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Abstract. In this paper we validate a new model of bottom-up saliency
based in the decorrelation and the distinctiveness of local responses. The
model is simple and light, and is based on biologically plausible mecha-
nisms. Decorrelation is achieved by applying principal components analy-
sis over a set of multiscale low level features. Distinctiveness is measured
using the Hotelling’s T2 statistic. The presented approach provides a
suitable framework for the incorporation of top-down processes like con-
textual priors, but also learning and recognition. We show its capability
of reproducing human fixations on an open access image dataset and we
compare it with other recently proposed models of the state of the art.
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1 Introduction

It is well known, from the analysis of visual search problems, that vision pro-
cesses have to face a huge computational complexity [1] . The Human Visual
System (HVS) tackles this challenge through the selection of information with
several mechanisms, starting from foveation. In the basis of this selection is the
visual attention, including its data-driven component leading to the so called
bottom-up saliency. In the last decades, the interest in the understanding of
saliency mechanisms and the appraisal of its relative importance in relation to
the top-down (knowledge-based) relevance, has constantly raised. Besides, atten-
tion models can facilitate a solution of technical problems, ranging from robotics
navigation [2] to image compression or object recognition [3].

Recently, several approaches to bottom-up saliency have been proposed based
on similarity and local information measures. In these models local distinctive-
ness is obtained either from self-information [4][5], mutual information [6][7], or
from dissimilarity [8], using different decomposition and competition schemes.

In this paper, we propose a new model of bottom-up saliency, simple and
with low computational complexity. To achieve this, we take into account the
decorrelation of neural responses when considering the behavior of a popula-
tion of neurons subject to stimuli of a natural image [9]. This is believed to be
closely related to the important role of non classical receptive fields (NCRF)
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in the functioning of HVS. Therefore, we start from a multiscale decomposi-
tion on two feature dimensions: local orientation energy and color. We obtain
the decorrelated responses applying PCA to the multiscale features. Then, we
measure the statistical distance of each feature to the center of the distribution
as the Hotelling’s T2 distance. Finally, we apply normalization and Gaussian
smoothing to gain robustness. The resulting maps are firstly summed, delivering
local energy and color conspicuities, and then they are normalized and averaged,
producing the final saliency map.

In order to achieve a psychophysical validation, most models of bottom-up
saliency assess their performance in predicting human fixations, and compare
their results with those provided by other previous models. The most frequent
comparison method consists in the use of the receiver-operator-curve (ROC)
and the corresponding value of the area under the curve (AUC), as a measure
of predictive power [5][6][8]. The use of Kullback-Leibler (K-L) divergence to
compare priority and saliency maps is also found on related literature [10]. From
the use of both methods, we obtain results that match or improve those achieved
with models of the state of the art. Moreover, ruling out the use of center-
surround differences we definitely improve the results respect to those obtained
with a previous proposal [11].

The paper is developed as follows. Section 2 is devoted to overview the visual
attention model. In Section 3 we present and discuss the experimental work
carried out, and the achieved results. Finally, Section 4 summarizes the paper.

2 Model

Our model takes as input a color image codified using the Lab color model. Un-
like other implementations of saliency [6][12] this election is based on a widely
used psychophysical standard. We decompose the luminance image by means of a
Gabor-like bank of filters, in agreement with the standard model of V1. Since ori-
entation selectivity is very weakly associated with color selectivity, the opponent
color components a and b simply undergo a multiscale decomposition. Hence,
we employ two feature dimensions: color and local energy. By decorrelating the
multiscale responses, extracting from them a local measure of variability, and
further performing a local averaging, we obtain a unified and efficient measure
of saliency.

2.1 Local Energy and Color Maps

Local energy is extracted applying a bank of log Gabor filters [13] to the lumi-
nance component. In the frequency domain, the log Gabor function takes the
expression:

logGabor (ρ, α; ρi, αi) = e
− (log(ρ/ρi))

2

2(log(σρi/ρi))2 e
− (α−αi)

2

2(σα)2 . (1)

where (ρ, α) are polar frequency coordinates and (ρi, αi) is the central frequency
of the filter. Log Gabor filters, unlike Gabor, have no DC or negative frequency
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components, therefore avoiding artifacts. Their long tail towards the high fre-
quencies improves its localization. In the spatial domain, they are complex valued
functions (with no analytical expression), whose components are a pair of filters
in phase quadrature, f and h. Thus for each scale s and orientation o, we obtain
a complex response. Its modulus is a measure of the local energy of the input
associated to the corresponding frequency band [14] [15] .

eso(x, y) =
√

(L ∗ fso)2 + (L ∗ hso)2. (2)

Regarding the color dimension, we obtain a multiscale representation both for
a and b, from the responses to a bank of log Gaussian filters.

logGauss(ρ) = e
− (log(ρ))2

2(log(2nσ))2 . (3)

Thus, for each scale and color opponent component we get a real valued
response. The parameters used here were: 8 scales spaced by one octave, 4 ori-
entations (for local energy), minimum wavelength of 2 pixels, angular standard
deviation of σα = 37.5o, and a frequency bandwidth of 2 octaves.

2.2 Measurement of Distinctiveness

Observations from neurobiology show decorrelation of neural responses, as well
as an increased population sparseness in comparison to what can be expected
from a standard Gabor-like representation [16]. Accordingly we decorrelate the
multiscale information of each sub-feature (orientations and color components)
through a PCA on the corresponding set of scales. On the other hand, vari-
ability and richness of structural content have been proven as driving attention
[17]. Therefore, we have chosen a measure of distance between local and global
structure to represent distinctiveness. Once scales are decorrelated, we extract
the statistical distance at each point as the Hotelling’s T2 statistic:

X =

⎛

⎜
⎝

x11 . . . x1N

...
...

...
xS1 . . . xSN

⎞

⎟
⎠ → (PCA) → T2 =

(
T 2

1 , · · · , T 2
N

)
. (4)

That is, being S the number of scales (original coordinates) and N the number
of pixels (samples), we compute the statistical distance of each pixel (sample)
in the decorrelated coordinates. Given the covariance matrix (W), T2 is defined
as:

T 2
i = (xi − x̄)’W−1(xi − x̄). (5)

This is the key point of our approach to the integration process. This multivariate
measure of the distance from a feature vector associated to a point in the image,
to the average feature vector of the global scene, is in fact, a measure of the local
feature contrast [18].
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Fig. 1. Bottom-up Saliency Model

Final Map. The final saliency map is obtained normalizing to [0,1], smoothing,
and summing the extracted maps, first within each feature dimension and next
with the resulting local energy conspicuity and color conspicuity maps. In this
way we obtain a unique measure of saliency for each point of the image.

Computational Complexity. The whole process involves two kinds of oper-
ations. Firstly, filtering for decomposition and smoothing, has been realized in
the frequency domain, as the product of the transfer functions of the input and
the filters, using the Fast Fourier Transform (FFT) and its inverse (IFFT). This
implies a computational complexity of O(N log(N) + N), being N the number of
pixels of the image. The other operation is PCA with a complexity of O(S3 + S2

N), being S the number of scales (dimensionality) and N the number of pixels
(samples) [19]. We are interested in the dependency on the number of pixels,
being O(N), since the number of scales remains constant. Therefore, the overall
complexity is given by O( N log(N) ).

3 Experimental Results and Discussion

In this work we demonstrate the efficiency of the model predicting eye fixations
in natural images. In Section 3.1 we show the performance of the model in terms
of AUC values from ROC analysis, on a public image dataset. We compare these
results with those obtained by other models representative of the state of the
art. Moreover, we discuss the details of this procedure, as well as the difficulties
and limitations that it poses. This last issue motivates Section 3.2, where we use
a metric based on the K-L divergence.

3.1 ROC Values

In this experiment we employ an image dataset published by Bruce & Tsotsos.
It is made up of 120 images, and the corresponding fixation data for 20 different
subjects. A detailed description of the eye-tracking experiment can be found
in [4].
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Fig. 2. Results of the model (T2) with three of the images used. Results for other
models, have been obtained with the corresponding open access version.

Table 1. AUC average values from computed like in [6]. (*published by the authors)

Model AUC std

T2-Based 0.791 0.080

Gao et al. [6]* 0.769 ---
GBVS [8] 0.688 0.119

The details of AUC computation from ROC analysis face a difficulty from the
beginning. Bruce & Tsotsos construct one unique ROC curve for the complete
set of images, with the corresponding AUC. The uncertainty is provided, based
on the proposal of Cortes & Mohri [20]. They give a value for their model and the
model of Itti et al. [12]. On the other hand Gao et al. compare these results with
those obtained by their model, but with another procedure. They construct one
ROC curve and extract the corresponding AUC for each image. They take the
average of the AUC as the overall value, but they don’t provide any estimation
of uncertainty. The same averaging procedure is employed by Harel et al. but on
a different set of images [8].

When computing AUC with the average procedure we find a problem: stan-
dard deviation is larger than the differences between models, although these
differences can be also large. This is reflected in table 1. The model of Gao et al.
should have a similar value of standard deviation, since partial graphical values
are similar to the models of Bruce & Tsotsos and Itti et al. [6].

Instead, we can proceed like Bruce & Tsotsos, who obtain a much tighter value
for a 95% uncertainty, while the AUC is very similar (slightly lower). Thus, this
would make it possible to rank the models by their overall behavior on the whole
dataset. Results are shown in table 2. Our model has equivalent results to Bruce
& Tsotsos, improving the performance of all of the other models.

However, this approach hides a problem. We are analyzing all the scenes as a
unique sample, instead of considering each scene separately. Hence, the approach
of Bruce & Tsotsos means to loose the inter-scene variance, performing a global
assessment. Then, a question arises: does the kind of scene affect the ranking
of models?. That is, could there be scene-biased models? If the kind of scene is
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Table 2. AUC computed from a unique ROC curve (*values provided by [5])

Model AUC std

T2-Based 0.776 0.008

AIM [9]* 0.781 0.008

Itti et al. [12]* 0.728 0.008
GBVS [8] 0.675 0.008
STB [21] 0.569 0.011

important, probably this dataset is not representative enough of natural images.
In fact, urban and man-made scenes are clearly predominant. For instance, there
is no landscape, and there is only one image with an animal (but in an indoor
environment).

This fact could help to explain the results reported by Harel et al. [8], that
show a higher (and excellent) performance compared to models of Bruce & Tsot-
sos and Itti et al., using a different image dataset. We must notice here that these
other images were gray-level (without color information), and were mainly im-
ages of plants.

3.2 K-L Divergence Values

In this Section we employ the K-L divergence to compare priority maps from
fixations with saliency maps, similarly to [10]. As priority maps we use the
density maps computed by Bruce & Tsotsos to reflect the foveated region with
each fixation.

The priority map can be interpreted as a measure of the probability of each
point to attract gaze, and the saliency map can be viewed, in turn, as a prediction
of that probability. Hence, it makes sense to compare both distributions through
the K-L divergence. It is worth noting that, instead of gray levels probabilities
[5], we compare distributions of probabilities in the space.

Table 3. K-L comparison. Other models have been executed using their default values.

Model K-L std

T2-Based 1.3 0.3
AIM [9] 1.7 0.3
GBVS [8] 2.1 0.6
STB [21] 13.0 1.6

With this aim, we obtain probability maps simply dividing a given map by
the sum of its gray-level values. We denote by hi = h(x, y) and mi = m(x, y)
the priority map from fixations and the saliency map from each model (taken as
probability distributions) respectively. Then, being N the number of pixels, we
compute the K-L divergences:

DKL(h, m) =
N∑

i=1

hi · log
hi

mi
(6)
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It is possible to use other procedures to construct the priority maps, to take
into account other parameters like the duration of fixations, and not merely
their positions [22]. Therefore, this metric should be viewed as an interesting
complement to ROC analysis.

Nevertheless, the results shown in table 2, lead to a similar interpretation to
that derived from analysis of ROC curves. Standard deviations are similar in
relative order of magnitude. Our model exhibits an slightly better performance
than the model of Bruce & Tsotsos [5], and again clearly better than the model
proposed by Harel et al [8]. The implementation proposed by Walther [21] of the
model of Itti & Koch [23] exhibits again the worst result.

4 Conclusions

In this work we have shown a simple and light model of saliency, that resorts to
the decorrelation of the responses to a Gabor-like bank of filters. This mechanism
is biologically plausible and could have an important role in the influence of
NCRF when V1 cells are subjected to natural stimuli [9][16].

We have validated the model, comparing its performance with others, in the
prediction of human fixations. Using ROC analysis we have obtained a result
equivalent to that achieved by Bruce & Tsotsos [5], after the optimization of their
decomposition process. With the same model in a previous work they obtained
an AUC value of 0.7288 [4], clearly lower. On the other hand, using a different
metric based on K-L divergence, that takes into account the area of foveation of
each fixation, the model performs slightly better than the approach of Bruce &
Tsotsos. Other models [6][8][21] deliver worse results in both comparisons.

Similarly to Bruce & Tsotsos [5], we avoid any parameterization of the process,
beyond the initial decomposition of the image. However, this decomposition
remains ordered and suitable for the incorporation, from the beginning, of top-
down influences. Finally, our model of saliency presents a lower computational
complexity than models that are benchmarks for psychophysical plausibility.
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