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Abstract

In this paper we address the problem of geometric cal-
ibration of video projectors. Like in most previous meth-
ods we also use a camera that observes the projection on
a planar surface. Contrary to those previous methods, we
neither require the camera to be calibrated nor the pres-
ence of a calibration grid or other metric information about
the scene. We thus speak of geometric auto-calibration of
projectors (GAP). The fact that camera calibration is not
needed increases the usability of the method and at the same
time eliminates one potential source of inaccuracy, since er-
rors in the camera calibration would otherwise inevitably
propagate through to the projector calibration. Our method
enjoys a good stability and gives good results when com-
pared against existing methods as depicted by our experi-
ments.

1. Introduction
With the recent advances in projection display, video

projectors are becoming the devices of choice for active
reconstruction systems and 3D measurement. Such sys-
tems like Structured Light [12] and also Photometric Stereo
[17, 1] use video projectors to alleviate the difficult task of
establishing point correspondences. However, even if active
systems can solve the matching problem, calibrated video
projectors are still required. In fact, a calibrated projector is
required to triangulate points in a camera–projector struc-
tured light system, or to estimate the projector’s orientation
when the latter is used as an illumination device for a pho-
tometric stereo system.

The projection carried out by a video projector is usually
modeled as the inverse projection of a pin-hole camera, and
thus considered as a perspective projection.

In order to simplify the calibration process, a planar sur-
face is often used as projection surface, onto which features
or codified patterns are projected. The way patterns are cod-
ified and the projection surface orientation is estimated dis-
tinguishes most previous calibration methods from one an-
other.

Figure 1. A Camera-Projector setup and its homographies (see
text).

In [13, 15], a video projector projects patterns on a plane
mounted on a mechanically controlled platform. Thus, the
orientation and position of the projection plane is known
and is used to calibrate the structured light system using
conventional camera calibration techniques.

For convenience and because the projection surface is
usually planar, we will also refer to it as the wall.

In [11], a planar calibration grid is attached to the wall
and observed by a calibrated camera. Due to the camera’s
calibration information and the metric information about
the grid, the grid’s and thus the wall’s orientation and dis-
tance relative to the camera can be computed by classical
pose estimation. After this, the 3D positions of features
projected onto the wall by the video projector, can be eas-
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ily computed. If this is done for three or more positions
of the video projector, a set of correspondences between
the wall and the “projector images” can be obtained and
then used to estimate the projector parameters with stan-
dard plane-based calibration methods [14, 18]. We refer to
this method as Direct Linear Calibration (DLC). Note that
all this could actually be done without pre-calibrating the
camera, purely based on plane homographies, as explained
in section 3. Further, to increase accuracy of the DLC, a
printed planar target with circular markers is used in [9], to
calibrate the camera as well as the projector.

In [6], a structured light system is calibrated without us-
ing a camera. This is made possible by embedding light
sensors in the target surface (the wall). Gray-coded binary
patterns are then projected to estimate the sensor locations
and prewarp the image to accurately fit the physical features
of the projection surface. The projector parameters are not
explicitly estimated but the method could easily be extended
for that purpose.

In [10], an auto-calibration method for multi-projector
display walls is proposed. The authors focus more on es-
timating the relative orientations of the projectors w.r.t a
camera to achieve a large seamless display. The method
does not require fiducial points but makes assumptions on
the projector intrinsic parameters and the camera must be
calibrated. Further, the method assumes the x-axis of the
projectors aligned.

Okatani et al. [8] presented a work on video projector
auto-calibration but their work is meant for multiple pro-
jectors alignment and keystoning provided that the intrinsic
parameters of the projectors are known.

Kimura et al. [5] proposed a calibration method based on
the camera-projector epipolar geometry. Again, the camera
must be fully calibrated.

In this paper, a new projector calibration method is in-
troduced. As opposed to most existing methods, the pro-
posed method does not require a physical calibration grid
nor any knowledge about the camera parameters. Indeed,
our method imposes only two constraints on the calibration
setup. Namely, the camera should remain static while the
video projector displays patterns onto a planar surface and
the user must put the projector once in a roughly fronto-
parallel position relative to the wall. The latter constraint
does not have to be exact and serves only as a starting point
for a non-linear minimization as explained below.

The rest of the paper is organized as follows. In sec-
tion 2, our model for the geometric transformation associ-
ated with the video projector, is described. In section 3,
we explain the above mentioned DLC (direction linear cal-
ibration) approach, which serves as an introduction to the
proposed auto-calibration method, described in section 4.
Experimental results are presented in section 5 and conclu-
sions are drawn in section ??.

2. Projector Model
Throughout this paper, the projector is assumed to have

a perspective projection model like a pin-hole camera, with
the slight difference that here the projection direction is re-
versed [5]. Based on this assumption, a 3D point P =
[X, Y, Z, 1]T is mapped to pp = [x, y, 1]T in the projector
as:

pp ∼ Kp

(
Rp tp

)
P (1)

where ∼ stands for equality up to scale between homo-
geneous coordinates. These 2D points pp live in what we
refer to by the “projector image”.

The matrix Rp and the vector tp represent the extrinsic
parameters of the projector. The calibration matrix Kp is
described by the sought internal parameters and is defined
as follows:

Kp =

ρf 0 u
0 f v
0 0 1

 (2)

where f , ρ and (u, v) are respectively the focal length,
the aspect ratio and the principal point coordinates.

Consider a camera imaging what is projected by the pro-
jector onto the wall. Since we assume the wall to be planar,
it induces an homography Hp→c between the projector and
the camera image. Without loss of generality, we may as-
sume that the world coordinate system is aligned with the
wall, such that points on the wall have coordinates Z = 0.
Then, the homography between projector and camera can
be written as:

Hp→c ∼ Kc

(
R̄c tc

)︸ ︷︷ ︸
Hw→c

(Kp

(
R̄p tp

)
)−1︸ ︷︷ ︸

Hp→w

(3)

where Ā refers to the first two columns of a 3 × 3 ma-
trix A. Kc is the camera’s calibration matrix and Rc and tc

represent its extrinsic parameters. The homography Hp→c

can also be seen as the product of the homography Hp→w

that maps the projector image plane to the wall with Hw→c,
the homography that relates the wall to the camera image
plane.

3. Direct Linear Calibration
In this section, we review the details of the Direct Linear

Calibration for projectors. This method is used as a refer-
ence for our experiments. As opposed to [11], the variant
presented here [2] is strictly based on homographies and
does not require a calibrated camera.

A planar calibration grid is attached to the wall. This
allows to estimate the homography Hw→c between the wall
and the camera, introduced above. It relates a point pw on
the wall to a point pc in the camera image as follows:
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pc ∼ Hw→cpw (4)

Once this homography is computed (details on homog-
raphy estimation can be found in [4]), the video projector
is used to project patterns while it is moved to various posi-
tions and orientations. For each projector pose i, correspon-
dences are established between the camera and the video
projector, leading to an homography Hc→pi . A point pc in
the camera image is mapped into the projector at pose i as:

pi
p ∼ Hc→pipc (5)

Combining (4) and (5), a point pw on the wall is mapped
into the ith projector as:

pi
p ∼ Hc→piHw→c︸ ︷︷ ︸

Hw→pi

pw (6)

We thus can compute the wall-to-projector homography
for each pose i. It has the following form (see above):

Hw→pi ∼ Kp

(
R̄i

p ti
p

)
(7)

It is now straightforward to apply classical plane-based
calibration methods [14, 18] to calibrate the projector and,
if necessary, to compute its extrinsic parameters, from two
or more poses.

4. Projector Auto-Calibration

4.1. Basic Idea

The approach described in the previous section requires a
calibration grid to be attached to the wall and, in the version
of [11], the camera to be calibrated. In this section, we show
that these requirements may be avoided and propose a true
geometric video projector auto-calibration approach.

The key observation underlying the auto-calibration ap-
proach is as follows. It is “easy” to compute homographies
between the projector image and the camera image, induced
by the projection surface. There are indeed many possibili-
ties to do so, the simplest ones consisting in projecting a sin-
gle pattern such as a checkerboard and extracting and iden-
tifying corners in the camera image. More involved ones
could make use of multiple patterns, sequentially projected
from each considered projector pose, such as Gray codes,
allowing for robust and dense matching. From the obtained
matches, the computation of the homography is straightfor-
ward.

Consider now homographies associated with two poses
of the projector, Hc→pi and Hc→pj . From these we can
compute an homography between the two projector images,

induced by the planar projection surface:

Hpi→pj ∼ Hw→pj H
−1
w→pi

∼ Hc→pj Hw→c (Hc→piHw→c)
−1

∼ Hc→pj
H−1

c→pi

We are now in the exact same situation as an uncalibrated
perspective camera taking images of an unknown planar
scene: from point matches, the associated plane homogra-
phies can be computed and it is well-known that camera
auto-calibration is possible from these, as first shown by
Triggs [16]. We may thus apply any existing plane-based
auto-calibration method, e.g. [16, 7, 3] to calibrate the pro-
jector. Compared to auto-calibration of cameras, the case
of projectors has an advantage; many and highly accurate
point matches can be obtained since the scene texture is
controlled, by projecting adequate patterns onto the wall.

Plane-based auto-calibration comes down to a non-linear
optimization problem, even in the simplest case when only
the focal length is unknown. To avoid convergence prob-
lems, we adopt an approach suggested in [3] that requires
to take one image in a roughly fronto-parallel position rel-
ative to the scene plane. Here, this means of course by
analogy that the projector should once be positioned in a
roughly fronto-parallel position relative to the wall; subse-
quent poses can (and should) then be different. This allows
for a closed-form initial solution to the auto-calibration
problem, which may then be refined by a non-linear opti-
mization (bundle adjustment). Note that the assumption of
fronto-parallelism for one of the images is only required for
the initialization; during optimization, this is then no longer
enforced.

4.2. Initialization Procedure

We derive the initialization procedure in a different and
simpler way compared to [3]. Let the fronto-parallel view
correspond to pose 1; in the following we only consider
homographies between that view and all the others. Con-
sider first the wall-to-projector homography of the fronto-
parallel view, Hw→p1 . So far, we have assumed that the
world coordinate system is such that the wall is the plane
Z = 0 (see section 2). Without loss of generality, we may
assume that the X and Y axes are aligned with those of
the fronto-parallel view and that the optical center of that
view is located at a distance equal to 1 from the wall. Note
that these assumptions are not required to obtain the below
results, but they simply make the formulae simpler. With
these assumptions, the wall-to-projector homography for
the fronto-parallel pose is simply:

Hw→p1 ∼ Kp

Consider now the homography between the fronto-
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parallel view and another view j:

Hp1→pj ∼ Hw→pj H
−1
w→p1

∼ Kp

(
R̄j

p tj
p

)
K−1

p

In the following let us, for simplicity, drop all indices:

H ∼ K
(
R̄ t

)
K−1

It follows that:

K−1H ∼
(
R̄ t

)
K−1

Let us now multiple each side of the equation from the
left with its own transpose:

HT K−T K−1H ∼ K−T
(
R̄ t

)T (
R̄ t

)
K−1

Since R̄ consists of the first two columns of the rotation
matrix R, we have R̄T R̄ = I and thus:

HT K−T K−1H ∼ K−T

1 0 ×
0 1 ×
× × ×

 K−1

where entries marked as× depend on t and are irrelevant
for the following. Due to the form of K, this becomes:

HT K−T K−1H ∼

1 0 ×
0 ρ2 ×
× × ×

 (8)

Let us use the image of the absolute conic (IAC) to pa-
rameterize the projector’s intrinsic parameters, defined as
ω ∼ K−T K−1. From (8) we can now deduce the following
two equations on the intrinsic parameters, which are simi-
lar to those of calibration based on a planar calibration grid
[14, 18]:

hT
1 ωh2 = 0 (9)

ρ2hT
1 ωh1 − hT

2 ωh2 = 0 (10)

where hk denotes the kth column of H. Let us note that
ρ2 = ω11/ω22; hence, equation (10) can be written:

ω11h
T
1 ωh1 − ω22h

T
2 ωh2 = 0 (11)

Equation (9) is linear in ω, whereas (11) is quadratic.
There are different ways of using these equations to com-
pute the IAC ω and from this, the intrinsic parameters. If
the aspect ratio ρ is known beforehand, both equations are
linear and thus easy to solve. If ρ is unknown, one can either
use only the linear equation (9), which requires five views
(the fronto-parallel one and four others), or compute ω from
three views only. In the latter case, we have two linear and
two quadratic equations and a “closed-form” solution in the
form of a degree-4 polynomial in one of the unknowns, is
straightforward to obtain.

4.3. Non-linear Optimization

Once an initial solution of the projector calibration is
computed using the above approach, a non-linear optimiza-
tion through bundle adjustment may be carried out. Let
us briefly outline its peculiarities, compared to plane-based
auto-calibration of a camera. Note that the only noisy ob-
servations in our scenario are features in the camera im-
age: those in the projector “images” are perfectly known
and noisefree! Hence, the cost function of the bundle ad-
justment should be based on the reprojection error in the
camera image. The following formulation is one possible
option:

min
Hw→c,Kp,Ri

p,ti
p

∑
i,j

dist2
(
pij

c ,Hw→cHpi→wpij
p

)
where i stands for projector poses and j for points. I.e. we
optimize the wall-to-camera homography, the intrinsic pro-
jector parameters and its extrinsic parameters for all views,
by minimizing the reprojection error when mapping from
the projector images into the camera image (the Hpi→w are
parameterized by Kp and the extrinsic projector parame-
ters).

Another option would be to include camera intrinsics and
extrinsics in the optimization instead of the “black-box” ho-
mography Hw→c, but since the camera is static in our case,
at most two intrinsics can be estimated [14, 18].

Let us briefly describe the gauge freedom in our problem.
Everything is defined up to a 3D similarity transformation,
i.e. 7 degrees of freedom (rotation, translation, and scale).
We fix 3 of those by letting the projector screen be the plane
Z = 0. We may fix 3 others by imposing an arbitrary posi-
tion for one of the projector images. The remaining degree
of freedom corresponds to rotation about the normal of the
projector screen. This may be fixed by imposing e.g. an
X-coordinate of the position of a second projector image.

Overall, for n projector images, we thus have 8 + m +
6n−4 parameters to optimize, where m is the number of es-
timated projector intrinsics (usually, 3) and the 8 correspond
to the coefficients of the wall-to-camera homography.

In our implementation, we use the Levenberg-Marquardt
method for the optimization and make use, as is common
practice, of the sparsity of the problem’s normal equations.
At each iteration, solving the normal equations comes down
to inverting 6 × 6 symmetric matrices (blocks correspond-
ing to extrinsic parameters of individual projector images),
and inverting one 11 × 11 symmetric matrix (a block cor-
responding to homography and intrinsic parameters). The
whole bundle adjustment takes far less than a second on a
standard PC.

4.4. Estimation of Focal Length Changes

The above paragraphs constitute our auto-calibration ap-
proach. Here, we describe another method that allows to
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estimate the change of the projector’s intrinsics caused by
zooming. If the projector has been calibrated beforehand,
this allows to update its calibration. We suppose that a
zoom causes, besides the focal length, also the principal
point to change (especially its vertical coordinates is likely
to change in practice), but that the aspect ratio ρ remains
constant.

We also suppose here that both the camera and the pro-
jector remain static. Let H be the projector-to-camera ho-
mography before zooming and H′ the one afterwards. The
inter-image homography between the two projector images
is then given by:

M ∼ (H′)−1
H

∼ K′p (Kp)
−1

∼

f ′ 0 u′f − uf ′

0 f ′ v′f − vf ′

0 0 f


It is straightforward to compute the intrinsic parameters

after zooming:

f ′ =
M11

M33
f

u′ =
M13 + uM11

M33

v′ =
M23 + vM11

M33

Note that M depends only on the three unknown intrinsic
in K′p and can thus be computed from two points matches
already. If the principal point can be assumed to remain
constant, a single match is sufficient. A single match is also
sufficient if only one coordinate of the principal point is sup-
posed to change due to zooming (which is often the case for
video projectors).

5. Experiments
The proposed algorithm has been tested on synthetic and

real data. Both tests are detailed in the next two subsections.

5.1. Synthetic Data

We performed several tests of our algorithm using syn-
thetic data to assess its sensitivity to noise, number of pro-
jector poses and fronto-parallelism inaccuracy. Throughout
all the synthetic experiments, we used a camera panned at
30 degrees w.r.t the projection surface. The camera resolu-
tion was set to 1000×1000 and its calibration matrix defined
as:

Kc =

1000 0 500
0 1000 500
0 0 1

 (12)

Figure 2. Focal length error vs. noise level

Figure 3. Principal point error vs. noise level

The projector parameters are identical to the camera pa-
rameters.

Sensitivity to noise level. For this test, we used 20 inter-
image homographies computed by orienting the pro-
jector at random. The range of the orientations was
±20 degrees w.r.t the projection surface. Projector
points were then imaged by the camera, and a gaussian
noise with mean 0 and increasing standard deviation
was added to the image points. The standard deviation
σ varied from 0.1 to 1.5. As in [18], we performed
100 independent runs for each noise level and com-
puted the average errors for both the focal length and
the principal point. As we can see from Fig. 2 and
Fig. 3 the error increases almost linearly for both the
focal length and the principal point. For a noise level
of σ = 0.5 the error in the focal length is about 0.6%
and the error in the coordinates of the principal point is
less than 3 pixels which represents, or less than 0.7%
relative error.

Sensitivity to the number of projector poses. We set the
amount of noise to σ = 1 and we varied the number of
projector poses from 2 to 20 in a range of±20 degrees
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Figure 4. Focal length error vs. nb poses (σ = 1).

Figure 5. Principal point errors vs. nb poses (σ = 1).

w.r.t the projection surface. The average errors (from
100 independent runs) for both the focal length and the
principal point are reported in Fig. 4 and Fig. 5 . We
notice that, as may be expected, the results gain stabil-
ity when the number of projector poses is increased.

Sensitivity to fronto-parallelism inaccuracy. We con-
clude these synthetic experiments by assessing the
sensitivity of our algorithm to the fronto-parallelism
assumed in one of the images. The standard deviation
of the noise added to the point coordinates was 0.5.
We altered the orientation of the projector fronto-
parallel to the projection surface. The resulting errors
on the focal length and the principal point are reported
in Fig. 6 and Fig. 7

5.2. Real Images

We tested our algorithm on a Mitsubishi Pocket Projec-
tor and compared it to our variant of the DLC method, de-
scribed in section 3. The projector has a native resolution of
800 × 600 and a fixed focal length. The acquisition device
was a Nikon D50 camera. A 50mm lens was used on the
camera and the resolution was set to 1500× 1000.

Figure 6. Focal length error vs. fronto-parallel misalignment.

Figure 7. Principal point error vs. fronto-parallel misalignment.

We acquired 20 images of projected patterns while the
projector underwent several orientations. Some images of
the projected chessboard along with detected features are
depicted on Figure.8.

We calibrated the projector with the proposed method
and with our implementation of the DLC. The result of this
benchmark is outlined in Table 1.

The table provides the estimated parameters and the re-
projection error in pixels. Because our method was ini-
tialized with several fronto-parallel images we reported the
range of reprojection error instead of an error average.

Table 1. Projector calibration benchmark: Direct method and the
proposed Auto-Calibration method.

Method fproj ρ u v Error
DLC 1320.13 1.002 382.1 448 0.46

Auto-Calib 1312.27 1.007 370.28 466 0.42− 0.27

We performed a second calibration test on a video pro-
jector (Mitsubishi XD430U) with a zooming capability and
a native resolution of 1024×768. For this test, we estimated
the intrinsic parameters with two different zoom settings
and the results were compared to the predictions obtained
using the method introduced in section 4.4.
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Figure 8. Images of projected patterns and detected features. The
numbers and small red dots are added for illustration only. The
large dots in the 4 corners are part of the projected pattern.

We observed that both methods are consistent as reported
in Table 2.

Table 2. Calibration results with varying parameters.
Method fproj ρ u v
Zoom 1 2292.29 1.045 584.42 969.36

Zoom 2 (pred) 1885.7 1.045 587.64 949.55
Zoom 2 (est) 1873.14 1.045 590.9 944

6. Conclusion
In this paper we presented a new video projector auto-

calibration method. It does not require a physical calibra-
tion grid or other metric information on the scene. Also, the
camera used together with the projector, does not need to
be calibrated; it is indeed merely used to get plane homo-
graphies between “images” of the projector associated with
different poses. To the best of our knowledge, there are no
other techniques that can work with the same input.

We believe that this aspect of our method increases its
stability, otherwise the error of the camera calibration would
affect the accuracy of the projector calibration [11]. Of
course, as usual with auto-calibration methods, a certain
number of poses, and especially a sufficient variety of poses
(especially orientation), are required to get good results.
In our synthetic experiments, results are very good with 4
poses or more.

Very simple to implement, the proposed method is fast,
gives good results and is completely linear if one uses com-

mon assumptions regarding the projector aspect ratio. In
the near future we will implement and test the bundle ad-
justment procedure outlined in the paper. This is straight-
forward and is expected to further improve our results.

More generally, we believe that our method will enable
to handle large projector-camera systems that were previ-
ously impossible to calibrate due to cumbersome calibration
chessboards required by previous methods.
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