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Abstract

In many vision problems, rotation-invariant analysis is
necessary or preferred. Popular solutions are mainly based
on pose normalization or brute-force learning, neglecting
the intrinsic properties of rotations. In this paper, we
present a rotation invariant detection approach built on
the equivariant filter framework, with a new model for
learning the filtering behavior. The special properties of
the harmonic basis, which is related to the irreducible
representation of the rotation group, directly guarantees
rotation invariance of the whole approach. The proposed
kernel weighted mapping ensures high learning capability
while respecting the invariance constraint. We demonstrate
its performance on 2D object detection with in-plane rota-
tions, and a 3D application on rotation-invariant landmark
detection in microscopic volumetric data.

1. Introduction

Rotation invariance is useful when objects of the same
class can appear in different poses. Common solutions in
computer vision are based on either pose normalization (e.g.
SIFT[11]) or learning (e.g. Random Ferns [12], Structured
SVM [18]). The reliability of orientation assignment is
always a concern for pose normalization [3], and it becomes
even more critical in 3D [1]. The learning based methods
just absorb the complexity into the classification problem,
which works well in case of a restricted set of possible
rotations but is inefficient otherwise. Especially when
going from 2D to 3D, sampling all possible rotations
becomes unattractive. While sampling one object under 2D
rotations in 10-degree steps leads to 36 samples, it leads to
approximately 15000 samples for full 3D rotations, as three
angles are required to determine a 3D pose.

In this paper, we show that a powerful tool can be created
by combining filters based on the 2D/3D harmonic basis

Figure 1. Overview of the presented approach. The bottom
graph illustrates the work-flow on a single patch, which finally
contributes a steered voting for the object center (assuming jmax =
3). �: projection of the local patch on the basis functions, which
creates the local feature vector f (Sec. 3.2). I makes rotation-
invariant features from f (Sec. 4.1). w̃: the local model given by
the kernel weighted mapping (Sec. 4.2). αj={1,2,3}: the voting
coefficients which weight and steer the voting basis uj={1,2,3}(x)
into the final voting pattern v(x) (Sec. 3.3).

with a kernel weighted model. In the presented approach,
the complexity caused by the rotations is absorbed by taking
advantage of the property of the harmonic basis, which
is related to the irreducible representation of rotations
in the group representation theory [10]. The proposed
kernel weighted model assembles the filters built with the
harmonic basis in a flexible way.

Our basic framework follows the equivariant filter [14],
which uses two layers of filtering: one layer for description
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and one layer for voting. A trainable mapping can be
applied to the output of the description filters to create the
coefficients which then drive the voting filters. Rotation
invariance is ensured by the construction of the coefficients.
Fig. 1 shows an overview of the presented approach. Our
work focuses on the mapping part, which essentially de-
cides on the filtering behavior and the performance of the
whole approach.

The main contribution of this paper is to introduce
a kernel weighted model for the feature mapping in the
equivariant filters. By using the raw features and rotation-
invariant features together, we find a sound solution for con-
structing a nonlinear mapping under the rotation-invariant
constraint. The new model provides a simple and reliable
learning mechanism for the filter framework, thus signifi-
cantly improves its performance on challenging tasks.

The issue of rotation exists both in 2D and 3D and both
settings share many properties. The presented approach can
be applied to both of them. Since the 2D case is more
intuitive and easier to understand we base our explanation
mainly on the 2D case, but the generalization from 2D to
3D is quite straightforward. The 1D angular basis on the
unit circle just needs to be replaced by a spherical basis on
the unit sphere.

2. Related work
In this paper, the key element to achieve rotation in-

variance is the 2D/3D harmonic basis [21] with its self-
steerability [2, 5]. A 2D equivariant filter, the holomorphic
filter, was first proposed for low-level vision tasks in [14],
using group integration [15] as a constructing tool. Then
the harmonic basis in spherical coordinates helps to extend
this tool to 3D problems as an efficient feature detector [13].
While the feature design and rotation properties have been
analyzed in depth, those equivariant filters base their non-
linear behavior on feature coupling, which in fact is just a
linear model on coupled features. More challenging tasks
demand a more flexible model for the mapping part, which
is the main motivation behind this work.

The detection problem is a topic covered by intensive re-
search in computer vision field. Our basic filter framework
can be related to the generalized Hough transform [9]. It can
also be considered as a two-layer convolutional network [8],
in which the architecture and filters are specially designed
for the rotation invariance.

The 2D categorical object detection with in-plane rota-
tions is a possible application of our approach, but we focus
more on the landmark detection in microscopic volumetric
data. Our high-level application is similar to the work
presented in [7], but in a more challenging 3D setting,
where the recorded objects have undetermined poses and
large deformations. The landmark detection hence becomes
a key element in the whole pipeline, for providing reliable

Figure 2. Complex Gaussian derivatives, which has the Fourier
basis as the angular part (only showing the real part).

point correspondences and a high-quality initialization for
the elastic registration.

3. Equivariant filter revisited
In this section, we will use the property of Fourier basis

and a voting scheme to derive the equivariant filters.

3.1. Invariance and equivariance

In detection tasks, the rotation invariance is defined w.r.t.
to the object coordinate system. In the image coordinate
system, we can abstract the detection process as a transform
H on the input image I . When a rotation g acts on the
image, the detection behavior we actually need is H(gI) =
gH(I)1, i.e., the output of the transform rotates together
with the input image. This relative invariance is called
equivariance [14].

3.2. Fourier basis and self-steerability

To investigate a function under a rotation, without loss
of generality, the origin can always be defined at the
rotation center. For analyzing 2D functions, the ideal
basis should take a separable form Ψ(r, ϕ) = R(r)Φ(ϕ),
where (r, ϕ) are polar coordinates. In practice, while
the radial part R(r) can be defined in many ways, the
optimal choice for the angular part is the Fourier basis
Φm(ϕ) = 1√

2π
eimϕ, where m is an integer [21]. It is

optimal because it can be steered by a factor e−imβg , as
Φm(ϕ − βg) = e−imβgΦm(ϕ), and the functions like
eimβ give the irreducible representations of the 2D rotation
group, in the group representation theory [10]. These
Fourier basis functions form harmonics on the circle.

With an arbitrary radial profile R(r), a basis function
like u = R(r)eimϕ has the property as u(r, ϕ − β) =
e−imβu(r, ϕ). This property is called self-steerability [5],
as the function itself can be steered to any orientation by
a simple multiplication. Considering the filtering (convo-
lution) with such a function, H(I) = u ∗ I , on a rotated
image, we have

H(I(r, ϕ− β)) = eimβ [H(I)](r, ϕ− β) . (1)

We call the output function H(I) covariant w.r.t. the image
rotations, and refer to m as the rotation order for both

1The rotation action g means “rotating the field while keeping its
physical meaning”. This is trivial for scalar fields like images, but not
for high-order fields, e.g. the gradient field d(x) transforms as [gd](x) =
Ug d(Ug

Tx), where Ug is the rotation matrix in Cartesian coordinates.
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H(I) and u. The rotation order of the filter output can be
manipulated by either multiplications or convolutions, e.g.
ifHj andHk come from the filters in the form ofR(r)eimϕ,
the rotation orders ofHk(Hj(I)) andHk(I)Hj(I) are both
mj + mk. Then it is easy to find out that the condition to
fulfill equivariance in such a compound filter is mj +mk =
0.

As an example, the basis functions used in the holo-
morphic filter [14] are the complex Gaussian derivatives
(shown in Fig.2). They can be efficiently computed with
finite differences.

3.3. Dense equivariant voting

For the detection task, we consider a voting process from
a dense feature map F : R2→ Cdmax ;x 7→ f (where dmax
indicates the feature dimension), as

S(x) =

∫
R2

v(x− y|F(y))dy , (2)

where S is the detection score, and the voting pattern v(x|f)
represents the vote to the relative position x given the local
feature f . To make the voting pattern easy to learn, it is
parameterized as a linear combination of basis functions,
with feature dependency, as v(x|f) =

∑jmax
j=1Aj(f)uj(x).

Aj : Cdmax→C; f 7→ αj is the feature mapping to learn. See
the illustration in Fig.1. Inserting Aj into Eq.(2), we get

S(x) =

∫
R2

∑
j

Aj(F(y))uj(x− y)dy =
∑
j

Ãj ∗ uj ,

(3)

where Ãj : R2→ C is introduced by Ãj(x) = Aj(F(x)).
Thus, after the basis is selected, the voting behavior is
completely decided by the mappings Aj={1,...,jmax}.

To achieve the equivariance, we make use of the covari-
ant features from Sec.3.2, which are computed by the self-
steerable basis with small support range, and use similar
basis functions with larger support as uj . Then with a
proper model for Aj , we can manipulate the rotation order
of each term in Eq.(3), by the method explained in Sec.3.2.

When the local features are also created by linear filters,
we must create some nonlinearity by the feature mapping,
otherwise the whole approach will collapse into a single
linear filter. In [14], Aj is a weighted sum of coupled
features, namely Aj(f) =

∑
mj+mk+ml=0 γjkl(flfk),

where {mj ;mk,ml} indicate the rotation orders for the
voting basis function uj and the features. The coefficients γ
are the parameters to learn. The summing-to-zero constraint
guarantees the equivariance, but this model has limited
capacity to approximate the optimal nonlinear mapping.

3.4. From 2D to 3D

The analogous tools for the 3D analysis in the spherical
coordinates (r, θ, ϕ) are not as well-known as their 2D

counterparts. First of all, we need the harmonic basis de-
fined on the spheres, which is called Spherical Harmonics.
It is intuitive to consider them as vector-valued functions
Y` : S2→C2`+1. Accordingly, the steering factors (the
counterpart of eimϕ) become matrices, called Wigner-D
matrices [16], which give the irreducible representation of
3D rotations. They are (2`+ 1)× (2`+ 1) unitary matrices,
for the `th order. For the convenience of analysis under 3D
rotations, the spherical tensor algebra was developed [16,
13]. Note this tensor concept is not special for the 3D case,
as the Fourier analysis in the polar coordinate is also related
to the 2D tensors [17]. To be specific, instead of scalar
values, in 3D we have fd ∈ C2`d+1, αj ∈ C2`j+1 and
uj : R3→C2`j+1. They are all spherical tensors of certain
rotation orders (`d, `j). Analogously, the equivariance is
achieved by making the filter output to be a zero-order
tensor (scalar) field.

Similar to the complex Gaussian derivatives in the 2D
case, there exists a convenient basis from the spherical
derivatives of a 3D Gaussian, with Spherical Harmonics as
its angular part. This is the only tool we actually need in
the computation. For more details, we refer the readers to
[13, 16].

4. Modeling the feature mapping
The variation among objects demands nonlinearity in

the detection process. In those popular nonlinear models,
like the kernel SVM or the codebook in Hough voting,
a similarity measure (kernel) is required in the modeling
process. However, in the equivariant filter framework,
we need to make sure that the similarity measure respects
the equivariance. For example, applying the common
Euclidean distance ||f − f ′||2 on two covariant feature
vectors will cause trouble, because we have no simple way
to describe the change of the distance when one patch
rotates with respect to another.

4.1. Rotation-invariant kernel

A simple solution to this problem is to compute rotation-
invariant features from the features we have, and then to
perform the comparison between them. Consider a kernel
function

KI(f , f ′) = K(I(f), I(f ′)) , (4)

where I is an operator to create a rotation-invariant feature
vector from given covariant features,K can be any standard
kernel (e.g. a RBF kernel). As explained in Sec.3.2, from a
group of covariant features, we can get rotation invariant
features by coupling two features like fifj , when fi and fj
have the same rotation orders. Note, coupling a feature with
itself is equivalent to taking the magnitude of this feature.
Similar techniques exist for 3D [21]. The kernel defined in
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Figure 3. Detecting motorbike. Top row: the raw image and the
computed local covariant features (real part of 4 features). Bottom
row: The voting pattern contributed from the red/green patch and
final detection output (created by Filter I in Sec.5.1).

Eq.(4) is rotation-invariant, so it is totally safe to use it as a
similarity measure in the equivariant filters.

4.2. Kernel weighted mapping

We can easily have a nonlinear model for Aj(f) with a
suitable KI . However, to get the rotation-invariant feature
and similarity measure, we have lost a lot of information,
including the orientation of the patches. If we model Aj(f)
without the orientation information, the voting will not be
able to have any orientation selectivity.

An effective model for Aj(f) can be created by using
the rotation-invariant feature and covariant feature together.
Aj should change smoothly w.r.t. the feature, thus a linear
model can approximate the optimal mapping well in a local
region in the feature space. Thus, we model Aj(f) as an
interpolation among liner models

Aj(f) = [

∑
k KI(fk, f)wjk∑
k KI(fk, f)

]Tf , (5)

where T indicates a transpose, fk={1,...,kmax} is a set of points
distributed in the feature space, wjk ∈ Rdmax is the local
linear model at fk, which are the parameters to estimate.2

The kernel is now defined as KI(fk, f) = K(I(fk), I(f)),
where K(p,q) = e−||p−q||

2/2h2

. Eq.(5) creates a inter-
polated linear model for each f . By defining K̃k(x) =
KI(fk,F(x))∑
k′ KI(fk′ ,F(x)) , the interpolated model for the feature

vector at x can be written as W̃j(x) =
∑
k K̃k(x)wjk.

Inserting this into Eq.(3), we have the complete model for
the proposed approach

S(x) =
∑
j

(W̃j
TF) ∗ uj =

∑
j

(
∑
k

K̃kwjk
TF) ∗ uj .

(6)

2We can use wjk ∈ Cdmax in 2D problems. This benefits the feature
mapping with an extra steering effect, encoded in the complex phase of
wjk . However, in 3D we can not get the same benefit in such an easy way.

As shown in Fig.1, for each position, kernel weighted mod-
els are constructed based on the generated rotation-invariant
features, and then applied on the raw covariant features to
get the voting coefficients αj . While the localization (in the
feature space) is actually done by considering the rotation-
invariant features, the covariant features still directly drive
the voting basis through the constructed models. Thus the
local orientation information is used to steer the voting
pattern. Note, wjk is sparse, because we need to force its
dth element wjkd ≡ 0 when the rotation orders mj +md 6=
0, for the equivariance.

Equation (6) can be reformulated as

S =
∑
j,k,d

mj+md=0

wjkd((K̃kFd) ∗ uj) . (7)

With preselected fk, the terms (K̃kFd)∗uj can be computed.
So the final optimization problem can be easily solved by

minW

∫
L(y(x), S(x|W))dx , (8)

where W denotes all parameters wjkd, y(x) is the ground-
truth output (which is usually a binary image for detection
problem), andL is a suitable loss function. The nonlinearity
in this model is based on the localization in the feature
space, all the other parts are pure linear. Thus the model
enjoys the high reliability from the linear optimization. The
implementation of the approach is simple. We show the
training procedure in Algorithm 1. For detection we just
reorder the computations into a much faster way (Fig.1),
like reformulating Eq.(7) to Eq.(6) .

The remaining problem is how to select fk and the kernel
bandwidth. Because we actually apply the localization in
the space of I(f), we only need to select f̂k = I(fk).
Although it is possible to optimize the position of f̂k with
adaptive bandwidths, we use a simple k-means clustering
on training data to find kmax cluster centers as f̂k, and
empirically set the kernel bandwidth h to be the half of the
median value of all the nearest neighbor distances among
f̂k. In the experiments, we set kmax ≤ 50 for a fast and
reliable training.

Although the model is developed to meet some special
requirements, it has support from standard learning ap-
proaches. The idea using a kernel to localize the model
estimation is similar to the local linear regression method
in statistical learning [4]. Learning a nonlinear mapping by
relating features to cluster centers is similar to the codebook
methods, especially the super vector coding [23].

5. Experiments
We demonstrate our approach in both 2D and 3D, to

show that the proposed kernel weighted mapping brings a
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Algorithm 1 Training Algorithm

Input: image I , target output y (∗)

Output: selected f̂k, parameter wjkd
1: compute covariant features F(x) and I(F(x))

2: use clustering to select f̂k
3: compute weight K̃k(x) = KI(fk,F(x))∑

k′ KI(fk′ ,F(x))

4: for each covariant feature fd do
5: for each k do
6: for each voting basis uj with mj = −md do
7: voting term vjkd = (K̃kFd) ∗ uj
8: end for
9: end for

10: end for
11: solve minwjkd

∫
‖wjkdvjkd(x)− y(x)‖2dx

(∗) Assume only one training image for simplicity.

large improvement over the equivariant filters in the litera-
ture, and get competitive or better performance comparing
to some other state-of-the-art rotation-invariant methods.
The 2D experiment is also designed to show the flexible
usage of our approach and the combination with HOG
feature. The 3D experiment shows the real application for
which our approach is developed.

5.1. 2D rotation-invariant detection

A Freestyle Motocross dataset has been collected by
Villamizar et al. [19]. They use Random Ferns classifiers
in a two-step approach, with an estimation stage and a
classification stage. There are two image sets, one without
rotations (69 images) and one with rotations (100 images).

Implementation Instead of simple steerable filters,
we use a HOG based covariant description for the natural
images. Its design is also based on the polar Fourier analy-
sis. A histogram of gradient orientations can be considered
as a function of the angle, so we can use Fourier series
to represent it. From the HOG represented on the Fourier
basis, we construct a HOG based descriptor, which compute
local covariant features containing the information similar
to a 4×4 HOG window. See the supplementary material for
the implementation detail. From this descriptor, we get 28-
dimensional covariant features (with rotation order lower
than 5). By taking the magnitude and simple couplings, we
create 56-dimensional rotation-invariant features from the
covariant ones. Except for this, we implement the approach
as explained above. The complex-valued parameters wjk

are optimized by a simple least-square-error method. Only
7 complex Gaussian derivatives are used as the voting basis
(shown in Fig.2). Fig.3 shows an example for the detection
process. With this simple basis we can not synthesize
a sharp voting pattern, but it already produces satisfying
result.
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II−A ∆φ < 30
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Figure 4. The performance of Filter II trained on Set A/B with
30-degree error margin for pose estimation, compared to the
performance (after steered classification) reported in [19]

We create a training set A by taking the first 40 images
from the first dataset (without rotations), and a training
set B containing the first 40 images from the second
dataset (with rotations). The test is done on the remaining
60 images from the second dataset. By using the two
training sets separately (and no artificial rotations), we can
show that, our approach is totally pose-independent in the
training/detection procedure. Two filters are constructed:
Filter I is trained by setting the target output y(x) to a binary
image with y(c) = 1, where c is the object center. Filter II
is trained to predict object position and pose simultaneously,
by setting y(c) = eiφ, where (c, φi) is the center and pose
angle of the object (all φi = 0 in Set A). Accordingly, we
need to make the filter output to rotate like a vector field,
i.e. gS = eiβgS(r, ϕ − βg), by using a different constraint
for wjk in Eq.(6): wjkd ≡ 0 when mj + md 6= 1. For the
number of f̂k, we report all the results with k = 50. Larger
numbers do not further increase the performance, perhaps
because the bottleneck shifts to other parts of the approach.

Experimental result To separate the position and
pose, the objects are considered as circles. The diameter
is set to the mean value of the object width and height.
We use the overlap > 0.5 union criteria for position.
Filter I produces the response in the real part of its
output. It gets 91/90% EER (with no pose estimation)
when trained on Set A/B separately. Filter II produces
the detection response in the magnitude, while the phase
angle indicates the estimated pose of the motorbike. It
gets 89/92% EER (with a 30-degree error margin on
pose estimation) when trained on Set A/B separately. In
our straight implementation in Matlab, it takes about 2
seconds for the multi-scale detection at 10 scales on a
desktop computer, while 85% of the time is used for feature
computation. The precision-recall curves of Filter II are
shown in Fig.4. Comparing to [19], their best result is
91/93% EER with 15/30-degree margin. However, these
are the results after evaluating steered classifiers on a large
group of candidates. In contrast, we get all the estimation
in one step, and the performance is already comparable. To

921



Figure 5. Detection result of Filter II-B. Detections/ground-truth
are drawn in green/red. Orientations are indicated by the bars from
circle center.

compare our approach to the holomorphic filter [14], we
use 350 dimensional coupled covariant features from the
same HOG based description, to train a rotation-invariant
filter like Filter I. Its performance is 70% EER, much lower
than the presented approach.

Discussion The terms used in the Filter I and II are to-
tally different, and both groups carry sufficient information.
This suggest that we should try combining the terms with
different orders, but that may require explicit steering. The
limited angle resolution of Filter II can be explained by the
fact that all the information are collected in one additive
voting step, so the pose encoded in the phase angle is hard
to be very accurate.

5.2. Landmark detection in 3D microscopic images

A common challenge in the biomedical research is the
alignment of a new volumetric image to a standard image
(atlas) by an elastic registration [20, 7]. Here the volumetric
images are confocal microscopic recordings of zebrafish
embryos. In the planned fully-automated high-content
work-flow, the recorded sample will have a random orienta-
tion. Furthermore we have to deal with the morphological
variations in the organism. Thus, to get a high-quality
initialization and some reliable point correspondences for
the elastic registration, we need the presented rotation-
invariant detection method to locate a group of landmarks
robustly.

In this experiment, 63 volumetric images are obtained
by recordings from two sides of zebrafish embryos and an
image fusion step. In the embryo, 14 anatomical landmarks
are defined based on their unique and repeatable appearance
(see Fig. 6). For efficiency, we take a coarse-to-fine strategy,
first train and apply the detection filters on downsampled
images, then the most probable global constellation of all
landmarks are selected based on the individual probabilities
and their pairwise distances, solved as a max-sum prob-
lem [22]. Finally, we refine the detected landmarks using
the filter trained on high-resolution images, to get highly
accurate localizations.

Implementation Similar to the 3D harmonic

Figure 6. Top: an zebrafish embryo and the landmarks (the voxel-
size is 1µm3). Middle and bottom: two embryos with their
final detected landmarks shown in cropped slices, after rigid
alignment based on the landmarks. The data from different
experiment groups have different imaging qualities. For the large
morphological variations, a rigid alignment can not unify the poses
of all landmarks.

filter [13], we use the spherical Gaussian derivatives
(SGD) as the local descriptor and the voting basis. The
SGD is denoted as ∇u

dGσ , where u and d indicate its
derivative order. On a volumetric data V , the features
compute as Fud = ∇u

d(Gσd
∗ V ), where σd is the selected

scale for local description and the feature Fud is a spherical
tensor field of order (u−d). The rotation-invariant features
are computed by taking the L2 norm of each derivative
feature. Then f̂k are found by a k-means clustering with
kmax=30. From the mapping as Eq.(5), the Aj(F(x))
will also be spherical tensor fields, so they can convolve
with SGDs (with scale σv) of the same order to fulfill the
equivariant voting. More implementation details are given
in the supplementary material. Our implementation is
publicly available on our website3.

For the first step, the symmetric landmarks (e.g. left/right
eye) are considered as the same class. We work at the
downsampled images with a voxel-size of (6µm)3. The
parameter settings u+ d ≤ 6, σd = 20µm, σv = 40µm are
used for all landmarks. As a result, we obtain 15 covariant
features and 15 invariant features. We manually labeled all
landmarks in 7 embryos for training, and further manually
labeled 6 classes of landmarks in other 56 images, for a
quantitative evaluation.

Reference methods Here we compare our approach to
the 3D SIFT [1] and the harmonic filter. Our SIFT based ex-
periment goes as following: the salient points are extracted

3 http://lmb.informatik.uni-freiburg.de/people/liu/landmark3d
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Figure 7. The precision-recall curves for detections of 6 classes of landmarks. All the 6 filters are trained with the same parameters. For
each landmark, we show the precision-recall curve, two examples from the X-Y/X-Z plane views in the aligned embryos, and a small black
bar indicating the scale of the error margin for recall (top row: 30,30,45, bottom row: 30,30,45(µm)). The landmarks are: mid-hindbrain
boundary, 2nd ventricle, notochord tip, eye, ear, and optical nerve exit point. The presented approach always produces the best result for
all landmarks.

in a high density based on the determinant of Hessian ma-
trix. It extracts 5000∼8000 points in each image, covering
the landmarks well. Then 3D SIFT features are computed
following [1]4. The positive samples are extracted from the
7 training images (on all salient points within 24µm range
to the manually labeled point). With such few samples, the
nearest-neighbor classifier outperforms the SVM classifier
in a classification test. So for each salient point, we compute
the detection probability based on the smallest Chi-Square
distance between the feature vector(s) on the point and the
feature vectors from the training samples. The harmonic
filter is implemented following the reference, in which we
get 64 coupled features (in the orders lower than 6) to drive
the 3D voting.

Experimental result The evaluations and examples
of the detections are shown in Fig.7 and Fig.8. The
detection candidates from the filter approaches are the
local maximums. As the SIFT is computed with a high
density and multiple pose selections, the harmonic Filter is
not always performing better than SIFT, but our approach
always give the best result on all evaluated landmarks.
The running time for the filters (implemented in C) on
a 3.2GHz×4 CPU, is: 6s for local feature computation
including kernel evaluations, and additionally 4s for each
landmark class, while the harmonic filter needs about 25s
for each class. The reason is that the coupling of spherical
tensors is not cheap, and we avoid this by using kernel
based nonlinearity. The 3D SIFT is also expensive, the
feature computation alone needs about 20s for every 1000
points. Further qualitative results are: after the fast max-
sum verification, all landmarks are found in about 50µm

4The Hessian is computed over 5 scales in 6µm ∼ 24µm, only to
capture the landmarks in different scales. The 3D SIFT is computed at a
single scale on the downsampled image with bin size = 36µm and 4×4×4
spatial bins. Each point can have multiple descriptions according to several
competing poses.

Figure 8. Maximum intensity projection of the filter output (red)
overlaid on embryos (cyan), for the 6 evaluated landmarks. The
bottom two rows show the results on anti-AcTub (acetylated
tubulin) immunostaining data, by using the same parameters in
filter training.

range. By running the high-resolution ((1.5µm)3) filters in
the neighborhood of each landmark, all the landmarks are
refined to a high accuracy (see Fig.9). The final refined
landmarks provide a group of reliable point correspon-
dences distributed in the embryo, which are interpolated
into a high-quality initialization for the elastic registration,
making the registration faster and more accurate. The wide-
applicability of our method has also be checked. It has been
tested on zebrafish with different staining techniques. Some
qualitative result is shown in Fig.8.

Discussion We can see that the harmonic filter is
perfect for simple features like the eyes, but is not sufficient
for complex structures. For the 3D SIFT, by a pose normal-
ization, its output is not continuous on the underlying data,
and hence it might need more training data to well describe
a class. Our approach is continuous on the underlying data,
making the classification simpler, and has good description
ability from the voting mechanism.
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Figure 9. The effect of refinement on landmarks. Top: before
refinement. Bottom: after refinement.

In [13] an ISM based 3D voting method has been
designed, and showed to be less effective than the harmonic
filter. The ISM based method reported in [6] is developed
for the 3D shapes represented by surfaces. They use
interest point detection and assign an unique orientation
to each point. These could be error-prone in volumetric
data. The low reliability of the interest point detection
is the main reason that we prefer an approach based on
dense features. After all, our filter framework is simple
in the implementation, which just need two rounds of fast
convolutions with a voxel-wise feature mapping between
them.

6. Conclusion
Based on the fundamental theory about harmonic ba-

sis and rotations, we present a practical way to build a
flexible nonlinear model under the equivariance constraint,
developing the classical equivariant filters to more pow-
erful tools. The presented approach guarantees rotation
invariance, a well performing nonlinear model and a high
computational efficiency. It produces competitive rotation-
invariant detection performance in 2D images, and works
very well on the rotation-invariant landmark detection task
in 3D microscopic volumetric images.
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