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Abstract

We address the problem of efficient, globally optimal multi-label image segmenta-
tion. Transforming the discrete labeling problem into a [0, 1]-relaxed binary quadratic
program we are able to solve arbitrary convex quadratic labeling tasks in polynomial
time. Although this guarantees efficiency in a theoretical sense, large-scale quadratic
programs that arise from relaxation can rarely be used for image segmentation directly.
We treat this issue by an adaptive domain subdivision scheme, reducing the problem
to a short sequence of spatially smoothed medium-scale programs, which subsequently
better approximate the large-scale program. Our scheme is globally optimal in terms of
the approximated problem. It allows for near-interactive multi-label segmentation and is
highly accurate even in the presence of strong noise.

1 Introduction

Many image segmentation techniques are based on convex energy formulations over a dis-
crete set of labels. In this context, a wide range of information sources, such as edge [2, 7],
intensity [3, 19], texture [13, 18] and shape [4, 17] can be used for segmentation. Promi-
nent optimization techniques are, for example, level sets and graph cuts in continous and
discrete domains, respectively. We concentrate on the latter kind of domain. Provided the
energy formulation is submodular and we deal with the two-label case, i.e., a segmentation
into foreground and background, graph cuts guarantee efficient estimation of the globally
optimal solution.

The multi-label case is more challenging, even NP-hard in the general setting. There-
fore, fast "solutions" are limited to local optimality, e.g., ot-expansion by Boykov et al. [1]
and the more recent FastPD by Komodakis et al. [9]. For a comprehensive introduction
to the topic we refer to the recent survey by Nieuwenhuis et al. [12]. Circumventing the
hardness, several approaches relax the labeling integrality condition, resulting in linear, e.g.,
in Kleinberg and Tardos [8] and in Werner [20], or quadratic programs, e.g., in Dalmau-
Cedeno et al. [5] and in Rivera et al. [15, 16]. Although all relaxations can be solved in
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polynomial time, quadratic programs seem to be preferable, because they involve less vari-
ables and tend to provide tighter relaxations, cf. Ravikumar and Lafferty [14]. Therefore,
we focus on quadratic relaxation; yet, our approach applies to linear relaxations as well.

Although being efficiently solvable from a theoretical point of view, a direct solution of
the large-scale [0, 1]-relaxed binary quadratic programs that arise from typical multi-label
segmentation tasks is often impractical due to either time or space constraints, or both. We
treat this issue by an adaptive domain subdivision scheme, (re-)constructing a sequence of
spatially smoothed medium-scale quadratic programs which subsequently better approxi-
mate the large-scale program (Section 2). Though our work inherently applies to arbitrary
convex quadratic energies, we restrict ourselves — for the sake of simplicity — to minimiza-
tion of the piecewise constant Mumford-Shah functional. We demonstrate the quality and
performance of our labeling technique on noisy synthetic image data as well as on standard
images from the Berkeley Segmentation Dataset [11] (Section 3).

2 Quadratic Programming

In image segmentation, we essentially try to find a labeling that most likely explains the
image data. This task typically involves at least two competetive sources of information:
a data and a regularization term, which describe the image fidelity and labeling likelihood,
respectively. One popular expression of this kind is the piecewise constant Mumford-Shah
functional [3]

E:Zai/(u—ui)zdx+}/|r\. (1)
] Q[_
Here, we seek for a decomposition of the continous image domain into mutually exclu-
sive labeling segments Q;, which trade off the length of decomposition boundary I" and the
approximation of image intensities # by known reference intensities u; for each label i. Non-
negative weights ¢y and y express the individual importance of the competetive terms.

Let P be the set of domain elements, e.g. pixel, voxel and so forth, and let N be the
set of all neighborhood relations. Let further x/ € {0,1} be the binary variable that indi-
cates whether element j belongs to label i or not. Provided mutual label exclusiveness, i.e.,
Vj: Xix{ = 1, an equivalent formulation of the continous Mumford-Shah functional (1) for
discrete domains is

E=Y Yau-w)x+y Y Y- )

JEP i (jk)eN i

2.1 Problem Relaxation

The minimization of general convex quadratic labeling energies is hard due to the binarity
constraint on the variables. Therefore, we relax the problem into x] € [0, 1], while keeping
the rest of the problem fixed. The relaxed variables may be interpreted as certainty measure
for the labeling decision, where near-binary solutions express higher confidence. Suppose
we are given a soft solution to the relaxed problem then the hard labeling can be obtained by
"thresholding", i.e., taking the most certain label for each domain element.

A solution to the relaxed problem lies in the intersection of the [0, 1]-hypercube with the
affine hyperplanes ¥, x/ = 1, thus in a convex set. For convenience, we assemble all variables

x/ label-wise into a vector x = (x} 23 ...x7"'x")T with p and [ denoting the number of
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domain elements and labels, respectively. As with any quadratic labeling energy, the discrete
Mumford-Shah functional (2) readily transforms into standard form

x'Hx+f'x — min! 3)

Ax=1 “)

0=<x=<1. ®)

Here, matrix H = diag (H, ..., H') contains / symmetric submatrices H' € R”*? along its

blockdiagonal, which subsume the neighborhood relations of Eq. (2) label by label. Vector
f € RP!*1 does the same for the intensity approximation terms of Eq. (2). Element-wise label
affinity is ensured by Eq. (4), where matrix A = [I...I] is a concatenation of / identities
I € RP*P and 1 € RP*! is an appropriately sized one-vector. [0, 1]-bounds on variables are
imposed in (5) by the pointwise operator "=<", comparing x with appropriately sized vectors
0,1 c RV,

This sparse quadratic program (QP) can be solved in polynomial time as long as H is
symmetric positive (semi-)definite and the feasibility region is convex, cf. Kozlov et al. [10].
Although this is efficient from a theoretical perspective, the large number of variables, i.e.,
p -1, render its direct solution impractical for typical segmentation tasks due to time or space
constraints, or both.

2.2 Affine Variable Reduction

Before addressing this issue via adaptive subdivision, we first apply a simple attack to the
problem, reducing the number of variables by p. Note that this is not crucial to the subdi-
vision scheme described hereafter; still, it improved the performance in all our experiments
considerably.

Since one variable per domain element is determined by affinity, i.e., w.l.o.g. the /-th
variable by x/ = 1 — Y'Z! x/, we can easily set up matrix R € R”*?(~1) and vector r € R”'*!

such that e
~[R 1] G) ©6)

reduces the problem to variables y = (x]x7...xI" 11 x7 )T and the constant "1". Now,
Ax =1in Eq. (4), which enforces affinity in the initial QP, is implicitly satisfied if the re-
maining variables satisfy ):f;} x] <1 for each domain element j. Hence, we remove the last
p columns of A to create matrix B € R? *P(I=1) 'wwhich by By <1 reflects all such constraints.

Applying the affine variable reduction (6) to the initial QP (3 — 5) and replacing equal-
ity conditions (4) as mentioned above, we obtain an intermediate QP. This can be further
simplified, eliminating the constant variable "1" by removal of the corresponding entries in
quadratic and linear terms, cf. Gould and Toint [6]. Hence, we are left with G = RTHR and
el = fTR, framed by the affinely reduced QP

y'Gy+ely — min! )
By =<1 (3)
0=<y=1 ©))

For the special two-label case this actually halves the number of variables, merely leaving
us with the x{. Therefore, inequalities in (8) are redundant in this case and can be dropped,
because B is the identity matrix and just expresses y < 1.


Citation
Citation
{Kozlov, Tarasov, and Khachiyan} 1980

Citation
Citation
{Gould and Toint} 2004


4 RAK, KONIG, TONNIES: MULTI-LABEL IMAGE SEGMENTATION

2.3 Adaptive Subdivision

Although reduced, this is still a large-scale progam in p- (I — 1) variables. To resolve this
issue, we propose to approximate the QP (7 — 9) by a short sequence of medium-scale QPs,
stemming from adaptive subdivision refinement steps. Thus, we gradually improve the ap-
proximation quality, while maintaining a comparably small problem.

QP Oracle Assume that an oracle tells us which domain elements are near a border of the
optimal labeling and which are not, i.e., elements inside some labeling segment. Since in
the latter case the QP consistently favors some particular label, it will do so for a locally
smoothed version of our objective function (7) as well. Near to borders of the labeling,
such a spatial smoothing should fade out to zero to keep fine details. A simple hierarchical
subdivision via quadtree, octree and their generalization to higher dimensions can be used to
implement this property.' To keep dimension-independent terminology, we refer to these as
"subdivision trees" or simply as "trees".

Using the oracle information, we recursively subdivide the domain unless a region nei-
ther contains nor touches a border or itself is a domain element. We can express the labeling
problem in terms of these subregions, i.e., leaves in the subdivision tree. Therefore, we de-
fine / — 1 label variables, termed "representatives”, for each of the r regions. We assemble
these representatives label-wise into a vector z € R”(!~ 11 and relate both problem spaces,
i.e., the large-scale element basis y and the regional basis z, by

y=Pz (10)

Here, matrix P = diag (P’, ..., P’) contains [ — 1 submatrices P’ € R”*" along its block-
diagonal, which project values of z onto y. More precisely, P’ superimposes the regional
basis in z, i.e., the representatives, to the element basis in y label by label according to the
subdivision. Applying the superimposition (10) to the large-scale QP (7 — 9) gives

2’PTGPz+e"Pz — min! (11)
BPz <12 (12)
0<z=<1% (13)

where the condensation by PTGP and eTP renders an adaptively smoothed objective func-
tion in the regional basis z. Unless the mild assumption of spatial labeling coherence is
violated, e.g., if we deal with a random problem, this QP is of medium scale, because the
number of regions is typically much smaller than the number of domain elements, i.e., r < p.
This is especially true for higher-dimensional problems.

QP Sequence Dropping the aforementioned oracle assumption, we have to (re-)construct
the subdivision tree alongside with the medium-scale QP (11 — 13). This can be achieved
by short sequence (0, 1,...,i,...,c) of representatives z;, stemming from ¢ + 1 subdivi-
sion refinement steps. Similar to role of z in the superimposition (10), these representatives
superimpose their regional basis to the element basis y by

y=Pz. (14)

Note that quadtrees, octrees and so forth can be defined over arbitrarily sized domains.
2Matrix BP contains duplicated conditions in its rows, which can be removed easily.
3 Applying (10) to (9) formally gives 0 < Pz < 1, which due to P expresses no more than 0 <z < 1.
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Initial Set up and Refine . .
subdivision solve QP subdivision
\ . / . .

regional basis
(a) Refinement procedure outline (b) Subsequent refinement steps

Threshold

/ result \

Figure 1: Overview of our adaptive subdivision scheme. (a) Starting from an initial domain
subdivision, we alternately solve the current QP based on the regional subdivision basis and
refine the subdivision near to labeling borders of the "thresholded" result afterwards. (b)
"Thresholded" labelings for a two-label problem in subsequent refinement steps (row-wise).

Without knowing any labeling border, we initially decompose the image domain up to a
preset tree level ¢ above ground, i.e., above the 0-level where regions equal domain elements.
As outlined in Figure 1(a), we then alternate ¢ + 1 times between two steps. In the first step,
we set up and solve the current approximate QP

zPGP;z;+e'P;z; — min! (15)
BP;z; <1* (16)
0=z =<1, (17)

based on the tree leaves known so far. The solution is then transformed from regional to
element basis via Eq. (14) and "thresholded" to a hard labeling, taking the most certain label
for each domain element. In the second step, leaves of the tree are subdivided if they touch
a border of the labeling. The refined subdivision tree is passed into the next alternation,
allowing us to set up the refined regional basis. If ¢ + 1 is reached, we omit this second step.
Subsequent labelings of the adaptive refinement process are depicted in Figure 1(b).

As the alternation elapses, the number of regions 7; increases, which improves the prob-
lem approximation. Due to the adaptivity of the subdivision refinement, we keep the medium-
scale property, i.e., r; < p for each QP (15 — 17) of the sequence, unless the mild underlying
assumption of spatial labeling coherence is violated. Fully exploiting this property, we con-
struct P;-FGP,-, e"P; and BP; directly without ever setting up the large-scale quantities G, e or
B. This way, we are able to keep space requirements at its lowest while solving the labeling
task.

The only parameter of our adaptive scheme is ¢, the initial tree level. Side lengths of
regions in the initial subdivision are related to ¢ by 2¢. Note that the special case ¢ =0
exactly defines the large-scale QP (7 — 9), because Py is (up to permutation of rows) an
identity matrix in this case. Labeling segments smaller than 2¢ may not be recovered by our
scheme, due to the objective function smoothing. For most tasks this is not an issue, because
lower bounds on segment extents are known beforehand and ¢ can be set accordingly. Often,
this is even an advantage, removing spurious segments from the labeling.

4See Footnote 2.
3See Footnote 3.
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(a) Three-label scenario (b) Five-label scenario

Figure 2: Comparison of our adaptive subdivision scheme to the large-scale quadratic pro-
gram on synthetic image data. First columns: noisy input images, second columns: labeling
of the large-scale QP, third columns: labeling of our adaptive subdivision scheme for ¢ =7

3 Experiments and Discussion

We implemented our approach in Matlab using SuiteSparse for handling of sparse matrices.
We tested several solver packages for sparse QPs and found Matlab’s Optimization Toolbox
to perform best. IBM’s CPLEX package showed similar performance in most cases. All
experiments were realized on a standard 64-bit system with an Intel Core i5 4 x 3.30 GHz
and 12 GB of main memory.

3.1 Synthetic Scenarios

To demonstrate the quality and performance of our approach we implemented two scenar-
ios, which both correspond to the piecewise constant Mumford-Shah assumption. We used
these scenarios for demonstration only as our approach is not limited to this simple labeling
functional. As shown in Figure 2, each scenario comprises two noisy 512 x 512 instances
with known ground truth.

The first scenario is a three-label problem with one background and two foreground la-
bels, having intensities of 0.5, 0 and 1, respectively. In both instances, zero mean Gaussian
noise linearly increases from vertical image borders to the center, having a peak variance
of 0.4. This results in a signal-to-noise ratio near to one at central spots. As second sce-
nario, we implemented a five-label problem with one background and four foreground labels.
Background intensity is 0.5 and foreground labels follow intensities of 0, 0.25, 0.75 and 1,
respectively. Akin to the former scenario, zero mean Gaussian noise varies spatially for both
instances. This time noise increases linearly from left to right with a peak variance of 0.2,
resulting in a signal-to-noise ratio similar to the former scenario.

We parameterized reference intensities of the Mumford-Shah functional optimally, i.e.,
according to the label intensities that were used to set up the problem instances. Regard-
ing relative importance of intensity approximation and boundary length, we found weights
Vi:o; =0.995 and v = 0.005 to perform well independent of the scenario or problem in-
stance. We benchmarked our approach for subdivision levels ranging from ¢ = 7 down to
¢ = 0, whereby the latter means solving the large-scale QP (7 — 9) directly without adap-
tive subdivision. Performance was assessed by run time measurements, while quality was
measured by L1 error w.r.t. the ground truth.
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3.2 Benchmark Results

Regarding the overall labeling quality, our approach performed reasonably well even under
such noisy conditions. As shown in Table 1, £1 errors are below 1.5 % in every problem
instance independent of the initial subdivision level. Although intra-scenario differences are
small, we still observe that circular problem instances are recognized slightly better than
those containing diamonds, which is most likely due to the oversmoothing of corners. In-
creasing subdivision levels, i.e., solving for ¢ > 0, reduced the labeling error in the five-label
scenario. The reason is that the adaptive smoothing of the objective function helped to re-
duce spurious segments, as can be seen comparing results for c = 0 and ¢ = 7 in Figure 2(b).
No such trend can be identified in the three-label scenario. Although a removal of spurious
segments occurs here as well, the effect is outweighted by the oversmoothing of corners for
¢ > 1. Results for ¢ = 0 and ¢ = 7 are shown in Figure 2(a). The results imply that our ap-
proach is stable in the presence of strong noise and even introduces valuable regularization
for ¢ > 0.

Table 1: L1 error for synthetic image data with respect to ground truth in percent.

Initial subdivision level ¢
0 1 2 3 4 5 6 7
circle 0.88 | 0.71 | 0.73 | 0.76 | 0.76 | 0.76 | 0.76 | 0.76
diamond | 1.03 | 0.89 | 1.12 | 1.34 | 1.41 | 1.41 | 1.41 | 1.41
circles 1.11 | 0.54 | 0.53 | 0.54 | 0.54 | 0.54 | 0.54 | 0.54
diamonds | 1.37 | 0.80 | 0.80 | 0.82 | 0.83 | 0.83 | 0.99 | 0.99

Scenario Instance

three-label

five-label

Concerning performance measurements, we observe a significant decrease in run time
as c¢ increases. As shown in Table 2, the peak speed-up factor w.r.t. the large-scale QP is
between eight and nine for instances of the three-label scenario, while it is between four
and five for the five-label scenario. As could be expected, if the initial subdivision level is
increased too far, i.e., ¢ > 5 for the three-label scenario, the computational cost slightly rises
again. Still, even for ¢ = 7 speed-up factors lay between four and five for all problem in-
stances. This implies that starting with an initial subdivision level that is "too coarse" is not
crucial to the performance of our approach. Another expectation is confirmed when compar-
ing inter-scenario performance. Here, run time measurements for the five-label scenario are
significantly higher. The difference in performance is due to the increased number of labels
and due to the difference in lengths of labeling borders, which are substantially longer in the
five-label scenario. Still, the performance measurements show suitability of our approach
for near-interactive image segmentation, even in this demanding scenario.

Table 2: Run time measurements on synthetic image data in seconds.

Initial subdivision level ¢
0 1 2 3 4 5 6 7
circle 837 | 893 | 7.08 | 278 | 1.06 | 0.92 | 1.67 | 1.74
diamond | 8.51 | 9.04 | 7.09 | 2.92 | 1.25 | 1.05 | 1.98 | 2.10
circles 28.7 | 243 | 140 | 558 | 5.87 | 6.39 | 595 | 5.49
diamonds | 289 | 23.8 | 13.7 | 6.47 | 6.04 | 5.78 | 5.82 | 5.88

Scenario Instance

three-label

five-label
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(a) Three-label scenario (b) Four-label scenario (c) Five-label scenario

Figure 3: Comparison of our adaptive subdivision scheme to the large-scale quadratic pro-
gram on standard image data. First row: input images, second row: labeling of the large-scale
QP, third row: labeling of our adaptive subdivision scheme for ¢ =5

3.3 Standard Images

To illustrate its effectiveness on real-world problems, we applied our approach to a number of
images from the Berkeley Segmentation Dataset [11], each sized 481 x 321 pixels. As shown
in Figure 3, our first two images can be interpreted as three-label scenario instances, while
the other two form four and five-label problems, respectively. As with the synthetic image
data, we restricted ourselves to images that roughly correspond to the Mumford-Shah func-
tional (1), which we extended from intensity to color using (squared) Euclidean distances in
RGB color space. Reference color vectors were obtained directly from the image data by
averaging over the rectangular regions marked in Figure 3.

Reviewing the results, we observe semantically reasonable labelings in all cases, inde-
pendent of the initial subdivision level ¢. Comparing results among subdivision levels, only
the "moonlight" instance in Figure 3(a) shows a semantically meaningful alteration of the
labeling for ¢ > 0. Therein, thin parts of the large tree gradually smooth out as the initial
subdivision level increases, leading to the complete removal of the treetop for c = 5. Be-
sides that, the "flower" instance in Figure 3(b) shows minor differences with little semantic
alteration. For example, spurious segments as the less lit petal parts, which were labeled in-
correctly by the large-scale QP, smooth out when adaptive subdivision is applied. The other
problem instances, namely the "rock bed" in Figure 3(a) and the "mountain” instance in Fig-
ure 3(b), do not show any noticable differences among subdivision levels. The results imply
valuable regularization w.r.t. spurious segments for ¢ > 0. Certainly, this has the downside of
smoothing out small, yet meaningful segments too. As mentioned earlier, this is not a prob-
lem in most cases, since lower bounds on segment extents are typically known beforehand
and c can be set accordingly.

Run time measurements for all problem instances are given in Table 3. Akin to the case
of synthetic image data, we notice that our approach significantly speeds up the computation
throughout all instances. For the "rock bed" instance we observe a peak speed-up of about
seven, while it is only around two for the "flower" instance. The difference in complexity
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(border length) of both labelings is most likely the cause of this gap. The other instances lie
midway between the extrema, having peak factors between three and four. If we increase the
initial subdivision level beyond its optimum, e.g., ¢ > 3 for the four and five-label scenario,
the computational cost rises again. Still, the increase in run time is minor, reducing the "rock
bed" speed-up to about five, while factors for the other instances remain almost unchanged.
This again suggests that choosing a level that is "too coarse" is not crucial to the performance
of our approach.

Table 3: Run time measurements on standard image data in seconds.

Initial subdivision level ¢
0 1 2 3 4 5
rock bed 6.29 375 |1 329 | 1.59 | 091 | 1.31
moonlight | 5.76 376 | 294 | 1.71 | 1.62 | 1.78
four-label flowers 1331 | 799 | 8.11 | 6.68 | 7.26 | 7.16
five-label | mountains | 16.65 | 11.12 | 6.40 | 447 | 5.01 | 5.20

Scenario Instance

three-label

4 Conclusion

In this work, we focussed on multi-label image segmentation by convex quadratic energy
formulations over discrete domains. At the example of the piecewise constant Mumford-
Shah functional, we transformed the labeling problem into its binary quadratic programming
equivalent. Since solving the problem is NP-hard in the general setting, we relaxed the bi-
narity assumption, transforming the problem into a [0, 1]-relaxed binary quadratic program.
Although the relaxed problem can be solved in polynomial time, the large number of vari-
ables renders its direct solution impractical due to either space or time constraints, or both.
Adressing this issue, we showed how to approximate the large-scale quadratic progam
by a short sequence of medium-scale programs, subsequently increasing the approximation
quality. Each program originates in a simple, yet powerful refinement step that adaptively
subdivides the image domain according to the labeling border obtained from the preceding
program. The only parameter of our scheme is the initial subdivision level, which directly
corresponds to the length of the sequence. Looking at it from another perspective, our re-
finement scheme subsequently (re-)constructs a medium-scale quadratic program that is an
adaptively smoothed approximation to the actual large-scale program. The initial subdivision
level hence defines the amount of smoothing that is initially applied to the problem.
Experiments on synthetic image data with strong noise show that our scheme yields
high quality image labelings widely independent of the initial smoothing. The smoothing
even introduces additional regularization, preventing the emergence of spurious segments.
Comparing performance to the large-scale program, our scheme consistently speeds up the
computation by a factor of, at least, four to five, while keeping space requirements at its
lowest. Essentially the same holds true for standard image data. Depending on the complex-
ity of the multi-label problem, our scheme outperformed the large-scale program by factors
ranging between two and seven, with the labeling being widely independent of the initial
smoothing. The gain in performance even rendered relaxed binary quadratic programming
near-interactive in our experiments on medium-sized, multi-label segmentation problems.
In summary, we proposed a spatially adaptive multi-label segmentation scheme that is
efficient and globally optimal in terms of the approximated problem. Our approach applies
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to problems of arbitrary dimension and allows for general convex quadratic energy terms,
e.g., incorporating priors for edge, intensity, texture and shape information. Boundary con-
ditions, such as the label affiliation of domain subregions, which are often used in interactive
segmentation, can be implemented easily by supplying additional constraints to the program.
We plan to migrate our approach from general purpose quadratic programming solvers to
schemes that are explicitly tailored to multi-label image segmentation. Exploiting the repet-
itive structure of our system matrices and the simple nature of our constraints, we should be
able to provide highly efficient adaptive solvers for large-scale, multi-label image segmenta-
tion tasks. Furthermore, we seek to transition from discrete to continous problem domains,
making adaptive relaxed binary quadratic programming a relevant option there as well.
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