
SANDWELL, LOOS, BURGHARDT: CHIMP FACE RECOGNITION 1 
 

 

   

© 2013. The copyright of this document resides with its authors. 

It may be distributed unchanged freely in print or electronic forms. 

 

 

Abstract 

To aid automated non-invasive population monitoring, we explore chimpanzee 
face recognition accuracy using a number of algorithms on images with pose and 
illumination variation, by synthesising images from a generic 3D model. The expense 
of expeditions and uncontrollable nature of this wild species and environment 
requires automated face recognition techniques to be robust to pose and illumination 
variance without incurring additional data collection or manual annotation costs.  

Unlike for humans, prior knowledge of chimpanzee face shape does not exist, leading 
us to synthesise 2D images from a custom-built generic 3D shape model for 
augmenting training and testing data. We use the resulting synthesised images to 
profile five existing face recognition algorithms. We show that synthetic data can be 
used to constructively augment training data, as three recognition algorithms have 
significantly increased accuracy for pose-offset data when augmenting the training 
data as compared to real data alone. 

1 Introduction 

By enhancing automated chimpanzee face recognition, we aim to reduce the manual load 

of collecting and analysing field data for estimating endangered species’ population size. 

The elusive and uncooperative nature of chimps limits available data, guaranteeing neither 
frontal, well-lit examples nor sufficient variety of image parameters for realistic 

representation of individuals. Existing chimp recognition requires at least five near-frontal 

images per individual for training and results in more than half of the individuals captured 

in wild datasets being omitted from analysis due to insufficient data [7]. We propose that 

increased robustness to pose and lighting variation can be achieved without requiring more 

real data, and instead synthesising unseen image conditions, which saves manual effort and 

reduces data discarding.  

We demonstrate that automatically annotated synthetic images generated in controlled 

conditions can be used to supplement real data to improve accuracy in non-frontally posed 
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Figure 1: Proposed mixed 2D-3D approach to enhancing chimp face recognition. 

Projecting individual 2D facial textures of chimps gathered from known individuals onto a 

generic 3D model allows for the generation of synthetic appearance hypotheses. We show 

that these can be used to complement sparse sample sets for enhancing the profiling, 

training, and application of face recognition algorithms for chimps given sparseness and 

limited access to samples from real world populations. 

test instances. This allows more complete coverage of image parameter variability for 

training and could allow inclusion of more individuals as fewer real images are required. 

Challenges of transferring synthesis methods developed for humans include the 
impracticality of obtaining a 3D scanned model and the 2D images being of an 

uncontrollable subject – in terms of pose and expression – from an uncontrolled 

environment, with natural lighting. Our synthesis is therefore constrained by limited 

subject information, however remains sufficiently representative to profile recognition 

algorithms and improve robustness to pose variation. 

We make two contributions using synthetic data to explore the effects of pose and 

lighting on five existing face recognition algorithms (detailed in Section 2). Firstly we 

quantify the relationship between the controlled parameters and algorithm accuracy. 

Extensively annotated synthetic test images highlight the limitations of algorithm 

robustness to image variance, identifying the operating constraints and focusing future 

development. Secondly, we increase the generalisation capacity of the algorithms to 

horizontal pose variation. Augmenting available data with synthetic images in unseen 

conditions allows training on individuals in image conditions for which fewer real training 

images are available. We propose a mixed 2D-3D approach: using an approximate 3D 

model to augment 2D datasets for training and testing. We isolate and normalise the least 

complex parameters, working with pose and lighting. An overview is shown in Figure 1: 
we describe our data generation method and present experimental results indicating 

sensitivity to these parameters for all algorithms, and enhance the generalisation capacity 

and increase accuracy by augmenting the training sets.  

2 Related work 

Related work is primarily drawn from human face recognition, though there are several 

major differences for application to a wild animal. These include the limited number of 

available images, their uncontrolled nature and the absence of an anatomically correct 3D 

chimp model. Training set augmentation is in part motivated by the assertion that the 
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accuracy of face recognition in unseen poses is greater if there is a greater variety of poses 

present in the training data [13]. These existing face recognition algorithms are expected to 

have limitations in their representation of chimp face image variability, using limited 

available data and also respond to an increased amount of (synthetic) training data. 

Face recognition algorithms. Four of the five face recognition algorithms considered are 

community-standard techniques developed for human face recognition: Eigenfaces [9], 

Laplacianfaces [4], Randomfaces [10] and Gabor-based Sparse Representation 

Classification (GSRC) [11]. The fifth has been developed specifically for recognition of 

great apes, and has been shown to outperform the other approaches for application to 

chimps [5]. Referred to here as LPP+GSRC, this last method combines Laplacianfaces 

with GSRC and uses Locality Preserving Projections (LPP) for the feature space 

transformation instead of Principal Component Analysis (PCA). Eigenfaces are a well-

studied benchmark, and are known to be susceptible to pose variation, which leads to 

misalignment of the image pixels [13]. It has been reported that most experiments for 

holistic approaches are limited to twenty degree rotations [13], which may indicate the 
approximate limit of applicability of these methods. Eigen-, Laplacian-, and Random-faces 

differ in their dimensionality reduction techniques, but all use simple grey-level pixel-

based information as features. GSRC and LPP+GSRC are based on Gabor features, which 

are known to perform well in face recognition due to their robustness against difficult 

lighting conditions.  

Synthesising for recognition. Synthesised 2D images from 3D models have been used 

successfully to improve face recognition rates for humans in non-frontal poses. 

Synthesising rendered views from scanned 3D models has resulted in increased recognition 

accuracy [1, 2], however relies on prior knowledge of the individuals, requiring their 

cooperation to be scanned. Cylindrical textures have been constructed from five images per 

individual and explored to increase recognition accuracy without a more complex 3D 

structure [8], with overall results showing higher recognition accuracy for a consistently lit 

dataset. Both types of synthetic face representations above have improved recognition 

accuracy with pose variation, and their results suggest lighting control could also be 

informative. Many approaches using 3D information require prior knowledge of the face 

shape or control of training data. Methods exist which use 3D modelling and synthesis 
without the use of scanned images, and with a reduced initial training set requirement. 

These do however usually stipulate conditions on the gallery images used for training, for 

example requiring several images in controlled poses [8]; frontal and profile mugshots 

[12]; or additional sensor data such as the depth maps of 2.5D images [3]. The 

unavailability of head scans or controlled training images for chimps therefore leads us to 

use a generic shape model to approximate the 3D geometry of a chimp’s face.  

We aim to profile and enhance accuracy for the five recognition algorithms without 

controlled images or 3D data, and to separate the effects of lighting and pose by generating 

controlled synthetic datasets from a generic model. 

3 Data, synthesis method and experimental approach 

We perform our experiments using datasets collected from a zoo environment, and our 

synthetic images are generated using the following generic 3D model and method 

throughout our investigation.  

Initial data. Our main dataset consists of 572 chimp face images containing 24 

individuals. The faces are all in a frontal position – only minor vertical pose variation is 
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Figure 2: Example images for two individuals, (one per row). Lighting and pose (limited 

vertical offset permitted) examples are from the main dataset; semi-left and semi-right 

from the additional pose-offset profiling datasets.  

permitted. Each individual is represented by at least five images and the left- and right-eye 

and mouth centres have been manually annotated for all images. This annotation does not 

require an expert, and could be replaced with a detection algorithm in future [6]. The 

following experiments using this frontal dataset have been ten-fold cross-validated by 

initially splitting the whole dataset into ten subsets: each time nine sets are used for 

training; one for testing. Each synthetic image is associated with one image ‘seed’: they 

only ever appear in the train or test set in which the seed is present. An additional dataset is 

used only for profiling the algorithms with respect to manually annotated horizontal pose 

variation. These are chimp faces controlled as above, however allowing moderate left- and 

right-turned poses. It retains topological equivalence, (i.e. retaining visibility of both eyes 
and mouth), and contains 490 semi-left and 506 semi-right images. An example of the 

variation of the image conditions present in both the frontal and manually annotated pose-

offset data is shown for two individuals in Figure 2. The frontal images form the basic 

dataset for baseline testing and from which images are synthesised, and the pose-offset 

dataset provides a manually annotated real benchmark for our testing. 

Synthetic images method. The 3D model has generic shape, a rigid alignment of 

projected textures and a straightforward reflectance model. Pose and lighting are varied 

independently, and synthetic images are annotated with the conditions under which they 

were generated. Each source image used to generate a set of synthetic images is aligned to 

the 3D model using the minimum Procrustes distance based on the three manually 

annotated key-points from the original image. This results in a map that is scale, shift and 

rotation normalised, and provides a simple and efficient texture projection. A simple shape 

model avoids extensive warping of the projected texture. It has Lambertian reflectance, as 

more complex reflectance models developed for human skin [14] are not directly 

transferrable to this species. The same 3D model is used for all synthetic images, allowing 

independent variation of lighting and pose for all projected textures. 

Synthetic dataset creation. Synthetic images are created from each of the 572 images by 

altering the pose and lighting conditions for the 3D model. Horizontal and vertical pose 

angles are each varied between +/-30° in 10° increments. The lighting conditions include 

an ambient setting and can include a spotlight. In the images where the spotlight is present, 
it is at one of three intensities: high, mid or low. Its position is varied between +/-60° in 

30° increments, leading to five different spotlight positions. An example set of synthesised 

images in Figure 3 displays the variation in synthesised images generated from a single 

chimp face input image. Only one parameter is varied at a time, the other parameter 

remains in a ‘neutral’ state of frontal pose or ambient lighting. Rendering under these 

controlled conditions results in 11,440 unique synthetic images: each containing either 

horizontal or vertical pose variation or spotlight exposure or position variation.  

Frontal (main) dataset Pose-offset dataset 
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Figure 3: Example set of rendered images generated from a single texture. Top left: 

original image. Row 1: spotlight position variation (mid-intensity); Row 2: spotlight 

intensity variation; Row 3: horizontal pose variation; Row 4: vertical pose variation. 

Twenty images are generated per texture (discounting the two duplicates: frontal neutral at 

zero degrees pose offset and mid-frontal spotlighting). 

Further images can be synthesised by combining parameter variations, however we 

have restricted the synthetic conditions to explore the effects of lighting and pose variation 

on face recognition accuracy separately. These are used as test images to quantify the 
effects of pose and lighting variance on face recognition algorithm accuracy and separately 

to augment the training sets to enhance generalisation capacity when tested on real frontal 

and pose- offset data.  

Experimental overview. In Section 4 we introduce our face recognition algorithm 
parameters and use real train and real test data only. Section 5 uses synthetic test sets for 

the same real-trained models, to analyse their accuracy at a range of horizontal and vertical 

pose angles and spot lighting conditions. We also present synthetic data in previously 

unseen conditions to the learning stage of the algorithms, using purely synthetic trained 

models on the same synthetic test sets. Finally, in Section 6, models are built using 

synthetically-augmented training data (including the real seeds) to compare to the real-

trained models on real test conditions. 

4 Pre-processing and real data benchmark  

Firstly we establish a benchmark for the five algorithms applied to chimp faces, trained 

and tested on real data only.  

Face recognition algorithms. Real and synthetic images are pre-processed before being 

used to train or test the five face recognition algorithms. Images are aligned by their 

annotated eye and mouth coordinates: firstly by rotation; then warped using a projective 

transformation such that these features are at a uniform position throughout the entire 

dataset; and finally a histogram equalisation is used for lighting normalisation before the 

face is scaled to 64x64 pixels. To obtain a fair comparison between algorithms, 160 

features are used for all applied feature space transformation techniques. For Randomfaces, 

GSRC, and LPP+GSRC we use SRC (Sparse Representation Classifier, where the feature 

vector is represented as a linear combination of training images [10]) for classification and 

a nearest neighbour classifier for the remaining two, as used in the original publications. 

We use five scales and eight orientations for the generation of the Gabor kernels. After 
convolving the input image with the resulting forty Gabor wavelets, we down-sample the 

magnitude-matrix by a factor of eight using bilinear interpolation, and transform the 
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Figure 4: Examples of incorrect recognition instances for real-trained LPP+GSRC. 

resulting feature vector to a 160-dimensional subspace. These face recognition parameters 

are kept constant throughout, and real and synthetic images are similarly processed before 

being used for training or testing.  

Real, frontal data for training and testing. Testing and training using only the real 

images provides a baseline against which we compare our later results for synthetically 

augmented training data. The rank-1 accuracies of the five face recognition algorithms for 

real train and test data (the frontal dataset only) are shown as black-line plots in Figure 6. 

LPP+GSRC achieves the highest accuracy of 90.24%, and GSRC obtains the second 

highest accuracy, 83.74%. As there is limited pose variation present in these images, this 
indicates that the use of Gabor features may well result in improved illumination 

invariance as compared to the pixel based methods. Failure case examples for LPP+GSRC 

are shown in Figure 4 – pose, lighting and expression are represented. This provides 

baseline results indicating the superiority of the custom chimp method LPP+GSRC and the 

Gabor based methods with accuracies for a fairly controlled (subjectively manually 

annotated frontal, well-lit) real dataset.  

Additional real test data with horizontal pose variation. The same real-trained models 

are used to obtain accuracies from the pose-offset datasets. This is to characterise the real-

trained models’ robustness to manually annotated pose variation. The entirety of the offset 

face dataset is used for testing each of the ten cross validated models for each of the five 

algorithms. All five algorithms suffer a significant decrease in accuracy with this 
horizontal offset in pose as compared to frontal – by as much as 25-38 percentage points, 

as seen in Figure 6. We later quantify this drop in accuracy with specific head angles using 

synthetic test datasets. Lighting conditions have not been manually annotated and are 

difficult to objectively quantify in natural images, so we have been unable to similarly 

investigate baseline lighting effects. This significant decrease in accuracy caused by offset 

horizontal poses highlights the weakness of using only frontal images to train the 

algorithms, and the extent of their inability to generalise to pose variation. 

5 Profiling the face recognition algorithms using 

synthetic test data 

The synthetic images and their associated annotations are first used to quantify the 

relationship between the controlled parameters (pose and illumination) and the accuracy of 

the face recognition algorithms. Four synthetic test sets are used: one each for horizontal 

and vertical pose variation, lighting exposure and lighting position variation. In each case, 

every image from the original real frontal test sets is replaced by its seven, three or five 
synthetically varied counterparts. Firstly these test images are used for the real-trained 

models for each algorithm built using the cross validation sets as previously. Then new 

models are trained using similarly constructed synthesised training sets and profiled in the 

same way. 

Pose variance. The algorithms’ accuracy clearly suffers beyond a pose-offset of more than 

ten degrees in either direction, as can be seen in the black-line plots of Figure 5(a) and (b). 

The decrease is more marked in horizontal than vertical pose variation. This is likely as a 
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Figure 5: Ten-fold cross-validated face recognition accuracy (%) over pose variation 

(degrees deviation from frontal) and spotlighting variation using synthetic test sets for five 

recognition algorithms. Black with circle markers are results from models trained on real 

data; blue with crosses are from models trained on relevant synthetic training data. Test set 

variation by row: (a) horizontal pose; (b) vertical pose; (c) spot intensity; (d) spot position. 

result of the real training data being more stringently controlled for horizontal variation 

than it was vertical. Especially notable at a vertical head angle of -30° (tilting downwards), 

the greater accuracy of the LPP+GSRC and GSRC algorithms as compared to others 

suggests a more flexible representation of individuality by using Gabor features rather than 

pixel-based methods, which allows higher accuracy at more extreme pose variation. The 
asymmetric shape of the accuracy curve against vertical variation is interpreted as greater 

invariance to a head tilting downwards than upwards. All five algorithms demonstrate a 

decline in accuracy for poses that deviate from frontal, indicating a limited generalisation 

capacity beyond that present in the training data.  

Illumination variance. Spotlighting adversely affects accuracy across all five face 

recognition algorithms, as seen in the black-line plots of Figure 5 (c) and (d). At low spot 

intensity (still retaining ambient lighting), frontal spot-lit test faces exhibit similar 

accuracies to ambient lit images. Increasing the intensity causes a decline that reflects an 

increasing “white-out” of the facial features, as visible in the example on Row 2 of Figure 

3. Spotlight at mid-intensity and varying horizontal angle with respect to the frontal face 

also indicates declining accuracy at more extreme angles. This is likely due to the 
introduction of shadowed blacked-out patches that become present in the synthetic face 

images, amounting to occlusion of the opposite side of the face from the spotlight. This 

increasing ‘occlusion’ affects the algorithms differently: LPP+GSRC and Laplacianfaces 
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do not suffer as great a decline at the ‘mid-right’ spot position as the remaining three. All 

five algorithms again suffer with increasing intensity and extreme position of spotlighting.  

Summary of synthetic test results. Testing on synthetic data has revealed sensitivities of 

all algorithms to pose and illumination variation. Varying horizontal angle causes the 

sharpest decline in accuracy with pose variation, and spotlighting also reduces accuracy. 

LPP+GSRC and GSRC display greater robustness to vertical pose variation as compared to 

the other algorithms, and LPP+GSRC is generally the best performing overall when faced 

with image variation. 

To address this decline in accuracy with image variation, the following sequence of 

experiments is conducted using algorithms trained on purely synthetic image sets (real 

seed images excluded) with only one parameter varied throughout its entire stated range. 
For example the horizontal-pose model is trained on sets of seven synthetic images in each 

horizontal pose in place of the real training image. Each of the new synthetically-trained 

models (ten for each algorithm, as before) is then tested on its respective synthetic test set 

– by presenting a richer training set, we provide a more dense representation of the 

possible image variability. 

Synthetic train and test. As expected, training using 100% synthetic train and test sets 

produces more uniform accuracies across the pose and illumination variation conditions, as 

seen by the blue-line plots of Figure 5. This indicates that as we present datasets containing 

increased parameter variation for training, declines in accuracy become increasingly due to 

insufficiencies in the algorithms’ underlying techniques for extraction and representation 

of features. Overall, the accuracies are much more uniform across parameter variation as 
compared to the real-trained algorithms - maintaining over 80% accuracy across horizontal 

and vertical pose variations of +30° to -30° for LPP+GSRC - although there remains 

sensitivity to strong spotlighting. This uniformity of accuracy across parameter variation is 

likely due to a good alignment of the variance exhibited in training and testing data: the 

training set is representative of the variance of the testing data. The flattening of the 

accuracies across the parameter ranges indicates an ability (especially of LPP+GSRC and 

GSRC) to generalise and represent the variety present in the training data. It does appear to 

be beneficial to learn from these synthetic images containing unseen or more extreme 

parameter variation, rather than real frontal data alone to achieve greater consistency.  

6 Synthetically augmenting training data 

Finally we present results for the five algorithms’ models built using a synthetically-

augmented training set and tested on the original real datasets; both frontal and offset. 

Algorithms trained on sets augmented with pose-offset synthetic data and tested on real 

data provide a comparison to the real-trained algorithms, indicating the increase by using 

synthesis to populate the sparse data representation. Maintaining the same cross validation 

sets, four synthetic images are added for every training image: one each with +20° or -20° 
horizontal offset or +20° or -20° vertical offset. The resulting training sets are therefore 

80% synthetic data, and are five times as large as the seeding real-only datasets. Models 

are trained on these sets, are then tested as before on the real datasets. The augmentation 

includes horizontal offsets as the aim is to increase the recognition accuracy on offset-

posed datasets, and includes vertical offsets to reflect the moderate tilt variation permitted 

in the original data.  

Accuracy for the horizontal pose-offset real datasets is at least maintained by all five 

algorithms, and increased for LPP+GSRC, GSRC and Randomfaces, as compared to the 
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Figure 6: Rank-1 accuracy for chimp face recognition tested on real data: both the main 

frontal dataset (ten-fold cross-validated) and the horizontal pose offset datasets (SL: semi-

left; SR: semi-right). Black with circle markers is real frontal data trained model; blue with 

crosses is synthetically augmented train data. Note the similarity between the frontal 

accuracies, and the increased accuracies of three algorithms for the semi-offset test data 

when trained on augmented as compared to real, (LPP+GSRC; GSRC; Randomfaces). 
 

real-trained algorithms (Figure 6): the additional synthetic images provided for training 

have led to greater robustness to pose variation exhibited in these offset datasets. The 

accuracy on the frontal dataset is comparable to the real-trained model indicating that the 
inclusion of our synthetic images does not harm any of the algorithms’ performance, not 

reducing the peak accuracy as when using synthetic training data only. As expected, the 

synthesis does not extract any additional individuality from the images: the maximal 

amount of individuality for frontal poses was present in the original training set, so the 

accuracies have remained roughly the same. Illumination is kept ambient throughout, 

though there may be residual lighting differences resulting from the original illumination 

present in the real training images. Additional incorporation of synthetically lit images may 

further increase recognition accuracy. The increased accuracy of the three algorithms 

indicates robustness to pose variation introduced by the synthetic images in place of 

additional data collection and ecologist expeditions. 

7 Conclusions 

We conclude from our experiments that simulating additional training data under different 

pose and illumination conditions does indeed increase the robustness of some face 

recognition algorithms when applied to chimpanzee faces, without introducing additional 

annotation or data requirements. Testing a real-image benchmark in controlled synthetic 

conditions has allowed quantification of greater robustness to vertical pose variation than 
horizontal, which corresponds to the variability permitted in the training set. Experiments 

using purely synthetic data have revealed an ability of the algorithms to generalise beyond 

neutral images to more extreme pose and lighting situations. Finally, generalisation 

capacity has been increased on real test images using synthetically augmented training sets, 

resulting in increased robustness to horizontal pose variation for three of the five 

algorithms. 

Despite already resulting in improvements on real test data, our system has not yet 

reached the limit of its retention of individuality – the synthetic profiling suggests that the 

algorithms are capable of representing horizontally offset poses with greater accuracy still. 

Recommended future work therefore includes determining to what extent augmented-data 

trained models represent the variation present in the underlying real datasets, for example 
by including a greater degree of synthetic pose or lighting variation in the training sets. 

The generic shape model can be verified and optimised by performing similar experiments 

using simple affine plane transformations or more complex shape approximations. Mixed 

LPP+GSRC GSRC Random Laplacian Eigen 
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approaches will also be necessary to move beyond the current topological constraints – for 

example faces for which the eyes or mouth are not present. We intend to further explore 

the application of our technique to one-shot learning: using only one real image of an 

individual to seed synthesis for recognition in a range of image situations. 
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