demonstrates better

performance than SRNSS2 on an individual sub-database,

but SRNSS2 shows the best performance over the entire

database. That is mainly because of the following two rea-

sons. First, the features used in SRNSS2 are insufficient

for representing the image quality. The generalized para-

metric model of the extracted DCT coefficients is used in

BLINDS-II and 88 features extracted from NSS are uti-

lized in DIIVINE. However, only the tertiary features of

NSS, which has 8 features, are utilized in the SRNSS. Sec-

ondly, the test set of sub-databases only has 30~48 images

and the strategy of random content-separated divisions has

a tremendous influence on the performance shown in Fig-

ure 4. It influences all the metrics, including the training

process.

Figure 3 shows the scatter plots of DMOS versus the pre-

dicted score of the proposed algorithm (trained on 15 origi-

nal images and their distorted images). It demonstrates that

the proposed algorithm is stable across different distortions

and demonstrates good performance across the entire LIVE

II database.

Figure 4 presents the relationship between the number

of selected original images and the quality prediction per-

formance. The number ranges from 6 to 24. For each, we

run our algorithms 100 times and obtain the average and the

95% confidence interval. It demonstrates that the strategy

of the random content-separated divisions has a tremendous

influence on the performance.

2.2. Rationality experiment

In this subsection, the rationality experiment [2] is con-

ducted on four types of distortions: JPEG2000, JPEG (the

compression rate is R ), blurring (the window size is W )

and Gaussian noise with zero-mean (the variance is V ).

The prediction trends of the proposed algorithm for image

“Window” with different types of distortions are presented

in Figure 5. In order to facilitate observation, part (flower)

of images is shown in figure. It is found that the prediction

tends to rise when the degree of the distortion is increas-

ing, because the proposed algorithm has the same meaning

of the quality with DMOS which has a higher value with

lower visual perception quality. Hence, it is consistent with

the decrease in visual quality of the distorted images, which

demonstrates the rationality of the proposed method.

The most typical artifacts or distortions are ringing and

blurring in JPEG2000 because many small wavelet coef-

ficients are set to zero when quantifying. The distortions

and blurring will lose the high frequency information when

the images are compressed. While the JPEG compression

brings about blurring within blocks and blocking artifact-

s across block boundaries. According to the experimental

observation and theoretical derivation in [12], NSS captures

the property and the statistical features reflect distortions

or artifacts. As illustrated in Figure 5, the tendency is not

obvious when the noise reaches a certain degree, which is

consistent with subjective perception. When the noise in an

image is too severe, even the HVS finds it difficult to quan-

tify the quality of the images, so the result in Figure 5(d) is

tolerable and is consistent with the human perception.

2.3. Sensitivity experiment

Sensitivity experiment tests whether a BIQA metric has

reasonable prediction when the images have the same or

similar PSNR (or other benchmark metrics) values. Figure
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Distortion JPEG2000 JPEG

Metric Type LCC SROCC RMSE MAE LCC SROCC RMSE MAE

PSNR FR 0.8962 0.8898 7.1865 5.5283 0.8596 0.8409 8.1700 6.3797

SSIM [23] FR 0.9367 0.9317 5.6706 4.4332 0.9283 0.9028 5.9468 4.4846

IFC [15] FR 0.9027 0.8920 6.9720 5.4616 0.9047 0.8661 6.8129 4.7920

VIF [17] FR 0.9615 0.9527 4.4493 3.4450 0.9430 0.9131 5.3212 3.8070

NSS [16] NR 0.9210 0.9081 9.5060 8.3307 0.3661 0.1798 22.5284 18.8351

BIQI [7] NR 0.8086 0.7995 14.8427 —— 0.9011 0.8914 13.7552 ——

LBIQ [20] NR —— 0.9000 —— —— —— 0.9200 —— ——

BLINDS [13] NR —— 0.9219 —— —— —— 0.8391 —— ——

DIIVINE [8] NR 0.9220 0.9130 9.6600 —— 0.9210 0.9100 12.2500 ——

BLINDS-II [14] NR 0.9630 0.9506 —— —— 0.9793 0.9419 —— ——

SRNSS1 NR 0.8859 0.8626 10.8831 7.9653 0.8901 0.8713 10.9128 7.8649
SRNSS2 NR 0.9359 0.9283 7.8916 6.0152 0.9391 0.9306 7.9481 5.9681

Distortion WN Gblur

Metric Type LCC SROCC RMSE MAE LCC SROCC RMSE MAE

PSNR FR 0.9858 0.9853 2.6797 2.1639 0.7834 0.7816 9.7723 7.7425

SSIM [23] FR 0.9695 0.9629 3.9163 3.2566 0.8740 0.8942 7.6391 5.7595

IFC [15] FR 0.9581 0.9383 4.5738 3.8162 0.9608 0.9590 4.3604 3.4103

VIF [17] FR 0.9839 0.9857 2.8514 2.3039 0.9744 0.9731 3.5334 2.8182

NSS [16] NR 0.8217 0.8774 12.5284 10.4882 0.7007 0.7366 15.5178 10.8844

BIQI [7] NR 0.9538 0.9510 8.4094 —— 0.8293 0.8463 10.2347 ——

LBIQ [20] NR —— 0.9700 —— —— —— 0.8800 —— ——

BLINDS [13] NR —— 0.9735 —— —— —— 0.9569 —— ——

DIIVINE [8] NR 0.9880 0.9840 4.3100 —— 0.9230 0.9210 7.0700 ——

BLINDS-II [14] NR 0.9854 0.9783 —— —— 0.9481 0.9435 —— ——

SRNSS1 NR 0.8802 0.8605 10.2694 8.0151 0.8654 0.8601 10.8634 8.3124
SRNSS2 NR 0.9404 0.9382 7.9705 6.1058 0.9356 0.9327 7.5907 6.0861

Distortion FF Entire database

Metric Type LCC SROCC RMSE MAE LCC SROCC RMSE MAE

PSNR FR 0.8895 0.8903 7.5158 5.800 0.8240 0.8197 9.1236 7.3249

SSIM [23] FR 0.9428 0.9411 5.4846 4.2968 0.8634 0.8510 8.1262 6.2752

IFC [15] FR 0.9614 0.9630 4.5280 3.6196 0.9106 0.9128 6.6564 5.1822

VIF [17] FR 0.9618 0.9649 4.5022 3.5469 0.9501 0.9526 5.0241 3.8866

NSS [16] NR 0.7224 0.7383 15.2775 10.7881 0.4946 0.3333 20.0911 15.8479

BIQI [7] NR 0.7328 0.7067 19.2911 —— 0.8205 0.8195 15.6223 ——

LBIQ [20] NR —— 0.7800 —— —— —— 0.8900 —— ——

BLINDS [13] NR —— 0.7503 —— —— —— 0.7996 —— ——

DIIVINE [8] NR 0.8880 0.8630 12.9300 —— 0.9170 0.9160 10.9000 ——

BLINDS-II [14] NR 0.9436 0.9268 —— —— 0.9232 0.9202 —— ——

SRNSS1 NR 0.8728 0.8651 10.3291 7.6245 0.8862 0.8761 10.7287 8.1056
SRNSS2 NR 0.9473 0.9406 7.1571 5.2684 0.9318 0.9304 7.6183 5.8729

Table 1. The performance of image quality assessment metrics on the LIVE II database.

6 shows four images: (a) the original “Window” image, (b)

the contrast stretching image, (c) the mean shift image, and

(d) the JPEG compressed image. Table 2 reports the quality

of PSNR, SSIM, IFC, VIF, NSS, BIQI, BLINDS and the

proposed SRNSS for images shown in Figure 6.

From Figure 6 and Table 2, we find that the quality of

the contrast stretching image is better than that of the mean

shift image. However, the prediction of fidelity or similar-

ity based metrics (SSIM, IFC and VIF) and BIQA metrics

(NSS, BIQI and BLINDS) are inconsistent with human vi-

sual perception. In fact, the contrast stretching image has a

higher visual quality than the original image, and this pro-
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Figure 5. Quality trend of Window with different types of distortion using the proposed algorithm.

Metric (b) (c) (d)

PSNR 30.53 30.45 30.61

SSIM [23] 0.9379 0.9939 0.7186

IFC [15] 12.28 72.00 1.14

VIF [17] 0.9998 0.9979 0.1830

NSS [16] 78.23 78.28 75.13

BIQI [7] 29.94 26.70 66.04

BLINDS [13] 28.56 27.34 69.25

SRNSS 27.61 32.52 70.91

Table 2. The quality values of different metrics for images in Fig-

ure 6.

cessing can be considered to be an enhanced method. The

proposed algorithm is trained on the LIVE II database that

contains high-resolution color images, so the parameter set-

ting of the proposed metric has a higher quality basis and

suggests that the “Window” image (a) is not the best qual-

ity image. For the contrast stretching and mean shift dis-

tortions, similar regular patterns of tertiary properties ex-

ist. Hence, we can predict the two types of distorted image

through the dictionary constructed by the LIVE II database.

Results consistent with human visual perception can be ob-

tained, sensitivity can be verified and the generalization of

the proposed algorithm can be demonstrated.

2.4. Extensibility experiment

In order to verify the effectiveness of the generalization,

the expansibility experiment is conducted in this subsection.

The model parameters are trained on the LIVE II database.

Table 3 presents LCC of PSNR, SSIM, IFC, VIF, NSS,

BIQI, BLINDS and the proposed SRNSS on other publicly

available databases. The results show that the proposed S-

RNSS performs better than other BIQA (NSS, BIQI and

BLINDS) on other databases: TID [10], CSIQ [5], IVC

[1] and MICT [3]. This good performance is mainly at-

tributable to two factors. First, the LIVE II database in-

cludes almost all kinds of image distortions. For example,

Database TID [10] CSIQ [5] IVC [1] MICT [3]

PSNR 0.5643 0.8772 0.7192 0.6355

SSIM [23] 0.6387 0.8060 0.7924 0.7979

IFC [15] 0.5692 0.7482 0.8978 0.8387

VIF [17] 0.7496 0.9193 0.8966 0.9086

NSS [16] 0.2027 0.5667 0.4266 0.4541

BIQI [7] 0.4192 0.6601 0.5346 0.6853

BLINDS [13] 0.5086 0.7529 0.7013 0.7924

SRNSS 0.7327 0.8157 0.7943 0.8094

Table 3. The LCC of different metrics on other publicly available

databases.

the TID database includes additive noise, blurring, JPEG

and JPEG2000, which are included in the LIVE II database.

Secondly, the distortions that are not included in the LIVE II

database also follow the tertiary features of NSS. Therefore,

the experimental results suggest that the proposed SRNSS

trained on the LIVE II database can be applied to different

databases.

3. Conclusions

This paper presents a universal BIQA metric, i.e., S-

RNSS, which uses the sparse representation of the tertiary

natural scene statistics to blindly evaluate image quality.

Comprehensive experimental results demonstrate that 1) S-

RNSS can blindly yet effectively evaluate the quality of im-

ages with different kinds of distortions; 2) SRNSS perform-

s consistently with the subjective perception and is stable

across various kinds of distortions in terms of LCC, SROC-

C, RMSE and MAE criteria; 3) SRNSS outperforms con-

ventional image quality assessment algorithms on publicly

available databases; and 4) SRNSS, trained on the LIVE I-

I database, has a good expansibility (or generalization) on

other publicly available databases comparing with the rep-

resentative BIQA algorithms under the same setting.
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(a) Reference image (b) Contrast stretching (c) Mean shift (d) JPEG compression

Figure 6. Window image with the same PSNR but different perceived quality.
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