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Abstract

This paper addresses the problem of developing facial
image quality metrics that are predictive of the performance
of existing biometric matching algorithms and incorporat-
ing the quality estimates into the recognition decision pro-
cess to improve overall performance. The first task we con-
sider is the separation of probe/gallery qualities since the
match score depends on both. Given a set of training im-
ages of the same individual, we find the match scores be-
tween all possible probe/gallery image pairs. Then, we de-
fine symmetric normalized match score for any pair, model
it as the average of the qualities of probe/gallery corrupted
by additive noise, and estimate the quality values such that
the noise is minimized. To utilize quality in the decision
process, we employ a Bayesian network to model the re-
lationships among qualities, predefined quality related im-
age features and recognition. The recognition decision is
made by probabilistic inference via this model. We illus-
trate with various face verification experiments that incor-
porating quality into the decision process can improve the
performance significantly.

1. Introduction

Biometric sample quality values can be used in many
different stages of biometric operations (e.g., enrollment
phase quality assessment, verification/identification quality
assessment, prediction of algorithm failure, quality-based
adaptation of the processing phase and multimodal biomet-
ric fusion [5, 1, 12, 2, 7, 10]). Although principled quality
measures have been developed for fingerprint samples, the
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facial image quality problem still remains open [5]. This
is partially due to the fact that how face recognition actu-
ally works is less certain since classifiers are learned using
abstract features which hide the actual matching method.
Also, there is a large number of factors, including intra-
personal variations and imaging conditions, affecting the
matching performance. Different face matching algorithms
are designed to be robust to particular subsets of these fac-
tors. Hence, a high-quality image for one algorithm is not
necessarily of the same quality for another one. Therefore,
quality should be learned for a specific face matching al-
gorithm. In this paper, we take a black box identification
approach. That is, we do not make any assumption about
the matching algorithm. Each probe/gallery image pair in
a training set produces a match score. The input pairs to-
gether with the match scores are used to learn what kind of
images are of high-quality for the underlying algorithm.

Following the work of Tabassi et. al in [11], we define
the quality of a biometric sample as a scalar quantity that is
predictive of the performance of a biometric system. Con-
sidering the match score as a similarity measure, a predic-
tive quality measurement algorithm should satisfy the fol-
lowing property: a biometric sample of a subject should be
assigned a high quality value if it is similar to the samples
from the same subject while it is different from the sam-
ples from other subjects. Hence, the match scores of high-
quality samples of the same subject should be well sep-
arated from the non-match score distribution of the same
subject. However, it is important to consider that both the
quality of the probe and the quality of the gallery play a
role. Although a common assumption in building quality
metrics (see for instance [11]) is that the gallery is of good
quality so that the normalized match score reflects the qual-
ity of the probe, in many applications, one should not as-
sume that the gallery is of high-quality without having a
measure of quality. Instead, we assume that multiple sam-
ples for each subject are available in the training dataset;
and present a probe/gallery quality separation scheme to es-
timate the quality value for each facial image sample using
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a symmetric normalized match score as a measure of the
match quality. After assigning facial image qualities to the
images in the training set, it is possible to learn the relation-
ship between some predefined image features and the facial
image quality. Therefore, we can predict the quality value
for each test sample using this relationship and the image
features extracted from the sample.

Once the quality of a facial image is estimated, there is
still the issue of how the estimated quality can be employed
to improve the face recognition performance. Face recogni-
tion from a high-quality probe and high-quality gallery im-
age pair would produce the highest recognition performance
among all the possible probe/gallery quality combinations.
As a result, one solution is to use the estimated quality value
as a guidance to select good image samples for recognition.
However, this is only useful in applications where it is pos-
sible to collect samples until a high-quality sample is ac-
quired. A more general and desirable approach is to com-
bine the quality assessment with the recognition and to im-
prove the recognition performance across the whole quality
scale.

There are several statistical relationships in a quality-
based face recognition problem, including the relationships
between the image features and quality assessment of an
image and the relationships between the quality assess-
ments of probe and gallery images and the match score
obtained through a particular matching algorithm. In this
work, we propose a unified probabilistic framework to si-
multaneously predict the quality of the facial image sam-
ples and perform quality-based face recognition by exploit-
ing these relationships. Specifically, we use a Bayesian Net-
work (BN) to model and learn such relationships. Then, the
quality-based face recognition is performed by probabilistic
inference through the proposed framework. Our experimen-
tal results show that the quality-based face recognition im-
proves the face verification performance significantly com-
pared to the methods based solely on raw match score.

Our ability to improve overall recognition performance
by utilizing quality metrics derived from the facial image
samples themselves implies some inefficiency on the part
of the core matching algorithm. After all, the matching al-
gorithm has access to the images, and could compute and
use the quality metrics just as we do. In effect, the match-
ing algorithm could internalize our entire additional qual-
ity analysis mechanism. Still, the improvement we achieve
should not be too surprising, as face recognition systems are
imperfect, especially when used on data not similar to that
used to develop and train the algorithms.

2. Separation of Probe/Gallery Qualities
A matching algorithm A produces a score for a given

pair of images:
sikjl

= A(ik, jl), (1)

where ik denotes the kth image of the ith individual. In a
verification task, a probe image ip is compared against the
gallery image ig of the claimed identity i using algorithm
A. If the match score sipig is above a predefined threshold,
the claim is accepted.

As mentioned earlier, an authentic high-quality
probe/gallery pair should produce a match score that is well
separated from the non-match scores. In [11], Tabassi et. al
proposed the normalized match score as a measure of this
separation. The normalized match score between the kth

and lth images of ith individual, when ik is the probe and
il is the gallery image, is defined as:

NMS(ik, il) =
sikil

− µik
(snon−match)

σik
(snon−match)

, (2)

where sikil
is the match score between ik and il as in

Eq. (1), µik
(snon−match) and σik

(snon−match) are respec-
tively the mean and standard deviation of the non-match
scores between the image ik and the images from other in-
dividuals j 6= i.

The NMS provides some information about the quality of
the probe sample. However, it is also sensitive to the qual-
ity of the gallery since both probe and gallery affect sikil

.
Hence, it should only be used as a measure of the quality of
the probe when the gallery samples are of uniformly high-
quality.

The other problem with NMS is that it is not symmetric in
its arguments as the non-match score distribution will vary
when probe and gallery images are interchanged. This vari-
ation could be severe especially when the probe and gallery
images are of different quality. Hence, it is not an ideal
measure of the quality of the match either. A better measure
of the quality of a match should be symmetric with respect
to probe and gallery images since verification decisions are
based on thresholding the match score sikil

which is ap-
proximately symmetric for most matching algorithms. Be-
fore proceeding with a separation method, we define sym-
metric normalized match score as:

SNMS(ik, il) =
1
2

(NMS(ik, il) + NMS(il, ik)). (3)

SNMS will be high for high-quality probe/gallery pairs and
will be low for low-quality probe/gallery pairs. Hence,
SNMS can be used as a measure of the quality of a match.
Once we have a way to measure the quality of the match,
the next step is to find a way to estimate the quality of each
image sample by separating probe and gallery qualities.

Although separation of probe/gallery qualities has not re-
ceived much attention in the literature, there has been some
work on how to combine the sample qualities to obtain the
quality of the match [5]. Similar functions can be used
for formulating a quality separation scheme. In particu-
lar, we model the quality of the match as the average of
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probe/gallery qualities; that is:

Q(ik, il) =
q(ik) + q(il)

2
, (4)

where Q(ik, il) is the quality of the match and q(ik), q(il)
are qualities of the samples.

A predictive quality measure should estimate the quality
of the match which we measure using SNMS. Formally, we
would like to find the values of the scalar function q such
that

q(ik) + q(il)
2

≈ SNMS(ik, il). (5)

If we have at least three images for each individual in the
training dataset, the separation problem can be solved. In
particular, by combining all the equations for an individual
i, we obtain the following least squares problem:

Aqi + ε = yi, (6)

where

A =


0.5 0.5 0 0 . . . 0
0.5 0 0.5 0 . . . 0

...
. . .

...
0 . . . 0 0 0.5 0.5

 , qi =

 q(i1)
...

q(iN )



ε =


ε1
...
...
εT

 , yi =


SNMS(i1, i2)
SNMS(i1, i3)

...
SNMS(iN−1, iN )

 .
Here, A is a T × N matrix with two non-zero elements in
each row whereN is the number of samples from individual
i, and T is the size of an index set containing the pairs (i.e.,
the index set has T = N(N − 1)/2 elements and every row
of A corresponds to a different pair of images from the ith

individual). When N ≥ 3, A is full column rank; hence the
solution with minimum squared error (i.e., minimum ‖ε‖22)
is given by qi = (AT A)−1AT yi.

The sample qualities for all the images in the training set
can be obtained using this separation scheme. The quality
values obtained with this method are continuous variables.
If desired, it is possible to quantize these values into several
bins to obtain discrete quality values (e.g., high, medium,
low). Once we have a quality value assigned to each image
in the training dataset, the next step is to develop a method-
ology that can predict the quality values for the test samples
and use these estimated quality values to boost recognition
performance.

3. Quality-based Face Recognition Model
In this section, we introduce our probabilistic framework

that simultaneously estimates the quality values from pre-
defined image features in the facial images and utilizes the
quality values to improve the face recognition decisions.

match

pf

gps

gf

gq pq

Figure 1. A graphical model for quality-based face recognition.
The shaded nodes are measurement nodes, whose states can be
obtained; the unshaded nodes are hidden nodes, whose states are
inferred via the model.

3.1. Causal Relationships in Quality-based Face
Recognition

There are several key elements involved in the quality-
based face recognition problem including image features,
image quality for both probe and gallery images, the match-
ing algorithm, and the match or no-match status of the
probe/gallery image pair. Let fg be a feature vector con-
taining some predefined image features such as coordinates
of a set of facial landmarks, shape coefficients of a statisti-
cal facial shape model, and/or appearance coefficients of a
statistical appearance model. Let qg be an assessment of im-
age quality, for a gallery image. Similarly, fp and qp are the
corresponding feature vector and the quality assessment for
a probe image, respectively. Let sgp be the match score for
a probe/gallery image pair obtained by some face matching
algorithm, andmatch denote whether the gallery and probe
images belong to same individual.

For quality-based face recognition, we model the causal
relationships among the six elements defined above (i.e., fg ,
fp, qg , qp, sgp, and match). First, by assuming that the
image quality is affected by the image features, and thus
can be directly derived from the image features, fg and
fp can be regarded as the sole causes to generate qg and
qp, respectively. Second, given a face matching algorithm,
the match score sgp is affected by the image qualities of
the gallery and probe images (qg and qp) and the state of
match (match/no-match). These relationships can be rep-
resented by a graphical model, as shown in Fig. 1. Specifi-
cally, we propose to use a Bayesian Network (BN) to model
and learn such relationships. A BN is a Directed Acyclic
Graph (DAG) that represents a joint probability distribution
among a set of variables. In a BN, nodes denote variables
and the links among nodes denote the conditional depen-
dency among variables. The dependency is characterized
by the conditional probability associated with each node.
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As shown in Fig. 1, the direct links between the nodes
represent the causal relationships described above. The
shaded nodes are measurement nodes like fg and fp, whose
states can be obtained directly; and the unshaded nodes like
match are hidden nodes, whose states will be estimated.

3.2. Model Parameterizations

Given the model structure shown in Fig. 1, we need
to define the states for each node and, then, parameterize
the model parameter (the conditional probability) associ-
ated with each node.

fg is a continuous vector that contains the image fea-
tures for the gallery image and is parameterized by its prior
probability. Here, we assume that fg satisfies a multivariate
Gaussian distribution with mean vector f̄g , covariance ma-
trix Σfg . fp is defined and parameterized similarly for the
probe image.
match has binary states (match ∈ {0, 1}) representing

no-match or match status of a probe/gallery pair. It is pa-
rameterized by its prior probability p(match).

The image quality qg for the gallery image can be defined
as a continuous variable or can have discrete states. Given
its parent fg , qg is parameterized by its conditional proba-
bility p(qg|fg). If qg has continuous states, its Conditional
Probability Distribution (CPD) is defined as a Gaussian dis-
tribution as follows:

p(qg|fg) =
1√

2πσg

exp(− (qg − q̄g −Wgfg)2

2σ2
g

), (7)

whereWg is a regression matrix that maps fg to qg and q̄g +
Wgfg is the mean quality value, and σg is the variance.

For qg withK possible discrete states, its CPD is defined
as a multinomial logit function as follows:

p(qg = k|fg) =
exp(Wgkfg + bk)∑K

k=1 exp(Wgkfg + bk)
, (8)

where qg = k means qg is at its kth state with k ∈
{1, ...,K}; Wgk and bk are model parameters that will be
learned. Similarly, qp is defined and parameterized.

The match score sgp is a continuous variable. Its CPD
p(sgp|match, qg, qp) is assumed to be a Gaussian distribu-
tion and defined according to the states of its parents.

3.3. Model Learning

Given the model structure and the definition of the
model parameters, we learn the model parameters associ-
ated with each node given a set of training data. We can
get the image features for each gallery or probe image,
and have the groundtruth labels of match/no-match for each
probe/gallery image pair in a training image set. Hence,
learning the model parameters for fg , fp, and match can be
performed by Maximum Likelihood Estimation (MLE).

There are two situations with respect to learning the pa-
rameters of qg and qp. On the one hand, suppose we do not
have any knowledge of the image quality, and thus cannot
obtain the labels of the qg and qp for training. The model
parameters p(qg|fg) and p(qp|fp) can be estimated by an
Expectation-Maximization (EM) algorithm. On the other
hand, assuming that we can get the labels for qg and qp
through the quality assessment algorithm presented in Sec-
tion 2, p(qg|fg) and p(qp|fp) can be learned by MLE given
the training data of fg , fp, qg , and qp.

Thus, learning the parameters for sgp is conducted by
MLE if qg and qp have labels in the training data or by EM
otherwise.

4. Quality-based Face Recognition through In-
ference

Once the measurement nodes (fg , fp, and sgp) are
observed, we can perform the quality-based recognition
through probabilistic inference via the model as shown in
Fig. 1. The match or no-match decision can be made by
maximizing the joint probability ofmatch, qg , and qp given
the measurements of image features of gallery and probe
images (fg and fp), and the match score (sgp) as follows:

match, qg, qp = argmax
match,qg,qp

p(match, qg, qp|fg, fp, sgp)

(9)
Based on the conditional independency encoded in the

BN, p(match, qg, qp|fg, fp, sgp) can be factorized as fol-
lows:

p(match, qg, qp|fg, fp, sgp) = c× p(fg)× p(qg|fg)× p(fp)
×p(qp|fp)× p(match)× p(sgp|qg, qp,match),

(10)
where c is a normalization factor. The factorized proba-
bilities in Eq. (10) are the conditional probabilities that are
learned as discussed in the previous section. In this work,
we use the Bayes Net Toolbox for Matlab [6] by Murphy to
implement the BN inference.

5. Experimental Results
5.1. Experiment Setup

We use the IMM Face Database [8] to test the proposed
quality-based face recognition algorithm. This database
consists of 40 different subjects each of which has 6 images.
The image categories are: (i) neutral, (ii) smile, (iii) 30 de-
gree left, (iv) 30 degree right, (v) spotlight on left, and vi)
arbitrary expression. Fig. 2 shows some example images of
a subject in the IMM Face Database. We use a commercial
face recognition product, FaceIt R©, from Identix2 to obtain
the measurements of match scores for facial image pairs.

2http://www.l1id.com/
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Figure 2. Sample images for a subject in the IMM Face Database
with the mesh connecting facial landmarks superimposed.

In our experiments, unless stated otherwise, the shape
coefficient of a Point Distribution Model (PDM) [3] is used
as the feature representation of an image. To be specific,
for the ith image in the dataset, its shape coefficient fi is
computed as follows:

fi = PT (xi − x̄), (11)

where the 66-dimensional vector xi is a concatenation of
the x and y coordinates of 33 facial landmarks around the
facial features, such as eyes, eyebrows, nose, mouth, and
face contour shown as vertices of facial mesh in Fig. 2. x̄
and P are the mean and shape basis of PDM representing
the major facial shape variations. They are trained using
multi-view facial images of the FERET database [9] where
the number of the shape basis is determined such as 90%
energy of shape deformations is preserved. For 2D images,
the shape coefficient fi encodes the shape deformations due
to identity, facial pose and expression variations. Since our
focus is on evaluating the quality-based recognition model,
we provide manually labeled facial landmarks (xi) for each
image in the experiments.

5.2. Quality Assessment via Probe/Gallery Quality
Separation

In this section, we demonstrate how our quality assess-
ment scheme works. Each image in the IMM Face Database
is assigned a quality value by using our separation scheme.
Fig. 3 shows the histogram of the obtained quality values
together with estimated Gaussian distributions of the qual-
ity values within different image categories. These results
show that the separation scheme is capable of capturing the
quality variations among the training data.

5.3. Evaluation of the Quality-based Face Recogni-
tion Algorithm

In the experiments, we compare four methods for mak-
ing face recognition decisions. The first one is simply face
recognition based on the raw match score. The other three
are based on the quality-based face recognition decision

Figure 3. Results of quality separation. Histogram shows distri-
bution of quality values among different image types. For each
image category a Gaussian distribution with mean and standard
deviation equal to those of the quality distribution of that category
is superimposed on the histogram.

Method EER
Raw Match Score 0.139
Unsupervised Discrete Quality 0.118
Supervised Continuous Quality 0.107
Supervised Discrete Quality 0.103

Table 1. Equal Error Rates (ERR) for the four face recognition
methods.

algorithm proposed in this work. In the second method,
qg and qp have three discrete states and are learned with-
out training data of quality values (i.e., qg and qp). In
the third method, qg and qp have continuous states and are
learned using training data obtained by our quality separa-
tion scheme. For the fourth method, qg and qp have dis-
crete states and are learned using training data obtained
by discretizing the results of our quality separation scheme
into three bins. The leave-one-subject-out cross-validation
methodology is used to evaluate the proposed quality-based
face recognition algorithm. Each time, we use all the
probe/gallery image pairs in the database to train the model
except that we leave out the probe/gallery image pairs con-
taining the images of one subject for testing, such that the
subjects in the training and testing sets are exclusive.

Fig. 4 shows the overlaid ROC curves for all four meth-
ods. The Equal Error Rate (EER) for each method is given
in Table 1. From Fig. 4 and Table 1, we can see that all
the quality-based face recognition methods perform bet-
ter than the method based solely on the raw match score.
That demonstrates the effectiveness of the proposed quality-
based face recognition model. The fourth method achieves
the best verification performance, which implies that the
quality metrics based on the symmetric normalized match
score is effective for image quality assessment.

138



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

fmr

1
−

fn
m

r

 

 

Decision with raw match score

Decision with unsupervised learned discrete quality

Decision with supervised learned continuous quality

Decision with supervised learned discrete quality

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3
0.7

0.75

0.8

0.85

0.9

0.95

1

fmr

1
−

fn
m

r

 

 

(b)

Figure 4. (a) Verification ROC curves for each method. The x-axis represents the False Matching Rate (FMR), and the y-axis represents
the true matching rate (1-FNMR). (b) Zoomed version of (a), showing statistically significant performance improvement of method four
over method one. On (b) error bars indicate 95% confidence intervals in the FNMR (False Non-Match Rate) estimate.

5.4. Study on the Relationship between Image Qual-
ity and Verification Performance

We also study the relationship between the estimated im-
age quality and verification performance. For this purpose,
the results of the fourth method are used. Besides esti-
mating the state of match, we obtain the states of qg and
qp through the probabilistic inference as described in Sec-
tion 4. Based on the estimated qg and qp, we determine the
verification ROC curves according to each combination of
probe/gallery image quality levels as shown in Fig. 5.

It is clear that high-quality probe/gallery image pairs
achieve superior performance, which indicates that our face
quality assessment method is predictive of the recognition
performance as desired. Therefore, the estimated facial im-
age quality can also be used as a guidance to automatically
select good samples for face recognition.

5.5. Quality-based Face Recognition Using
Appearance-based Image Features

We also evaluate the quality-based face recognition al-
gorithm using different types of quality related features.
Specifically, we use the appearance coefficient of an Active
Appearance Model (AAM) [4], which models the variations
of image intensities enclosed in a warped face region. For
the ith image in the dataset, its appearance coefficient fi is
computed as follows:

fi = PT
I (Ii − Ī), (12)

where Ii is the image intensity vector obtained by warping
the ith image to a common face region through a global

affine transform3. Ī and PI are the mean and appearance
basis of AAM representing the major appearance variations
modes. Ī and PI are trained from facial images in the
FERET database [9] where the basis dimensionality is se-
lected such that 50% of the energy of the appearance varia-
tions is preserved.

For model training, we use the discretized quality values
based on symmetric normalized match scores as discrete
image qualities for probe and gallery images and again per-
form leave-one-subject-out cross-validation. Fig. 6 shows
the verification ROC of quality-based face recognition us-
ing the appearance-based image features. We can see that a
similar verification performance (EER is 0.102) is achieved
by using appearance-based image features compared to that
of shape-based image features. That implies that the face
pose and expression variations, which cause the changes in
both facial appearance and facial shape, are the major fac-
tors to affect image quality and verification performance.

6. Conclusions and Future Work
In this work, we have developed a unified probabilis-

tic framework for quality-based face recognition decisions,
where the quality assessments of facial images are inte-
grated into face recognition in a principled way. The ex-
periments demonstrated that the proposed algorithm signif-
icantly improves face recognition performance over a wide
range of facial image quality.

We should note that the proposed quality-based recogni-
tion framework is not restricted to face recognition and can

3In this work, the global affine transformation matrix is obtained based
on the eye positions and the lowest point of chin on each facial image by
using a face and eye detector.
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Figure 5. ROCs of quality-based face recognition results according to different probe/gallery image quality combinations. The fourth
method is used in this study. For each figure, error bars indicate 95% confidence intervals; FMR represents false match rate; and FNMR
represents false non-match rate.

be generalized to other biometric modalities by employing
the appropriate quality-related features. Next, we intend to
extend the framework to quality-based multi-modal biomet-
rics fusion by introducing and modeling the relationships
among multiple modalities.

One of the open questions is the robustness of quality
separation and MLE (EM) model learning schemes to the
size of the training set. For example, although continuous
quality values used in the third method in Section 5.3 are
expected to carry more information than the discrete values
used in the fourth method, the performance of the fourth
method is better. This might be due to the fact that the dis-
crete case is more robust to the error in the quality separa-
tion process. Also, limited number of training data might
have caused overfitting and poor estimates in MLE for the

continuous case. A sensitivity analysis in this regard is sub-
ject to further research.
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