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Abstract

This paper introduces simultaneous globally optimal
hand-eye self-calibration in both its rotational and trans-
lational components. The main contributions are new fea-
sibility tests to integrate the hand-eye calibration problem
into a branch-and-bound parameter space search. The pre-
sented method constitutes the first guaranteed globally op-
timal estimator for simultaneous optimization of both com-
ponents with respect to a cost function based on reprojec-
tion errors. The system is evaluated in both synthetic and
real world scenarios. The employed benchmark dataset is
published online1 to create a common point of reference for
evaluation of hand-eye self-calibration algorithms.

1. Introduction

Fig. 3a shows a common application scenario for hand-
eye calibration, where a camera is mounted to a robot’s end-
effector. The objective is to determine the Euclidean trans-
formation between the camera and the end-effector, which
is required to relate perceived objects in both coordinate
systems. The motion of the end-effector is known accu-
rately from the robot’s forward kinematics. The camera mo-
tion traditionally is determined using known calibration ob-
jects in the scene. The first approaches to solve the hand-eye
calibration problem recovered rotational and translational
parameters sequentially [10, 14]. Horaud and Dornika [8]
as well as Daniilidis [3] presented combined approaches to
solve for both components simultaneously. Starting in as-
sembly robotics, hand-eye calibration has spread into a mul-
titude of usage scenarios including mobile [4] and medical
robotics [12]. In many of these scenarios, traditional hand-
eye calibration based on observation of known calibration
targets is not applicable. Instead structure from motion al-
gorithms are applied to determine the camera motion[1, 12].

Very recently, globally optimal solutions to common
structure and motion problems in computer vision were in-

1See http://hand-eye-calibration.com or contact the first author

troduced. The framework presented by Kahl and Hartley in
[9] allows to compute the globally optimal solution to prob-
lems like triangulation, camera resectioning, and homog-
raphy estimation. In [5], they added a branch-and-bound
search over the rotation space to this framework. On the
basis of this framework, Seo et al. [13] were able to pro-
pose a new approach for solving the hand-eye orientation
problem. Their algorithm recovers the rotational compo-
nent of the hand-eye transformation globally optimal but re-
quires all translations in the system to be zero. Heller et al.
[7] proposed an optimal algorithm for recovery of hand-eye
translation while requiring known rotation.

This paper introduces simultaneous globally optimal
hand-eye self-calibration in both its rotational and trans-
lational components, while only requiring a rough upper
bound of the hand-eye translation’s length. To the authors’
knowledge, no optimal solution with respect to a geomet-
rically meaningful objective function based on reprojection
errors has yet been presented to the full hand-eye calibration
problem. The main contribution are new feasibility tests to
integrate the hand-eye calibration problem into a branch-
and-bound parameter space search.

2. Problem Formulation
The objective of hand-eye calibration is to determine the

Euclidean transformation X between a robot’s end-effector
and camera coordinate frame. Hand-eye calibration builds
upon the fact that hand and eye are rigidly coupled. The
robot executes N hand motions and measures them using
forward kinematics as the transformation Bk, k ∈ {1, N}.
The motion is observed by the camera as a transformation
Ak in its own coordinate frame (Fig. 1). Both motions are
coupled by the common hand-eye calibration equation

Ak = X Bk X−1 ∈ SE (3) . (1)

It can be decomposed in its rotational and translational parts

RkA = RX RkB R−1X ∈ SO (3) (2)

tkA = RX tkB + RX

(
RkB
−1 − I

)
tX ∈ R3. (3)
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Figure 1: Exemplary hand-eye geometry with the coordi-
nate frames of the eye E and the hand H at two subsequent
points in time. Eye and hand motions are denoted by a sub-
script A and B respectively. The two hand-eye transforma-
tions are marked by a subscript X . The scene point xkj is
observed by the two cameras in the directions ukj and vkj .

In contrast to the majority of previous contributions on
hand-eye calibration, the camera motion Ak is not explicitly
estimated in this work. Instead, the task is interpreted as an
instance of the relative pose problem. This way the cam-
era motion, which is intrinsically encoded in the motion of
image features, is used directly.

To improve readability, a superscript k is used in this
work to indicate the motion index. In no case it represents
the k-th power of the respective variable.

2.1. Objective Function

The objective function, which is globally minimized in
this work, is based on the relative pose problem. Its goal
is to find the relative Euclidean transformation Ak between
two cameras with identical calibration matrices K, given a
set of image correspondences pkj ↔ qkj j = 1, . . . ,M (k).
They are observations of unknown 3D points xkj and their
projection is modeled by pkj (Θ) ∼= K xkj and qkj (Θ) ∼=
K Ak xkj for all j, where Θ collects all model parameters
and thus describes Ak and xkj . Usually, both the transforma-
tion Ak as well as the scene points xkj are recovered during
relative pose estimation.

In presence of noise, there is no exact solution to the rela-
tive pose problem. In this case it is generally considered op-
timal to minimize the reprojection error between the points
pkj ,q

k
j measured by the camera and points pkj (Θ) ,qkj (Θ)

generated by the discussed projection model. The repro-
jection error is given by the distances ‖pkj − pkj (Θ) ‖ and
‖qkj − qkj (Θ) ‖. The cameras are assumed to be intrinsi-
cally calibrated in this work. For small reprojection errors
it is thus equivalent to minimize the angular error between
the incoming rays of pkj and qkj . Fig. 1 illustrates how both
rays originate in the respective camera center. Their direc-
tion towards the scene point xkj is encoded by unit direc-
tional vectors ukj

∼= K−1 pkj and vkj
∼= K−1 qkj . Image

measurements in this work are thus represented as points
on the image sphere and the reprojection error is given by

the angles

∠
(
ukj ,u

k
j (Θ)

)
and ∠

(
vkj ,v

k
j (Θ)

)
(4)

between the measured directions ukj ,v
k
j and the modelled

directions ukj (Θ) ,vkj (Θ). The directional representation
of image measurements allows the formulation of the rela-
tive pose problem as the angle between the measured and
the modelled object directions. The transformation Ak de-
composes into the rotation RkA ∈ SO (3) and the translation
tkA ∈ R3. The goal is to optimize

∠
(
ukj ,x

k
j

)
−→ min (5)

∠
(
vkj , R

k
A

(
xkj − tkA

))
−→ min . (6)

Fig. 1 again illustrates this formulation. The scalar angu-
lar differences for all scene points can be combined into a
single vector. L∞-approaches optimize the L∞-norm (max-
imum component) of this difference vector. The goal is to
globally minimize the objective function or the cost over all
possible rotations and translations. This optimization prob-
lem is commonly given in the minimax form.

min
RkA,t

k
A,x

k
j

max
k,j

{
∠
(
ukj ,x

k
j

)
∠
(
vkj , R

k
A

(
xkj − tkA

)) (7)

Substituting RkA by RX RkB R−1X using (2) allows to estimate
the hand-eye rotation RX and results in the final optimiza-
tion problem:

min
RX ,tkA,x

k
j

max
k,j

{
∠
(
ukj ,x

k
j

)
∠
(
vkj , RXR

k
BR
−1
X

(
xkj − tkA

)) (8)

Its objective function is non-convex and generally paved
with local minima. This property prohibits a global opti-
mization using gradient descent methods. Notice that the
camera translation tkA is not yet substituted by its hand-eye
equivalent in (3). The estimation of the hand-eye translation
tX is postponed to Section 3.2.

3. Algorithm
3.1. Branch-and-Bound Search

The hand-eye rotation RX is represented by its angle
γ ∈ R and axis r ∈ R3 with ‖r‖ = 1. Both are encoded
in the parameter vector ξ = γ r. All rotations are repre-
sented by the vectors in the closed ball of radius π. The
algorithm’s initial search range is the enclosing cube with
half side length π. The branch-and-bound search divides the
parameter space into cubes of half side length σ. The key
principle is that it is not necessary to solve the optimiza-
tion problem on each cube exactly. Instead only a lower
bound for the optimal solution within a cube is required.
This bound has to converge towards the optimal solution as
the size of the cube decreases.
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During search, the algorithm keeps track of the currently
best parameter vector Θ? with its cost εmin. The algorithm
holds a queue Q of cubes, which is empty in the beginning.
The individual steps are:

1. Initialization: Set Θ? arbitrarily and update εmin.
Add the initial cube, which contains the whole param-
eter space, to the queue Q.

2. Feasibility Test: Test each cube in the queue if it may
contain a solution, which provides a cost improvement
with respect to εmin. If no such solution exists the cube
can be discarded safely.

3. Otherwise:

(a) Obj. Function Evaluation: Evaluate objective
function on an arbitrary parameter vector inside
the cube. Update Θ? and εmin if the associated
cost is smaller.

(b) Recursion: Subdivide the cube into eight sub-
cubes with half side length, append them to the
queue Q and start over from 2.

The feasibility test, which is formulated in greater detail
in Problem 1, has to evaluate an infinite number of param-
eters. To reduce computational complexity, the basic idea
is to find sufficient criteria for the infeasibility of a param-
eter space cube, which can be evaluated very efficiently. In
the limit case of zero cube volume, these criteria also have
to become necessary conditions for cube infeasibility to en-
sure convergence of the algorithm. In the following, a chain
of feasibility problems is developed. Their satisfaction is
implied by the original Problem 1.

Problem 1→ Problem 2→ Problem 3 (9)

The contraposition yields a sufficient condition for the in-
feasiblity of a parameter cube in the sense of Problem 1.

¬ Problem 1← ¬ Problem 2← ¬ Problem 3 (10)

During rotation space search, the algorithm efficiently de-
tects cubes which are infeasible in the sense of Problem 3,
implies infeasibility of Problem 1 and safely discards them.
In the following, Problems 1-3 are introduced successively.
Lemma 5 then proves the implication chain.

3.2. Feasibility Test

The question to be answered in the feasibility test is
whether there might be a solution inside a cube of pa-
rameters, which provides a cost reduction with respect to
the current minimum. This section introduces a feasibility
test for the hand-eye calibration problem. Problem 1 for-
mulates this question of a possible cost improvement for
the optimization problem (8). A cube is given by the re-
stricted domain D. The L∞-norm over the difference vec-
tor is replaced by constraints onto every correspondence
uj,k ↔ vj,k. The current cost minimum is denoted by εmin.

Problem 1 Standard feasibility problem for orienta-
tion search

Given D, εmin

do exist tkA, xkj , RX ∈ D
such that ∠

(
ukj ,x

k
j

)
≤ εmin

and ∠
(
vkj , RX RkB R−1X

(
xkj − tkA

))
≤ εmin

for j = 1, . . . , N (k), k = 1, . . . ,M

It is quite complex to give an answer to this problem di-
rectly since even the restricted domain inside the cube still
contains an infinite number of possible parameters. Instead
of evaluating all these parameters, Problem 2 fixes the rota-
tion RX to the parameter at the center of the cube R̄X . Then
it infers a lower bound for the minimum cost over all pa-
rameters inside the cube. This is possible by introducing
a bound on the maximum objective function improvements
for similar parameter vectors inside a small restricted re-
gion. The result is a relaxed problem based on the parame-
ters at the center of the cube.

Problem 2 Relaxed feasibility problem for orientation
search

Given R̄X corresponding to center of D, σ, εmin

do exist tkA, xkj
such that ∠

(
ukj ,x

k
j

)
≤ εmin

and ∠
(
vkj , R̄X RkB R̄−1X

(
xkj − tkA

))
≤ εmin + 2 ϕmax sin

(
σ
√

3/2
)

for j = 1, . . . , N (k), k = 1, . . . ,M

Lemma 1 (Relation of Problem 1 and 2). If there exists a
feasible solution to Problem 1, then there is also a feasible
solution to Problem 2.

The following proof of Lemma 1 is based on the work of
Seo et al. [13] and also applies lemmas from the contribu-
tion of Hartley and Kahl [5]. Due to space constraints, the
lemmas used could not be restated in this paper.

Proof. Let
(
R̃X , t̃

k
A, x̃

k
j

)
be a feasible solution to Problem 1

in the restricted domain D. The proof shows, that
(
t̃kA, x̃

k
j

)
is a feasible solution to Problem 2 for the rotation R̄X cor-
responding to the center of D. Denote s̃kj = x̃kj − t̃kA and
the half side length of the cube D by σ. The angle axis
representation of the hand rotation RkB is βk. The first con-
straint ∠

(
ukj ,x

k
j

)
≤ εmin of Problem 2 is satisfied for all

correspondences since it is equal in both problems. The
second constraint, which is formulated for every correspon-
dence individually, is replaced by a single condition on the
maximum error over all correspondences. The following
inequalities derive a lower bound on the optimal objective
function value inside a cube with rotation R̄X represented at
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the cube’s center.

max
j,k

∠
(
vj , R̄XR

k
B R̄
−1
X

(
x̃kj − t̃kA

))
≤ max

j,k
∠
(
vj , R̃XR

k
B R̃
−1
X

(
x̃kj − t̃kA

))
(11)

+ max
j,k

∠
(
R̃XR

k
B R̃
−1
X s̃kj , R̄XR

k
B R̄
−1
X s̃kj

)
≤ εmin + max

k
∠
(
R̃XR

k
B R̃
−1
X , R̄XR

k
B R̄
−1
X

)
(12)

≤ εmin + max
k

∥∥X̃ βk − X̄ βk
∥∥ (13)

= εmin + max
k

∥∥βk − X̃−1 X̄ βk
∥∥ (14)

≤ εmin + max
k

2
∥∥βk∥∥ sin

(
σ
√

3/2
)

(15)

= εmin + 2 ϕmax sin
(
σ
√

3/2
)
, (16)

The maximum rotation angle over all hand motions is given
by ϕmax. Notice the usage of the triangle inequality in (11),
Lemma 1 of [5] in (12), Lemma 1 and 4 of [13] in (13) and
Lemma 2 of [13] in (15). The Lemmas could not be in-
cluded due to space constraints. In (12) the objective func-
tion value for the rotation R̃X can be bounded from above
by εmin since R̃X is a feasible solution to Problem 1.

Since the second constraint is satisfied for the maximum
angular error over all correspondences, it is also satisfied
for every individual correspondence. The parameter set(
t̃kA, x̃j

)
is a feasible solution to Problem 2 for rotation R̄X

corresponding to the center of D.

The angular constraints in Problem 2 induce two circular
cones with axes ukj and vkj for each correspondence. Prob-
lem 2 asks for the existence of a point xkj within both cones,
thus it practically asks whether the two cones intersect. A
necessary condition for this intersection is the coplanarity of
both cones and the translation vector tkA between the cam-
era centers. More precisely, there has to exist a ray within
the first cone, which is coplanar with a ray within the sec-
ond cone and the translation tkA. In the derivation of their
”Linear Programming Solution for Relative Pose” Hartley
and Kahl [5] show how the cone coplanarity condition in-
duces linear constraints on tkA. In their work, these linear
constraints are illustrated as planes, which are tangent to
both cones. The wedge in-between both planes contains the
feasible tkA, which satisfy the coplanarity condition. The
two constraint planes can be expressed as

nkj
T
tkA ≥ 0 (17)

mk
j

T
tkA ≥ 0,

where nkj and mk
j ∈ R3 with

∥∥nkj∥∥ =
∥∥mk

j

∥∥ = 1. They
represent the two plane normals for every correspondence j
of every motion k. Their exact derivation from the parame-
ters in Problem 2 is given in [5].

In Problem 2, only the rotational component of the hand
motion is matched with the feature movements. Since hand
and eye are rigidly coupled, the translational component has
to be constrained too. Following from (3), the camera trans-
lation tkA is an affine function of tX . Substituting it in (17)
yields two new constraints on the hand-eye translation tX .

nkj
T
(
R̃X RkB

−1 − R̃X

)
tX + nkj

T
R̃X tkB ≥ 0 (18)

mk
j

T
(
R̃X RkB

−1 − R̃X

)
tX + mk

j

T
R̃X tkB ≥ 0

They constitute the cone coplanarity constraint on the
hand-eye translation tX . Those tX , which satisfy both con-
straints, produce camera translations tkA which are coplanar
with each pair of cones for every correspondence. The left
side of inequalities (18) will be named the coplanarity con-
dition values in the following.

The exact hand-eye rotation R̃X , which yields the cost
improvement in Problem 2, is unknown and thus (18) can-
not be evaluated directly. The new feasibility Problem 3
is introduced in the following. It fixes the rotation to R̄X ,
which is represented by the parameter at the center of the
cube. To fix the rotation to the cube center, an upper bound
for the maximum coplanarity condition value over all pa-
rameter inside the cube is introduced. This upper bound is
then tested against the condition ≥ 0. The result is the re-
laxed Problem 3 based only on the parameter vector at the
center of the cube. A subsequent lemma then shows that
every solution t̃X to the exact coplanarity condition based
on R̃X causes also the upper bound based only on R̄X to sat-
isfy the ≥ 0 condition. For the derivation of Problem 3, the
following two lemmas are required.

Lemma 2 introduces an upper bound for the projection’s
value nTRv of a rotated vector Rv onto a normalized vector
n over a restricted domain of rotations.

Lemma 2 (Upper bound of projection value). For all
v,n ∈ R3 with ‖n‖ = 1, α = ∠ (n, R′v), ∠ (Rv, R′v) ≤ γ
and R, R′ ∈ SO (3) holds:

nTRv ≤ nTR′v + ‖v‖

{
1− cos (α) if α < γ,
cos (α− γ)− cos (α) otherwise.

Proof. The scalar product nTRv may be interpreted as
the projection of Rv onto n. All possible Rv with
∠ (Rv, R′v) ≤ γ span a circular cone in 3D with princi-
pal axis R′v. There are two possible configurations. Ei-
ther n is located in this cone or not. Case n within cone
(α < γ): The maximum value for the projection nTRv oc-
curs for n and Rv being parallel. Since ‖n‖ = 1 and R

being an isometry, the value of the projection is ‖v‖. The
maximum increase is thus given by δ = ‖v‖ − nTR′v =
‖v‖ (1− cos (α)). Case n not within cone (α ≥ γ):
The maximum projection value is achieved for the Rv
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with the smallest ∠ (n, Rv). The smallest achievable an-
gle is α − γ. Thus the largest possible projection value is
maxR n

TRv = ‖v‖ cos (α− γ) and the maximum increase
δ = ‖v‖ (cos (α− γ)− cos (α)).

Lemma 3 generalizes the upper bound to an unknown
vector v ∈ R3 satisfying ‖v‖ ≤ Lv .

Lemma 3 (Upper bound of projection value for unknown
vector v). For all v,n ∈ R3 with ‖n‖ = 1, ∠ (Rv, R′v) ≤
γ, R, R′ ∈ SO (3) and known upper bound of v’s Euclidean
norm Lv ≥ ‖v‖ holds:

nTRv ≤ nTR′v + 2 Lv cos

(
π − γ

2

)
. (19)

Proof. The value of the projection increase is maximized
over all possible angles α = ∠ (n, R′v). Case α < γ: Since
0 ≤ γ ≤ π there holds 0 ≤ α < γ ≤ π. The maximum pro-
jection increase from Lemma 2 is δ (α) = Lv (1− cos (α)).
Its first derivative vanishes only once in α ∈ [0, π) at
α = 0, where its second derivative reveals that δ (0) is
a local minimum. The maximum values are thus reached
for α’s only remaining limit case α → γ. Thus the maxi-
mum increase of projection value is Lv (1− cos (γ)). Case
α ≥ γ: In this case it holds 0 ≤ γ ≤ α ≤ π. The
first derivative of δ (α) = Lv (cos (α− γ)− cos (α)) van-
ishes for α = π+γ

2 , where its second derivative is non-
positive. The maximum increase of the projection value is
thus 2Lv cos

(
π−γ
2

)
. Since 2 cos(

(
π−γ
2

)
≥ 1 − cos (γ) for

γ ∈ [0, π], the maximum increase of the projection value
over all α is given by 2Lv cos

(
π−γ
2

)
.

The following problem introduces the relaxed copla-
narity condition for hand-eye translation tX based only on
the rotation R̄X represented by the center of a prameter
cube.

Problem 3 Cone coplanarity constraint on tX

Given R̄X corresponding to center of D,
σ, nkj , mk

j

do exist tX

such that nkj
T
(
R̄X RkB

−1 − R̄X

)
tX + nkj

T
R̄X tkB

+ 4LX cos
((
π −
√

3σ
)
/2
)

+
∥∥tkB∥∥ (1− cos

(
∠
(
nkj , R̄XtkB

)))
≥ 0

and mk
j
T
(
R̄X RkB

−1 − R̄X

)
tX +mk

j
T
R̄X tkB

+ 4LX cos
((
π −
√

3σ
)
/2
)

+
∥∥tkB∥∥ (1− cos

(
∠
(
mk
j , R̄XtkB

)))
≥ 0

for j = 1, . . . , N (k), k = 1, . . . ,M

Lemma 4 (Relation of Problem 3 and inequalities (18)). A
solution t̃X to (18) with

∥∥t̃X∥∥ ≤ LX is a feasible solution
in Problem 3.

Proof. Let t̃X be a solution to the inequalities (18) with∥∥t̃X∥∥ ≤ LX . The proof will show the following two in-
equalities.

0 ≤ nkj
T
(
R̃X RkB

−1 − R̃X

)
tX + nkj

T
R̃X tkB (20)

≤ nkj
T
(
R̄X RkB

−1 − R̄X

)
tX + nkj

T
R̄X tkB + δ (21)

The first inequality is satisfied by choice of t̃X . For the
second inequality to be true, its three additive components
have to satisfy the following inequalities

nkj
T
R̃XR

k
B t̃X ≤ nkj

T
R̄XR

k
B t̃X + δ1 (22)

−nkj
T
R̃X t̃X ≤ −nkj

T
R̄X t̃X + δ2 (23)

nkj
T
R̃XtkB ≤ nkj

T
R̄XtkB + δ3, (24)

where δ = δ1 + δ2 + δ3. Using Lemma 1 and 4 of [5] it
holds:

∠
(
R̃Xv, R̄Xv

)
≤ d∠

(
R̃X , R̄X

)
≤
√

3σ ∀v ∈ R3, (25)

where
√

3σ is the maximum Euclidean distance in the pa-
rameter space between the cube center (representing R̄X )
and any other parameter within the cube (representing R̃X ).
The first two inequalities (22) and (23) are satisfied for
δ1,2 = 2LX cos

((
π −
√

3σ
)
/2
)

following Lemma 3 with
γ =
√

3σ. The third inequality (24) follows from Lemma 2
for

δ3 =
∥∥tkB∥∥

{
1− cos (α) if α < γ,
cos (α− γ)− cos (α) otherwise.

(26)

and α = ∠
(
nkj , R̄XtkB

)
. Thus inequality (21) holds for t̃X

with

δ = 4LX cos
((
π −
√

3σ
)
/2
)

(27)

+
∥∥tkB∥∥

{
1− cos (α) if α <

√
3σ,

cos
(
α−
√

3σ
)
− cos (α) otherwise.

The proof for the second plane normal mk
j is similar and

omitted.

The following Lemma 5 connects all feasibility prob-
lems and outlines their usage strategy.

Lemma 5 (Relation of Problems 1, 2 and 3). Let
(R̃X , t̃X , x̃

k
j ) with

∥∥t̃X∥∥ ≤ LX be a parameter set for
which the using (3) extended parameter set (R̃X , t̃

k
A, x̃

k
j ) is

a feasible solution to Problem 1. Then (t̃kA, x̃
k
j ) is a feasible

solution to Problem 2, (t̃kA) a feasible solution to the cone
coplanarity constraint in (17) and (t̃X) a feasible solution
to Problem 3.
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Proof. Let (R̃X , t̃X , x̃
k
j ) with

∥∥t̃X∥∥ ≤ LX be a param-
eter set for which the using (3) extended parameter set
(R̃X , t̃

k
A, x̃

k
j ) is a feasible solution to Problem 1. Then the

set (t̃kA, x̃
k
j ) is a solution to Problem 2 by Lemma 1, thus

results in intersecting cones for each correspondence. Since
the coplanarity constraint is a neccessary condition for the
intersection of cones, the parameter set (t̃kA) is a feasible so-
lution to the cone coplanarity constraint on tkA in (17). By
design the inequalities in (18) are satisfied for all tX , which
create a tkA feasible to (17). Thus t̃X is a solution to the in-
equalities (18) and following from Lemma 4 also a feasible
solution to Problem 3.

Collecting the coefficients in Problem 3 results in two
affine linear constraints for every correspondence j and ev-
ery motion k.

akj
T
tX − bkj ≥ 0 ckj

T
tX − dkj ≥ 0 (28)

To evaluate the feasibility of a parameter cube during
branch-and-bound the pairs of constraints for every corre-
spondence j and every motion k are combined into a single
linear feasibility program in the three unknown components
of tX . The feasibility of this program could be determined
by any available linear programming toolkit. For improved
computational efficiency, the implementation presented in
this work merely checks whether the intersection of all con-
strained half-spaces equals the empty set or not. An empty
set implicates the infeasibility of Problem 3. In this case
the contraposition of Lemma 5 in (10) shows the infeasibil-
ity of Problem 1. The evaluated cube can thus be discarded
safely since none of the contained parameters allows a cost
improvement.

3.3. Objective Function Evaluation

The objective function evaluation step of the presented
branch-and-bound optimization is performed on every cube
which passes the feasibility test. The goal is to evaluate
the objective function (8) on parameters inside the cube and
potentially improve the currently best cost estimate εmin.
Notice that even though the goal of this work is global opti-
mization, this step does not need to be optimal. If objective
function evaluation fails to reach the global optimum inside
a cube, the worst case is that εmin can’t be improved and
some infeasible cubes can’t be rejected yet. No optimal so-
lution is lost.

For simplicity, only the rotation R̄X represented by the
cube’s center is evaluated. This selection improves as the
parameter volume inside the cubes reduces over runtime of
the algorithm. The feasibility test based on Eq. (28) returns
a feasible 3D region for tX plus a single sample inside this
region. Based on these two parameters, the algorithm deter-
mines the camera’s relative rotation RkA and translation tkA

from Eq. (2) and (3) respectively. Triangulation then recov-
ers the 3D positions xkj of the interest points in the scene. To
minimize computational complexity the mid-point method
was selected regardless of its disadvantages. The objective
function (8) finally determines the resulting cost value.

3.4. Convergence

During the execution of the algorithm, the feasible cubes
successively decrease in size (σ → 0). In the limit
case, their volume converges towards the single parame-
ter at the cube center. In this case, the relaxation terms
2ϕmax sin

(
σ
√

3/2
)

in Problem 2 and δ in the translation
constraints (21) vanish. The feasibility test then accurately
decides whether the cube’s center parameter yields an ob-
jective function improvement or not. The infeasibility of
Problem 3 extends from a sufficient to a necessary condi-
tion for cube infeasibility in the sense of Problem 1. No
cube is falsely considered feasible. Thus if the typical re-
quirements for hand-eye calibration [2] are satisfied by the
executed hand motions, the proposed algorithm converges.

4. Evaluation
This section evaluates the proposed method for global

optimization of hand-eye calibration. The results were ob-
tained using a hybrid Matlab7.11 and C prototype imple-
mentation. It was executed on an Intel Core i7 CPU with
3.3 GHz running Linux.

4.1. Sensitivity to Noise Affected Interest Points

420 synthetic calibration scenarios were generated to an-
alyze the algorithm’s sensitivity to noise affected interest
point correspondences. Each synthetic scenario is com-
posed of a set of 30 uniformly distributed 3D points in front
of which the virtual hand-eye rig moves. Real world image
measurements are generally expected to have an accuracy
within 1 pixel [9]. Since image measurements in this work
are represented as unit directional vectors, feature directions
were perturbed by 21 different levels of Gaussian noise in
the angular domain. The tested noise standard deviations
ranging from 0 to 2 × 10−3 rad correspond to deviations
of 0 to 1 pixel in the image domain, given the equidistant
”f -Theta” camera model in the physical setup. The ter-
mination criteria was the feasible parameter space volume
reaching a value below 1× 10−5 rad3. The required upper
bound LX of the hand-eye translation length was set to 1.5
times the ground truth length of tX . The angle of the delta-
rotation between the estimated and the ground truth rotation
is used to measure the accuracy of the estimated orientation.
The translational error is measured as the L2 norm between
estimated and ground truth translation.

Fig. 2 illustrates the rotational and translational estima-
tion errors over the varying noise levels. Good average esti-
mation errors of at most 3×10−3 rad (≈ 0.2 ◦) are achieved
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Figure 2: Rotation and translation estimation errors over
increasing noise levels. The error bars show the standard
deviation over the 20 experiments at each noise level.

throughout the expected noise levels. The effect of improv-
ing estimations at increasing noise levels (between 0 and
1 × 10−3 rad) was analyzed by Ruland et al. in [11]. The
average computation time in these simulated experiments
was approximately 107 s.

4.2. Benchmark Dataset

This paper introduces a benchmark dataset for hand-eye
camera self-calibration in robotic vision scenarios. It is de-
signed to provide a common point of reference for algo-
rithm evaluation. It consists of image sequences from typi-
cal industrial scenarios including end-effector poses and ad-
ditional images for intrinsic camera calibration. The bench-
mark dataset is included in the supplemental material in
lossy compressed form and published online as original un-
compressed data in full quality.

The dataset is comprised of three different scenarios.
Scenario 1 (Fig 3b) is designed towards the application of
reference algorithms, which rely on known calibrations ob-
jects in the scene. It mostly contains chessboard patterns
in various orientations (cell size 50mm × 50mm). Sce-
nario 2 features unknown objects, placed besides the cal-
ibration patterns (Fig 3c). In this scenario the results of
chessboard based calibration algorithms can be verified and
correspondence based algorithms observe random texture
to extract image features. In scenario 3 (Fig 3d) the com-
plete scene consists of unknown objects. The robot poses
are identical throughout all three scenarios.

Fig. 3a shows the experimental camera and robot setup.
A monochrome PointGrey Flea3 camera equipped with a
Fujinon FE185C086HA-1 185◦ field of view, equidistant
fish-eye lens (focal length 2.7mm) was mounted to the end-
effector of a Mitsubishi RV-6S-S12 industrial robot. The
camera was capturing 1280 × 960 pixel imagery from 25
robot poses. These robot poses positioned the end-effector
on a half dome segment with the Z-axis of the end-effector
frame roughly pointing towards the center of the scene.

Hand-eye reference calibrations were established in two

(a) Camera mounting (b) Scenario 1

(c) Scenario 2 (d) Scenario 3

Figure 3: Experimental setup and new benchmark dataset.
(a) Camera mounting at the robot’s end effector. (b-d) Sam-
ple images of the evaluation scenarios featuring calibration
objects only, sparse and full object coverage respectively.

ways. A rough physical measurement yielded a camera
position in the end-effector frame of (40,−110, 90)

T
mm.

The well known approach of Tsai and Lenz [14]
was applied on pre-estimated camera poses, using
the calibration patterns in scenario 1. The result
was a camera position in the end-effector frame of
(44.76,−112.68, 93.75)

T
mm. The hand to camera rota-

tion was estimated at (0.0301, 0.1117, 0.7554)
T

rad in mul-
tiplied angle axis notation.

4.3. Evaluation on Benchmark Dataset

The evaluation was conducted using scenario 2, so that
both tested and reference algorithm can be run on the same
data. Of course only the reference algorithm of Tsai and
Lenz [14] used the calibration patterns. From the 25 robot
poses in the dataset, 100 optimization problems with two
relative motions were extracted. They were selected by
thresholding the angle between their rotation axes at min-
imum 40 ◦. This ensures that there is a unique solution
to the hand-eye calibration problem [2]. For each motion
pair 30 interest point correspondences were extracted. L∞-
approaches are generally very sensitive to outliers since
they are actually fitting the noisiest data [6, 9]. Since the de-
scribed method does not contain an algorithmic element of
correspondence selection, outliers had to be rejected manu-
ally. The selection procedures presented in [11] fit very well
into the presented optimization principle, but could not be
integrated into this paper due to space constraints.

Each optimization problem was processed individually.
The termination criteria was the feasible parameter space
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Figure 4: Evaluation results on benchmark dataset (sce-
nario 2) after optimizing 100 problem configurations.

volume reaching a value below 1 × 10−5 rad3. The upper
bound LX of the hand-eye translation length was set to 1.5
times the length of the manually measured tX . The his-
tograms in Fig 4 visualize the algorithm’s performance on
the evaluation set. With average values of 2 × 10−3 rad
and 2.2 mm, the achieved rotational and translational er-
rors are in the same order of magnitude as in the simu-
lated experiments with angular noise of standard deviation
1.7 × 10−3 rad. The average computation time of 237 s
shows the low computational complexity of the presented
feasibility test.

This benchmark with respect to the algorithm of Tsai and
Lenz validates the algorithm’s accuracy to be well suited
for practical application. In contrast to the reference algo-
rithm, the presented approach does not require known cali-
bration objects in the scene. Hand-eye calibration can thus
be performed in the natural operation environment of the
robotic setup. Calibration performance is also either equal
or superior to current state of the art correspondence based
hand-eye calibration methods. The rotational accuracy is
in the same order of magnitude or even better when com-
pared to the results published by Seo et al. [13] and Ruland
et al. [11] respectively. The translational accuracy is im-
proved over the contribution of Heller et al. [7]. The unique
feature of the solution presented in this work is, that both
components of the hand-eye transformation are optimized
simultaneously with respect to reprojection errors.

5. Conclusion

In context of the hand-eye calibration problem, gradi-
ent descent methods generally fail to reach the global opti-
mum. Most existing hand-eye calibration solutions do not
directly address reprojection errors and rely on previously
estimated camera motions. Previous contributions which
optimize reprojection errors, only estimate parts of the full
6 degree of freedom hand-eye transformation. This work in-
troduced a novel method for globally optimal hand-eye self-
calibration based on a geometrically meaningful objective
function of reprojection errors. The design of the branch-
and-bound parameter space search as a two step process

enabled the main contribution of a new direct test for the
feasibility of a valid hand-eye translation. The successful
evaluation on both simulated and real world hand-eye cal-
ibration problems showed the algorithm to be well suited
for practical applications. The public benchmark dataset
creates a common point of reference for evaluation of hand-
eye self-calibration algorithms and might further encourage
research in this field.

Acknowledgement
The work of T. Pajdla was supported by the TACR TA

02011275 and De-Montes FP7-SME-2011 285839 grants.

References
[1] N. Andreff, R. Horaud, and B. Espiau. Robot hand-eye cali-

bration using structure-from-motion. Int. J. Robot. Research,
20:228–248, 2001.

[2] H. Chen. A screw motion approach to uniqueness analysis
of head-eye geometry. In IEEE Proc. Computer Vision and
Pattern Recognition, pages 145 –151, 3-6 1991.

[3] K. Daniilidis. Hand-eye calibration using dual quaternions.
Int. J. Robot. Research, 18:286–298, 1999.

[4] S. Esquivel, F. Woelk, and R. Koch. Calibration of a multi-
camera rig from non-overlapping views. In Pattern Recog-
nition, volume 4713 of Lecture Notes in Computer Science,
pages 82–91. Springer Berlin / Heidelberg, 2007.

[5] R. I. Hartley and F. Kahl. Global optimization through rota-
tion space search. Int. J. Computer Vision, 82:64–79, 2009.

[6] R. I. Hartley and F. Schaffalitzky. LX minimization in ge-
ometric reconstruction problems. In IEEE Proc. Computer
Vision and Pattern Recognition, pages I: 504–509, 2004.

[7] J. Heller, M. Havlena, A. Sugimoto, and T. Pajdla. Structure-
from-motion based hand-eye calibration using L∞ mini-
mization. In IEEE Proc. Computer Vision and Pattern
Recognition, 2011.

[8] R. Horaud and F. Dornaika. Hand-eye calibration. Int. J.
Robot. Research, 14(3):195–210, June 1995.

[9] F. Kahl and R. Hartley. Multiple-view geometry under
the L∞-norm. IEEE Trans. Pattern Anal. Machine Intell.,
30(9):1603 –1617, sep. 2008.

[10] F. Park and B. Martin. Robot sensor calibration: solving
ax=xb on the euclidean group. IEEE Trans. Robot. Automat.,
10(5):717 –721, oct 1994.

[11] T. Ruland, T. Pajdla, and L. Krüger. Robust hand-eye self-
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