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Abstract

Airborne LiDAR technology draws increasing interest in
large-scale 3D urban modeling in recent years. 3D Li-
DAR data typically has no texture information. To gener-
ate photo-realistic 3D models, oblique aerial images are
needed for texture mapping, in which the key step is to ob-
tain accurate registration between aerial images and un-
textured 3D LiDAR data. We present a robust automatic
registration approach. A novel feature called 3CS is pro-
posed which is composed of connected line segments. Puta-
tive line segment correspondences are obtained by matching
3CS features detected from both aerial images and 3D Li-
DAR data. Outliers are removed with a two-level RANSAC
algorithm that integrates local and global processing to im-
prove robustness and efficiency. The approach has been
tested on 2290 aerial images that cover a variety of urban
environments in Oakland and Atlanta areas. Its correct pose
recovery rate is over 98%.

1. Introduction

3D modeling of large-scale urban environments is an ac-
tive research area in recent years. It has wide applications
in map service, city planning, entertainment, and surveil-
lance. The existing approaches can be divided into two
kinds: imagery-based (using videos or images) [12] and
LiDAR-based [7, 13]. Due to its robustness, accuracy and
efficiency, airborne LiDAR technology draws increasing in-
terest in creating large-scale 3D city models [11, 19].

Aerial LiDAR data typically does not provide texture in-
formation. To generate photo-realistic 3D models, oblique
aerial images are needed for texture mapping purpose. This
requires accurate registration between aerial images and 3D
LiDAR data. Usually, the cameras are calibrated and an ap-
proximate camera pose for each aerial image is provided by
GPS/INS systems. However, these camera parameters are
often not accurate enough for precise texture mapping even

with the most advanced and expensive hardware devices. In
many cases, GPS/INS data is not available continuously for
every frame and is distorted by significant biases and drift.
Similar to [2], in this work we consider the case where there
may be a large transformation between the building bound-
aries in aerial images and the projection of 3D building out-
lines according to the GPS/INS data. Figure 1 shows an ex-
ample, where the green contours represent the projected 3D
outlines of building rooftops detected in the LiDAR data.
Point A on the 2D building boundary in the aerial image
and point B on the projected 3D outline are an example
of corresponding points. To refine the initial camera pose,
feature correspondences between 2D aerial images and 3D
LiDAR data are needed. For modeling large-scale environ-
ments, manual selection of such correspondences is expen-
sive. Therefore, automatic aerial image to LiDAR data reg-
istration is a key component in generating photo-realistic
3D city models.

(a)

Figure 1. The green contours are the projected outlines of 3D
building rooftops in the LiDAR data according to the GPS/INS
data. Point B on the projected outlines and point A in the aerial
image are an example of corresponding points.

There is a considerable amount of prior work on 2D im-
age to 3D model registration. Stomas and Liu studied the
registration of ground-level images with ground-level 3D
LiDAR model [10, 15]. Their approach decouples camera

2623978-1-4244-3991-1/09/$25.00 ©2009 IEEE



rotation and translation in pose estimation. Camera rota-
tion relative to the 3D model is computed based on at least
two vanishing points. In [10], camera translation is then
estimated with a hypothesis-and-test scheme in matching
2D rectangles in images and parallelepipeds in 3D mod-
els. Since rectangular parallelepipeds are not always avail-
able, the authors improved their approach in [15] where the
estimation of camera translation is based on line segment
matching. Although this approach works well for ground-
level data, it has difficulties in handling aerial images. In
many cases, it is hard to detect vertical vanishing points
from aerial images in which building facades are barely vis-
ible. It is also quite often that there are no dominant clusters
of horizontal parallel lines in aerial images, especially for
maintain areas where the distribution of buildings is irregu-
lar. These lead to inaccurate estimation of camera rotation,
and further cause the failure of translation computation.

The same strategy of decoupling the estimation of cam-
era rotation and translation is also exploited by some re-
searchers in matching ground-level images with 3D mod-
els generated from aerial images [9, 16]. Their approaches
also rely on vanishing points, and hence are not suitable for
complicated aerial images. Zhao et al. worked on aligning
continuous videos onto 3D point clouds [18]. Although the
approach avoids the problem of plane detection from 3D
point clouds, it requires structure from motion techniques
for video-based 3D reconstruction which are computation-
ally expensive and have drawbacks in accuracy and robust-
ness. Frueh et al. proposed an approach [6] for texture map-
ping 3D models with oblique aerial images. Their registra-
tion method is to exhaustively search a 7-dimensional space
of camera parameters so that the projected 3D model lines
can be as close as possible to the 2D lines in the aerial im-
ages, which is computationally expensive.

The existing work most similar to ours is presented in [2]
in which oblique aerial images are registered with untex-
tured aerial LiDAR models. The approach utilizes the ver-
tical vanishing point in an aerial image to estimate the pitch
and roll angles of its camera rotation. The camera posi-
tion and heading angle are read from GPS and compass. To
refine these initial camera parameters, the features called
2D orthogonal corners (2DOCs) are extracted from both the
aerial image and the digital surface model (DSM) of the Li-
DAR data. Each 2DOC feature corresponds to an orthogo-
nal corner on building outlines. The 2DOCs on the DSM are
projected into the aerial image according to the initial cam-
era pose. Putative matches between the projected 2DOCs
and those in the aerial image are generated by threshold-
ing on their spatial proximity and similarity measure. The
outliers are then removed with a method combining Hough
transform and RANSAC. As reported in [2], the correct
pose recovery rate of this approach is 91% for downtown
areas but only about 50% for campus or residential areas.

The main factors causing incorrect registration are: 1) fail-
ure in the extraction of 2DOC features; 2) too many outliers
that cannot be handled by Hough transform or RANSAC.

We present an efficient and more robust approach for aer-
ial image to aerial LiDAR data registration. It does not re-
quire vanishing point detection. The pitch, roll and yaw
angles given by GPS/INS devices are directly used as initial
camera rotation. Our main contributions are: (1) A line de-
tection algorithm with special strategies to ensure that the
line segments detected in the aerial images and those in the
LiDAR data have as many matches as possible. (2) A novel
feature called 3CS (3 connected segments) is introduced.
Each 3CS has 3 segments connected into a chain. Com-
pared to the 2DOC features in [2], 3CS features are more
distinctive, and hence the percentage of inliers in putative
feature matches is greatly increased. (3) Based on the char-
acteristics of our problem, a two-level RANSAC algorithm
is proposed in which putative feature matches are divided
into multiple groups. In the first level processing, a separate
RANSAC routine is applied for each group. The output is
then input to a global RANSAC to remove the remaining
outliers. Compared to the traditional RANSAC, the two-
level scheme is more efficient, and more robust in the situa-
tions where the outliers are much more than the inliers.

The rest of the paper is organized as follows: The line
segment detection algorithm is presented in Section 2. Sec-
tion 3 describes the detection and description of 3CS fea-
tures. In Section 4, the two-level RANSAC algorithm is
introduced. Some experimental results are given in Section
5, and the paper is concluded in Section 6.

2. Line Segment Detection
Our approach requires line segment detection in aerial

images and LiDAR data. In most existing 2D image to 3D
model registration approaches [2, 10, 6], the following line
detection algorithm is used: Edge pixels are detected with
Canny detector and then linked into curves. The curves are
divided into straight line segments based on thresholding
on line fitting error. Although this method is efficient, it
often misses the detection of many useful line segments on
building outlines.

To ensure the robustness of automatic registration, the
strategy in our line detector is to detect as many as pos-
sible the line segments on building outlines, even though
this may increase the number of spurious segments (such as
those on trees and roads). With enough useful segments, the
following feature matching and RANSAC process are able
to distinguish them from the spurious ones. Based on this,
our line detection algorithm has the following 5 steps.

Step 1: Edge pixels are detected with the approach
in [17]. Compared to Canny detector, this approach is less
sensitive to the selection of thresholds. The default parame-
ters given in [17] are used for all the aerial images in our
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(a) (b) (c) (d) (e)

Figure 2. (a):Multi-scale polygonization. (b): Link the segments
into AD and EJ . (c): Merge the parallel segments into AB. (d):
Segment AB is divided into AG, GH , HB, AH and GB. (e):
The description of a 3CS feature.

experiments. The edge pixels are then linked into curves
based on 8-neighbor connection.

Step 2: The curves are divided into line segments with
an approach similar to [1] in which a split-and-merge al-
gorithm is used to select break points from a set of points
with local extreme curvature. There are two parameters: the
scale ω of the Gaussian filter in curvature computation and
the threshold T on the line fitting error. Since there is no sin-
gle scale or threshold suitable for all curves in all images,
multiple scales and thresholds are used. The line segments
obtained under different settings are all kept for the follow-
ing processing. In our experiments ω = {5, 11, 21, 31}, and
the thresholds on the line fitting error are decided based on
the length of the segments. Assume the length of a curve
segment is L pixels, then T = {5, 10, ...,min(0.1L, 20)}.
As shown in Figure 2(a), the curve can be divided into 4
line segments AB, BC, CD and DE, while the curve will
be approximated with only one segment AE with a larger
threshold T . The reason to keep all these segments is that
there are two possible factors causing the zigzag patterns on
building outlines: building structures and noise (such as the
occlusion by trees). In the former case, the zigzag details
are useful for the registration purpose, whereas in the latter
case, only the longest segments (such as AE) can appear in
both aerial images and LiDAR data.

Step 3: It is often that a continuous line segment is bro-
ken into several fragments in an aerial image due to oc-
clusion or failure in edge detection. Therefore, a linking
process is needed to recover the original segment. For each
segment, we search the neighborhood around each of its
endpoints to find the segments that can be linked with it.
As demonstrated in Figure 2(b), two segments AB and CD
can be linked if the following conditions are satisfied: 1)
The difference da of their orientation is less than a thresh-
old (10 degrees in our experiments). 2) The distance dh be-
tween B and C is smaller than min(|AB|, |CD|). 3) The
vertical distance dv from point C to the underlying line of
AB is smaller than a threshold min(dv, 10). In the case
that a line segment can be linked with multiple segments,
its most linkable segment is the one with the smallest value
of w1da + w2dv + w3dh (w1 = 1, w2 = 0.1, w3 = 2 in our
experiments). Two segments are actually linked into a new

segment only when they are the most linkable segments of
each other. New segments can be further linked with other
segments. As an example, for the segments in Figure 2(b),
AB and CD will be linked into AD; EF , GH , and IJ
will be linked into EJ . Note that the new segments and the
original segments before the linking are all kept.

Step 4: As depicted in Figure 2(c), it is a common situ-
ation in urban environments that multiple parallel line seg-
ments are closely located in a narrow area in aerial images.
Usually, these segments correspond to a single line segment
in LiDAR data, so it is necessary to merge them. The merg-
ing process is similar to the linking process in Step 3. Two
segments can be merged if they satisfy the following con-
ditions: 1) They are almost parallel. 2) They have overlap-
ping along their line directions. 3) Their vertical distance
is smaller than a threshold. As an example, a new segment
AB is generated after merging in Figure 2(c).

Step 5: To construct 3CS features as described in Sec-
tion 3, line segments are split based on their intersection
relationships. As shown in Figure 2(d), segments AB and
CD intersect at point G. If the gap |GC| is smaller than a
threshold Tg = 0.3 ·min(|AB|, |CD|), AB will be split by
CD into two segments AG and GB. The newly generated
segments may further be split by other segments. Therefore,
in Figure 2(d), AB will be divided into 5 segments: AG,
GH , HB, AH and GB. The original segment AB is still
kept for the following processing. In addition, the segments
with their length shorter than a threshold TL (15 pixels in
our experiments) will be removed. Figure 3(a) shows an
example of the line detection result, where the detected line
segments are displayed in green color.

To extract line segments in 3D LiDAR data, the approach
in [19] is used to detect planar facets on building rooftops.
Unlike the approach based on DSM in [2] where only height
differences are examined for plane detection, in [19] the
normal of surfaces is also considered so the roof structures
composed of slopes can be extracted. These detailed roof
structures are very useful in registration, especially for res-
idential areas where the exterior contours of rooftops are
often corrupted by trees. The contours of the planar facets
are then projected into aerial images according to the initial
camera parameters given by GPS/INS systems (visibility
will be handled with the Z-buffer technique [14]). As an ex-
ample, Figure 3(b) is the projection of the rooftop outlines
extracted from the LiDAR data of the area shown in Figure
3(a). These contours will then be divided into line segments
with the same approach as described above in Step 2-5.

In our experiments, the resolution of the aerial images
is 4992 × 3328 pixels. The average number of line seg-
ments detected in an aerial image is 29,000. Although many
of them are spurious, most of the meaningful segments on
building outlines are correctly extracted (judged visually by
a human), which is important for the following registration.
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(a)

(b)

Figure 3. (a): The result of line detection. Several 3CS features are
shown in red color. (b): The projection of the 3D rooftop outlines
extracted from the LiDAR data.

3. Detection and Description of 3CS Features
The 2DOC features proposed in [2] are not very distinc-

tive. Each 2DOC is described by only two angles: the ori-
entation of its two lines. This leads to a large number of
outliers in the putative 2DOC matches. We introduce a
more distinctive and still repeatable feature called 3CS (3
connected segments) which is similar to the kAS features
applied in object detection in [4].

3.1. The Detection of 3CS Features

Each 3CS feature consists of 3 segments that are con-
nected one after another into a chain. As an example, four
3CS features are shown in Figure 3(a) whose line segments
are displayed in red color. Since the endpoints of the de-
tected segments are often inaccurate, two segments AB and
CD are regarded as connected if the following conditions
are satisfied. As demonstrated in Figure 2(e), P1 is the in-
tersection of AB and CD.

−−−→
|AP1| is the signed distance

from A to P1 in the direction of
−−→
BA (

−−−→
|AP1| < 0 if P1 is

on the same side of B relative to A).
−−−→
|CP1| is the signed

distance from C to P1 in the direction of
−−→
DC. Then, if

0 ≤
−−−→
|AP1| ≤ 0.3|AB| and 0 ≤

−−−→
|CP1| ≤ 0.3|CD|, AB

and CD are a pair of connected segments. In the case
−−−→
|AP1| < 0, AB will be divided into two sub-segments in
Step 5 discussed in Section 2, and these sub-segments will
be checked if they are connected with CD.

To detect 3CS features from an aerial image, for each

line segment denoted as AB, we search the neighborhood
of its two endpoints to find the line segments that are con-
nected with it. Assume EF is one of the segments that is
connected with AB at point A, and GH is connected with
AB at point B. The three segments AB, EF and GH form
a 3CS feature. AB is called the central segment and the
middle point of AB is called the center of the 3CS feature.
With the same approach, 3CS features are also extracted
from 3D LiDAR data based on the line segments detected
on the projected outlines of building rooftops.

In practice, to reduce the number of 3CS features de-
tected in an aerial image, a 3CS will be removed if: 1) The
central segment is almost parallel to the other two segments;
or 2) The length ratio between any two segments is larger
than a threshold (7 in our experiments). Such a 3CS fea-
ture is unlikely to be composed of segments on building
outlines. In our experiments, the average number of 3CS
features detected in an aerial image (4992× 3328 pixels) is
about 150,000.

Note that unlike some object recognition systems such
as [3] in which the number of line segments in a segment
group can be arbitrarily large, the number of segments in
a 3CS feature is limited to be 3. Increasing this number
will decrease the repeatability of the features, and greatly
increase their number and the computation in the following
registration process.

3.2. The Description of 3CS Features

For a 3CS feature composed of segments AB, CD and
EF , with AB as the central segment, it can be described
with 6 attributes (l, l1, l2, α, α1, α2) as demonstrated in Fig-
ure 2(e). P1 and P2 are the two intersection points of AB
with CD, and AB with EF respectively. Then, l = |P1P2|,
l1 = |DP1|/|P1P2|, and l2 = |FP2|/|P1P2|. α is the angle
from the vector

−−→
AB to the X axis. α1 is the angle from

−−→
CD

to
−−→
AB, and α2 is the angle from

−−→
EF to

−−→
AB.

To measure the dissimilarity of two 3CS features with the
description of (l, l1, l2, α, α1, α2) and (l′, l′1, l

′
2, α

′, α′
1, α

′
2)

respectively, the following equation is applied:

D =


6∑

k=1

dk, if d1∼6 < 1;

∞, else,

(1)

where, 

d1 = max(l,l′)/ min(l,l′)−1
T1

;

d2 = max(l1,l′1)/ min(l1,l′1)−1
T2

;

d3 = max(l2,l′2)/ min(l2,l′2)−1
T2

;
d4 = |α−α′|

T3
;

d5 = |α1−α′
1|

T4
;

d6 = |α2−α′
2|

T4
.

(2)
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D is the dissimilarity value of the two 3CS features. A
smaller D means the two 3CSs are more similar. In Eq.2,
T1∼4 are thresholds. d1∼6 are the normalized dissimilari-
ties of the two 3CS features with respect to each of the 6
attributes. If the difference of one of the attributes is larger
than the corresponding threshold (represented by d1∼6 < 1
in Eq.1), the two 3CS features are not likely to be matched,
and so their dissimilarity D is set ∞.

The thresholds T1∼4 decide the size of the searching
space in looking for the putative 3CS matches. In our exper-
iments, T1∼4 are 1, 0.5, 45◦ and 30◦ respectively. Note that
T2 and T4 are smaller than T1 and T3 respectively. This is
because the variations of the relative length ratio and angle
between neighboring line segments are usually smaller than
those of the absolute length and orientation.

For each projected 3CS feature f of the LiDAR data,
its putative corresponding 3CS features in an aerial image
are found in a circular neighborhood of its center, whose
dissimilarity values with f are smaller than ∞. If multi-
ple such 3CS features are found, only the best two with the
smallest dissimilarity values are kept.

Since the number of 3CS features in an aerial image is
usually very large, to improve the speed in searching for pu-
tative 3CS matches, an index structure is created by dividing
the aerial image into a grid and splitting the range of each
attribute of the 3CS descriptor into bins. For each projected
3CS feature of the LiDAR data, the buckets that possibly
contain its putative corresponding 3CSs in the aerial image
can be computed.

4. Two-level RANSAC Algorithm
In most cases, we can make the same assumption as

in [2] that the error in the camera location given by a GPS
device is very small relative to the distance from the camera
to the buildings. Therefore the transformation between the
projected 3CSs of the LiDAR data and the 3CSs in the aer-
ial image can be considered to be purely caused by camera
rotation, and hence is a homography.

RANSAC can be used to remove outliers from putative
feature matches [2, 5]. However, due to the large size of
the aerial images and the huge number of putative matches,
direct applying the traditional RANSAC approach has the
following problems. Problem (a): When the outliers are
much more than the inliers, some outliers can be fit with a
homography accidentally. If the number of these outliers is
larger than that of the real inliers, it will lead to completely
wrong registration. Problem (b): Due to image radial dis-
tortion or because the error of the initial camera location
cannot be completely ignored, sometimes the underlying
transformation is not a strict homography. This makes it
hard to choose a good threshold on the homography fitting
error for selecting inliers. If the threshold is small, many of
real inliers will be removed. If it is large, many of the out-

liers will be included as inliers and harm the accuracy of the
camera pose estimation. Problem (c): Although two 3CS
matches provide enough constraints to decide a homogra-
phy (as discussed later), the homography estimated with
two 3CS matches is usually not accurate enough to describe
the transformation of the whole image since the constraints
are limited in a small part of the image. Therefore, more
than two 3CS matches should be sampled at each RANSAC
iteration, which will greatly increase the required number
of iterations and make the computation expensive.

We present a two-level RANSAC algorithm. Instead of
processing all the putative 3CS matches as a whole, they are
divided into groups so that the 3CS features in each group
are contained in a local area. During the first-level process-
ing, a separate RANSAC routine is run for each group, and
the selected inliers are called qualified 3CS matches which
are input to the second level processing where a global
RANSAC is applied. Rather than selecting individual 3CS
matches, the global RANSAC operates based on groups
and decides which groups are inliers. The qualified 3CS
matches of these groups are output as the final matches. The
reasons that this two-level scheme can handle the aforesaid
problems of the traditional RANSAC are analyzed below.

For Problem (a), our approach not only considers their
number but also their spatial distribution in evaluating if a
group of feature matches are inliers. This is illustrated in
Figure 4 where the feature matches depicted in Figure 4(a)
(only the projected 3CS features of LiDAR data are repre-
sented) are more likely to be inliers than those in Figure 4(b)
since they are close to each other, even though the numbers
of matches are the same in the two cases. This is because
the features in a small area are less than those in a large area
so the possibility that the same number of features satisfy-
ing a homography are caused by random noise is smaller if
they are clustered in a small area than if they are distributed
sparsely over the image. Another reason is that buildings
usually form blocks or clusters, which is important knowl-
edge for distinguishing inliers and outliers for areas with
heavy vegetations.

(a) (b)

Figure 4. (a):Closely located feature matches. (b): Sparsely dis-
tributed feature matches.

In our approach, the above strategy is implemented in the
second level RANSAC by giving different groups different
weights. At each of its iterations, assume there are p groups
selected as inliers, and the number of qualified 3CS matches
in the k-th group is nk. Then, the score of each iteration is
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calculated with:

G =
p∑

k=1

(nk ·
√

nk), (3)

where
√

nk serves as the weight for group k. Because of
this weight, the situation where the qualified 3CS matches
concentrate in a few groups will get higher score than the
situation where they are uniformly spread among all of the
groups, even if the total numbers of these 3CS matches in
both situations are the same.

The two-level scheme also has advantage with regard to
Problem (b). Although the transformation in the whole im-
age may not be a strict homography so a larger threshold T2

on the homography fitting error should be used in the global
RANSAC, the transformation in a local area can be more
accurately described with a homography. Thus, the thresh-
old T1 used in the first level RANSAC for each group can
be set smaller than T2. This double-threshold strategy can
weaken the dependence on the assumption of strict homog-
raphy in the whole image while remove the 3CS matches
that are not compatible with their neighbors.

Finally, the two-level RANSAC algorithm is computa-
tionally efficient. Only two 3CS matches are sampled at
each iteration of the first level RANSAC. This is because the
area of each 3CS group is much smaller than the whole im-
age, and the homography computed from two 3CS matches
is usually accurate enough to describe the transformation
inside the local area. The second level RANSAC oper-
ates based on groups. At each iteration, three groups are
sampled and all of their qualified 3CS matches are used
to estimate a homography. Since the number of groups
is much smaller than the total number of putative 3CS
matches, the required number of interactions in the second
level RANSAC is not large.

The details of the two-level RANSAC algorithm are de-
scribed as follows:

Step 1: The putative 3CS matches are divided into
groups according to spatial proximity. In doing this, an aer-
ial image is divided into windows. The window size is set
s × s pixels (s = 1000 in our experiments). Start from the
left top corner of the image, a window is shifted from left to
right and top to bottom. The step size is s/4 so that neigh-
boring windows have overlapping. For each window, if the
number of projected line segments of the LiDAR data inside
it is larger than m, it will be split into four sub-windows. A
sub-window will be further split until the number of pro-
jected segments inside it is smaller than m. The projected
3CS features inside each window or sub-window form a
group. Each projected 3CS of the LiDAR data may have
one or two putative corresponding 3CSs in the aerial image
(see Section 3). Therefore, each window or sub-window
defines a group of putative 3CS matches. The number m

controls the size of a group. In our experiments, the aver-
age number of projected line segments of the LiDAR data
in an aerial image is 3500. From experiments, we found
m = 50 is a balanced choice, so that each image has about
300 groups. Note that different groups may have overlap-
ping.

Step 2: Assume that a 3CS feature has segments AB,
CD and EF , with AB its central segment, and the seg-
ments in its corresponding 3CS are A′B′, C ′D′ and E′F ′.
Since the endpoints of the detected line segments are often
inaccurate, they cannot be used to estimate the homography.
However, the two intersection points P1 and P2 as shown in
Figure 2(e) are more precise, and each correspondence of
such points provides two linear constraints on the homogra-
phy. In addition, the orientation of the line segments is also
reliable. The fact that point D (or F ) after the homography
transformation is on line C ′D′ (or E′F ′) gives a linear con-
straint. Therefore, each 3CS feature match provides 6 linear
constraints, and two matches are enough to completely de-
cide the homography [8].

For each group of putative 3CS matches, a separate
RANSAC routine is applied to remove its outliers. At each
iteration, two 3CS matches are uniformly sampled, from
which a homography is then estimated. The other puta-
tive matches are regarded as inliers if their homography fit-
ting errors are smaller than a threshold T1 (The homogra-
phy fitting error of the line constraint is the vertical distance
from the transformed point to the line). In our experiments,
T1 = 10 pixels. The inliers selected from each group are
called qualified 3CS matches.

Step 3: A global RANSAC is applied based on groups.
At each of its iterations, three groups of qualified 3CS
matches are uniformly sampled, from which a homography
is estimated. If any of the homography fitting errors of these
3CS matches is larger than a threshold T2, a new sample of
three groups will be generated. Otherwise, each of the other
groups will be examined to see if the homography fitting er-
rors of its qualified 3CS matches are all smaller than T2. If
so, it will be selected as an inlier. The score at each iteration
is computed with Eq.3. When the RANSAC terminates, the
groups selected as inliers at the iteration with the highest
score are returned together with the homography computed
based on the qualified 3CS matches in these groups. In our
experiments, the threshold T2 = 25 pixels, which is larger
than T1 = 10 used in Step 2. The reason has been given
previously in this section.

Step 4: For the groups identified as inliers in Step 3, their
qualified 3CS matches are kept in the final list of the correct
3CS matches. For the other groups, all of their putative
3CS matches will be checked again against the homography
returned at Step 3, and those with the homography fitting
error smaller than T1 will also be kept. The reason that the
lower threshold T1 is used here instead of T2 is that these
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matches are isolated and have less confidence to be correct
unless they can satisfy the homography more strictly.

Based on the corresponding intersection points in the ob-
tained 3CS matches, camera parameters can be estimated
and refined with the approach in [8]. The approach in [6] is
then used for texture mapping with multiple aerial images.

5. Experimental Results
We did extensive experiments to examine the proposed

system. Two datasets are tested. The first one consists of
306 oblique aerial images covering a 1.5× 1.4 km2 area in
the city of Oakland. The second one has 1984 oblique aerial
images covering a 2.7× 2.6 km2 area in the city of Atlanta.
As in [2], the urban environments in these two datasets can
be classified into three types: downtown, campus and res-
idential areas. In downtown areas, buildings are tall and
dense while trees are sparse. In regions such as campus,
large buildings are sparsely distributed in dense trees. In
residential areas, houses are usually short and small, and
located among dense vegetation.

The correctness of the automatic registration is evaluated
by checking the average distance between the correspond-
ing points manually labeled on the aerial images and the
building outlines in the LiDAR data projected according to
the refined camera parameters. It is also validated by visu-
ally examining the quality of the texture mapping.

For all of the 306 aerial images in the first dataset, our
system accurately recovered their camera parameters. For
the second dataset, 1951 aerial images are correctly regis-
tered with the 3D LiDAR data while the registration for the
other 33 images is wrong. Therefore, the overall correct
pose recovery rate of our approach is 98.5%. The images
that cannot be correctly registered are mainly from residen-
tial areas where most of the buildings are seriously occluded
by trees. In these situations, the detection of planar facets
in the 3D LiDAR data and the detection of line segments on
building outlines in aerial images become very difficult.

Figure 5 shows an example of the alignment between the
aerial image and the projection of 3D building outlines (the
green contours) with the initial camera pose (Figure 5(a))
and with the refined camera pose after the automatic reg-
istration (Figure 5(b)). Figure 6(a)-(d) are several screen
shots of the textured 3D models. To make the 3D models
look cleaner, most of the trees are removed in the LiDAR
data with the approach in [19].

To prove that 3CS features are more distinctive than the
2DOC features in [2], we computed the average percent-
age of inliers in the putative feature matches. It is 19% for
3CS features, higher than that of 2DOC features which is
4% according to [2]. In average, the approach takes about 1
minute on a PC with a 3 GHz CPU to register a 4992×3328
aerial image. Most computation is spent on the line detec-
tion. The RANSAC process takes only several seconds.

(a)

(b)

Figure 5. (a):The alignment between the aerial image and the
3D outlines of building rooftops projected with the initial camera
pose. (b): The alignment with the refined camera pose.

6. Conclusion

We have presented an approach for automatic registra-
tion of aerial images with untextured aerial LiDAR data.
Several strategies are taken to improve the robustness of line
segment detection. A novel feature called 3CS that is more
distinctive than a single line segment or the 2DOC feature
in [2] is used, which greatly increases the percentage of in-
liers in the putative feature matches. Finally, a two-level
RANSAC algorithm is proposed that is more robust and ef-
ficient than the traditional RANSAC approach in our situa-
tions where the number of putative feature matches is very
large while the percentage of inliers is low, and the under-
lying transformation is not a strict homography.

Compared to existing approaches, our system is more ro-
bust. Its overall correct pose recovery rate is above 98%. To
further improve the approach, more efficient and robust al-
gorithms of line detection, and planar facet detection in the
LiDAR data should be developed. Building detection and
segmentation with high-level knowledge are also helpful.

7. Acknowledgments

This research was supported in part by CiSoft project
sponsored by Chevron. We thank Airborne 1 for providing
us LiDAR data and aerial images. We thank Qianyi Zhou
for sharing his code of building outline extraction in LiDAR
data. We appreciate useful discussions with Suya You.

2629



(a)
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Figure 6. Screen shots of textured 3D models.
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