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Abstract—In this paper, a novel view-based approach for 3D 
object retrieval is introduced. A set of 2D images (multi-views) 
are automatically generated from a 3D object, by taking views 
from uniformly distributed viewpoints. For each image, a set of 
2D rotation-invariant shape descriptors is extracted. The 
global shape similarity between two 3D models is achieved by 
applying a novel matching scheme, which effectively combines 
the information extracted from the multiview representation. 
The proposed approach can well serve as a unified framework, 
supporting multimodal queries (such as sketches, 2D images, 
3D objects). The experimental results illustrate the superiority 
of the method over similar view-based approaches. 

I. INTRODUCTION  
3D models have nowadays become ubiquitous for 

applications such as games [1], Computer-Aided Design 
(CAD) [2], molecular biology [3], cultural heritage, etc. The 
technology innovation in 3D scanners and computer-aided 
modeling software make it possible to easily construct 
complete 3D geometry models with relatively low cost and 
time, which in turn has triggered the rapid enlargement of 3D 
shape repositories. The latter, along with the explosion of the 
World Wide Web (WWW), has lead to research in the area 
of 3D content-based search and retrieval [5] using as query 
text, sketch and/or 3D object(s).  

The existing 3D object retrieval methods can be 
classified into four main categories: histogram-based, 
transform-based, graph-based, view-based and, finally, 
combinations of the above. Histogram-based methods are, in 
general, easy to implement but usually they are not 
discriminative enough to make subtle distinctions between 
classes of shapes. On the other hand, transform-based 
methods have higher retrieval accuracy. Several transform-
based methods [14, 15] usually require a rotation 
normalization step before the descriptor extraction 
procedure, while others [10, 6, 7] can achieve rotation 
invariance. Graph-based methods [11, 12, 13] are more 
elaborated and complex but they have the potential of 
encoding geometrical and topological shape properties in a 
more faithful and intuitive manner. 

2D view-based methods [9, 8], consider the 3D shape as 
a collection of 2D projections taken from canonical 
viewpoints. Each projection is then described by standard 2D 
image descriptors like Fourier descriptors [9] or Zernike 
moments [8]. Ohbuchi et al.[16] recently proposed a view-
based 3D model retrieval method based on multi-scale local 

visual features. The features are extracted from 2D range 
images of the model viewed from uniformly sampled 
locations on a view sphere. For each range image, a set of 2D 
multi-scale local visual features is computed by using the 
Scale Invariant Feature Transform (SIFT) [17] algorithm. 
The aforementioned methods have the advantages of being 
high discriminative, can work for articulated objects, can be 
very effective for partial matching and can also be beneficial 
for 2D sketch-based and 2D image-based queries. Their only 
drawback is that they discard valuable 3D information (due 
to the self-occlusion). 

In this paper, we propose a novel 3D shape retrieval 
framework supporting multimodal queries (either sketches 
drawn by a user, or 2D images captured by a user, or 3D 
objects) by introducing a novel view-based approach able to 
handle the different types of multimedia data. The proposed 
Compact Multi-View Descriptor (CMVD) belongs to the 
category of the 2D view-based approaches and, thus, has the 
advantages of being high discriminative, can work for 
articulated objects, can be very effective for partial matching 
and can support a variety of queries, such as 2D images, 
hand-drawn sketches and 3D objects. Despite the numerous 
common advantages, the proposed approach outperforms the 
existing view-based methods in several aspects: 

Compactness. As opposed to the methods presented in 
[8] and [16], the proposed framework uses significantly less 
number of different views.  

Use of both Binary and Depth Images. The proposed 
framework generates a set of binary images along with a set 
of depth images from a 3D object. The depth image can 
capture more details in a 3D object and increase the shape 
matching efficiency. This is a significant improvement 
comparing with the well-known Light Field Descriptor [8], 
which uses binary images. 

Consequently, the method proposed in this paper 
demonstrates higher retrieval accuracy than the view-based 
methods presented in [8] and [16]. 

The rest of the paper is organized as follows: Section 2 
analyzes the descriptor extraction procedure. In Section 3, 
the shape matching framework for both 2D/3D and 3D/3D 
matching is described. Experimental results evaluating the 
proposed method and comparing it with other methods are 
presented in Section 4. Finally, conclusions are drawn in 
Section 5. 
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II. DESCRIPTOR EXTRACTION 
The descriptor extraction procedure can be summarized 

in the block diagram presented in Figure 1. The input 3D 
object is a triangulated mesh, in one of the common 3D file 
formats (VRML, OFF, 3DS, etc.). As a first step, a pose 
estimation takes place, which includes translation, scaling 
and rotation of the object. After the pre-processing step, a set 
of 18 2- dimensional views, taken from the vertices of a 
bounding 32-hedron is extracted. Both binary (black/white) 
and depth images are generated. In each of the extracted 2D 
images, a set of 2D functionals is applied, resulting in a 
descriptor vector for each view. 

A. Pose Estimation 
The pose estimation procedure initially involves the 

translation and scaling of the 3D object. The model is 
translated so that the center of mass coincides with the center 
of the coordinate system and scaled in order to lie within a 
bounding sphere of radius 1. 

After translation and scaling, a rotation estimation step is 
required, since the 3D object may have an arbitrary 
orientation. In order to achieve the best possible result, a 
combination of the two dominant rotation estimation 
methods, PCA [14] and VCA [4], which have been proposed 
so far in the literature, is utilized. 

 

 
Figure 1.  Block Diagram of proposed Descriptor Extraction Method. 

The proposed rotation estimation framework leads to the 
automatic detection of the model’s three principal axes with 
a quite satisfying level of success. However, it does not 
provide information about the orientation of the principal 
axes. Taking also into account the fact that the first principal 
axis may not always be successfully selected among the 

three principal axes, this leads to a set of 3 × 8 = 24 different 
alignments. The problem of having 24 possible alignments is 
overcome by appropriately selecting the set of 2D views as 
well as by introducing an efficient matching method, which 
will be elaborated in the following sections. 

B. A Set of Uniformly Distributed Views 
The proposed method is based on the matching of 

multiple 2D views, which can be extracted from a 3D object 
by selecting a set of different viewpoints. In order to be 
uniformly distributed, the viewpoints are chosen to lie at the 
vertices of a regular polyhedron. The type of the polyhedron 
and the level of tessellation need to be carefully considered 
in order to provide the optimal solution. As mentioned in [8], 
15 to 20 views can roughly represent the shape of a 3D 
model. Based on this notion, the 18 vertices of the 32-
hedron, which is produced by tessellation of octahedron at 
the first level, can provide an appropriate set of viewpoints. 

In order to render the multi-view images, the camera 
viewpoints are placed at the 18 vertices of the 32-hedron. 
Two 2D image types are available: Binary Images: the 
rendered images are only silhouettes, where the pixel values 
are 1 if the pixel lies inside the model’s 2D view and 0 
otherwise. Depth Images: the pixel intensities are 
proportional to the distance of the 3D object from each 
sample point of the corresponding tangential plane. 

Although binary images provide an efficient and robust 
representation of a 2D view, depth images contain more in 
formation and produce better retrieval results, if 
appropriately exploited. 

C. Computing 2D Functionals on each View 
The set of uniformly distributed views, described above, 

consists of 2D binary images and depth images of size 
100×100 pixels. In each image, three rotation-invariant 
functionals are applied in order to produce the final set of 
descriptors per view. 

Let ft (i, j) be the 2D image, where i, j = 0, . . . , N − 1, 
N×N the size of the image, t = 1, . . . , NV and NV the total 
number of views. The values of ft (i, j) are either 0 or 1, for 
the binary images, while in the case of depth images, the 
values can be any real number between 0 and 1. 

2D Polar-Fourier Transform. The Discrete Fourier 
Transform (DFT) is computed for each ft (i, j), producing the 
vectors FT(k, m), where k, m = 0, . . . , N − 1. In the DFT, 
shifts in the spatial domain cause corresponding linear shifts 
in the phase component. Thus, the DFT magnitude is 
invariant to circular translation. Therefore, using discrete 
polar coordinates, rotation is converted to circular 
translation, which leads to rotation-invariant descriptors. For 
each ft (i, j), the first K×M harmonic amplitudes are 
considered. 

2D Zernike Moments. Zernike moments are defined 
over a set of complex polynomials which forms a complete 
orthogonal set over the unit disk and are rotation invariant. 
The Zernike moments Zkm [18], where k ∈  N+, |m| ≤ k, are 
calculated for each ft (i, j) with spatial dimension N×N, 
producing a vector of rotation-invariant Zernike descriptors. 

116



2D Krawtchouk Moments. Krawtchouk moments are a 
set of moments formed by using Krawtchouk polynomials as 
the basis function set. Following the analysis in [19] and 
some specifications mentioned in [20], they were computed 
for each ft (i, j), producing a vector of rotation-invariant 
Krawtchouk descriptors. 

A compact representation of the multi-view descriptor 
implies a small number of descriptors per view, otherwise 
the shape matching time would be prohibitive. In an attempt 
to determine the optimal number of descriptors, we gradually 
increased the order k of Fourier Coefficients, Zernike 
Moments and Krawtchouk Moments until the performance 
of each separate 2D functional showed no further 
improvement. It was found that the optimal order values are 
kFT = 12, kKraw = 12 and kZern = 13, which results in the 
following descriptor vector dimensions, respectively: NFT = 
78, NZern = 56 and NKraw = 78. The dimension ND of the final 
descriptor vector, per view, is given below: 

KrawZernFTD NNNN ++=  (1) 
Finally, two types of descriptors are formed: CMVD-

Binary that uses binary images and CMVD-Depth that uses 
depth images. 

III. MATCHING METHOD 
Similar to existing view-based approaches, the proposed 

framework measures the similarity between two 3D objects 
by summing up the similarity from all the corresponding 
images. 

Let Dt be the descriptor vector of the tth view, which is 
extracted according to the procedure described in Section II. 
The dissimilarity metric between a corresponding pair of 
views of two models A and B is given by the L1-distance: 

∑
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where ND is the number of descriptors per view. 

A. 3D/3D Matching 
Let now A and B be two 3D models, with descriptor 

vectors Dt
A and Dt

B, respectively, where t = 0, . . . , NV and NV 
the total number of views. The total dissimilarity d between 
the models A and B is given by the following equation: 
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where dt is the dissimilarity of the tth view described in 
(2). Note that the dissimilarity metric does not include 
matching of all views of model A with all views of model B 
(“all-to-all” matching), it includes matching of only the 
corresponding views (i.e. matching of View1

A with View1
B, 

View2
A with View2

B and so on). The 3D/3D matching 
procedure is depicted in Figure 2. The numbering of views 
has been arbitrarily chosen but it is consistent for every 3D 
model. This results in a significantly fast matching 
procedure, however, it requires that rotation normalization 
provide 100% success, not only in terms of identification of 
the three principal axes but also in terms of orientation of 
each axis. Although the combination of PCA and VCA 
followed in this paper is able to detect the three principal 

axes, it may confuse the first with the second principal axis, 
the second with the third, etc. Moreover, it cannot properly 
identify the orientation of each axis. 

 

 
Figure 2.  The proposed Similarity Matching Framework. The total 

dissimilarity between two 3D objects is the sum of the dissimilarities of the 
corresponding views. 

The above inherent limitations of PCA and VCA can be 
overcome, if, instead of a single set of views, 24 different 
sets of views are used for the second model. In order to 
produce these sets of views, the 3D model should be rotated 
24 times at intervals of 90 degrees. If the views are taken 
from the 18 vertices of a 32-hedron, as described in Section 
II, in all 24 rotations, the viewpoints will always lie at these 
18 vertices. Thus, the views (and consequently the 2D 
descriptors) need to be extracted only once. 

The total dissimilarity d between A and B is now 
modified as: 
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where r = 1, . . . , 24 is the total number of rotations of the 
second model, dr is the dissimilarity of the rth rotation and NV 
= 18 is the number of views of the 32-hedron. 

B. 2D/3D Matching 
Retrieval of 3D models can also be achieved if, instead of 

a 3D model, a single 2D image is used as query. In order to 
measure the dissimilarity, the query 2D image is compared 
to the NV views of the 3D model and the most similar (to the 
image) view is selected.  

It is obvious that 2D/3D matching cannot be as efficient 
as 3D-3D matching, since a 2D image is unable to capture 
the global visual information of an object. However, it is 
much easier to provide a 2D image as query than a 3D model 
(e.g. take a photo of an object or draw a sketch). 

In Table 1, the average computation times for descriptor 
extraction and matching procedures are summarized. The 
times were obtained using a PC with a 2.4 GHz processor 
and 3GB RAM, running operating system Windows XP. 

TABLE I.  AVERAGE COMPUTATION TIMES FOR 
DESCRIPTOR EXTRACTION AND MATCHING PROCEDURES. 

Action Time (msec) 
Views Generation 2587 

Polar-Fourier Descriptors Extraction 63 
Krawtchouk Descriptors Extraction 398 

Zernike Descriptors Extraction 811 
Matching between 2 models 10 
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IV. EXPERIMENTS 

A. Evaluation of the 3D/3D Matching Method 
The proposed method was experimentally evaluated 

using three different databases. The first one was compiled 
from the Internet by us and it is called “the ITI database” 
[21]. It consists of 544 3D models classified in 13 different 
categories. The second dataset, the “Princeton Shape 
Benchmark (PSB)”, was formed in Princeton University and 
it consists of 907 3D models classified into 92 categories. 
Finally, the third dataset, the “Engineering Shape Benchmark 
(ESB)”, contains a total of 867 3D CAD models from the 
mechanical engineering domain, classified into 44 
categories.  

To evaluate the proposed method, each 3D model was 
used as a query object. The retrieval performance was 
evaluated in terms of “precision” and “recall”, where 
precision is the proportion of the retrieved models that are 
relevant to the query and recall is the proportion of relevant 
models in the entire database that are retrieved in the query 
[14]. 

The results were compared to those of the following three 
methods: 

• The Light field descriptor (LFD), presented in [8]. 
• The Bag-of-Features SIFT algorithm (BF-SIFT), 

which was introduced in [16]. 
• DSR, which is a combination of two view-based 

methods and a transform-based method [9]. 
The performance of the first and the third method was 

computed by using the executables taken from the web pages 
of the authors, while the results of the second method were 
directly extracted from the ones presented in [16] and are 
available only for the PSB database.  

 

 
Figure 3.  Comparison of the proposed method with LFD, BF-SIFT and 

DSR in terms of precision-recall, using the PSB database. 

Figure 3 contains a numerical precision versus recall 
comparison of CMVD-Binary and CMVD-Depth with the 
aforementioned methods using the PSB database. It is clear 
that the CMVD-Depth descriptor performs better than the 
CMVD-Binary descriptor. Moreover, CMVD-Depth 
outperforms all other methods. Similar results are obtained 

using the ITI and the ESB databases. It is worth to mention 
that our method is slightly better than DSR, which combines 
view-based and transform-based information. 

 

 
Figure 4.  Comparison of the proposed method with LFD and DSR in 

terms of precision-recall, using the ITI database. 

 
Figure 5.  Comparison of the proposed method with LFD and DSR in 

terms of precision-recall, using the ESB database. 

B. Evaluation of the 2D/3D Matching Method 
As explained in the previous sections, the proposed 

framework provides efficient search and retrieval capabilities 
using only a 2D image or a sketch as a query, when an input 
3D model is not available. In this case, the CMVD-Binary 
descriptor is used, since depth images cannot be easily 
sketched or retrieved. 

In order to support these types of queries, a user-friendly 
interface has been appropriately designed within the 
VICTORY project [21]. In Figure 6, screenshots of the 
VICTORY search and retrieval tool are given. The interface 
provides a typical drawing tool, allowing the user to easily 
draw a sketch of the query. Alternatively, the tool provides 
an extra functionality to load a 2D image and draw a contour 
of the desired object (Figure 7). This manual segmentation, 
which separates the query image from the background, is 
very useful and produces more accurate results. The 
retrieved 3D objects in the first positions of the rank lists are 
all similar to the queries, which demonstrates the efficiency 
of the proposed method to support multiple types of queries. 
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Figure 6.  Retrieved 3D models using as query a hand-drawn sketch  

 
Figure 7.  Retrieved 3D models using as query a 2D image 

V. CONCLUSIONS 
In this paper, a unified framework for 3D object retrieval 

was presented. The method provides search and retrieval 
capabilities by supporting multimodal queries (3D objects, 
2D images or sketches). The proposed view-based approach 
creates a compact representation of a 3D object as a set of 
multiple 2D views (both binary and depth images) taken 
from uniformly distributed viewpoints. For each view, a set 
of 2D rotation-invariant shape descriptors is produced. The 
paper also introduced a novel matching scheme, which 
calculates the global shape similarity between two 3D 
models by effectively combining the information extracted 
from the multi-view representation. 

The proposed Compact Multi-View Descriptor (CMVD) 
was evaluated in terms of retrieval performance using three 
different databases. The results were compared to those of 
the best-known retrieval methods in the literature and clearly 
demonstrate that the proposed method outperforms all others 
in terms of precision-recall. 
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