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Abstract

We provide a solution for the loop closure problem in an image-based mobile map-
ping context. A van drives through a city while taking images in multiple directions. Lo-
cal feature matching in two stages detects when a particular site is revisited, in order to
enforce correspondences between such images, that may have been taken with large time
lapses in between. Our system relies on GPS but does not use odometric information.
We extend the original image-to-image matching approach to a pose-to-pose matching
approach, combining several images and achieving robust scene matching results. Pa-
rameter optimization is followed by extensive experiments. Our pipeline, which facil-
itates parallel execution, reaches matching rates higher than those reported for typical
state-of-the-art algorithms. We also demonstrate robustness to odometric inconsistencies
resulting from poor prior model build-up.

1 Introduction
Image-based mobile mapping is the process of collecting geospatial information from a mo-
bile vehicle and combining this data to build a model of the surroundings. The results can be
used in a wide variety of applications, from city modeling and road mapping to emergency
response planning. We make use of a van that is equipped with several cameras, that are
organized in stereo pairs (one pair looking forward, one backward, and two from the side).

This paper deals with the recurring issue of drift affecting triangulated points over time.
A van equipped with stereo cameras collects recordings in an urban environment, simultane-
ously monitoring GPS information. Using Structure-from-Motion (SfM) techniques [8], the
position of the van and the 3D coordinates of the surroundings are retrieved. The determi-
nation of the translation and orientation of the van’s position is recursive: a slight drift can
gradually build up to flawed localizations. One can rely on the GPS information to perform
adjustments, but its accuracy and availability are not always adequate to yield a model with
high precision. Yet, visual loop-closing – recognizing that a location is revisited – may help
mitigate the issue. Indeed, some sites of the scanned area are bound to be visited multiple
times, e.g. dead-end streets, crossroads or access roads. In our current system, model frag-
ments that originate from different recording moments but actually correspond to the same
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physical environment are not combined nor treated differently. This paper adds such loop
closure.

Several things have to be kept in mind for loop closure. Since it concerns time-distant
recordings, environmental conditions can have changed substantially: lighting conditions,
weather, traffic (severe occlusions) and other temporary elements in the scene may all have
changed. On top of this, also the viewing angles most probably differ quite a bit. Avoiding
false positives is a must.

Outline of the proposed technique. Our approach has two main components. First, sites
revisited over time have to be detected. This is simplified by clustering the GPS informa-
tion while taking its inaccuracy into account (see 3.1). Within those clusters, van location
pairs are selected that are expected to have produced overlapping views, i.e. locations that
are close to each other. We use a Naive Bayes (NB) matching framework for this purpose
(see 3.1). Since this is a computationally intensive operation, one focus is on speeding it up.
The second subproblem is that of finding re-occurrences of the same physical points in the
images coming from the location pairs. We start by single pose matching (see 3.2.1) and
match points using the SURF [1] detector and descriptor among views taken from the same
van position. Correspondences between stereo views are backprojected to 3D points, which
results in a point cloud for every van pose. In a subsequent cross-pose image matching,
the images from different van locations are matched, again using SURF, and matches are
accepted if they correspond to points that were triangulated earlier (see 3.2.2). This step
introduces putative links between the point clouds for the two locations. PROSAC [2], a
prioritized RANSAC algorithm, is applied to robustly and efficiently calculate the transfor-
mation between the two point clouds. A set of correspondences results that links time distant
recordings. The success of the cloud matching determines whether a loop closure has been
found.

Hence, rather than matching single images, we match 3D point clouds. This said, in
order to get there, we still have to solve features under wide baselines. Each 3D point is
described by features from the originating images.

Structure of the paper. Section 2 revisits techniques for mobile mapping and feature de-
tection and description. Section 3 describes the application in more detail, where the two
aforementioned subproblems are elaborated on. We also focus on measures to reduce the
computational load. Section 4 describes experimental results and the effects of the accelera-
tion measures are investigated. Some perturbed mock-up datasets are tested to challenge the
system. After an illustration of the actual embedding of our approach into the current mobile
mapping system, the paper is concluded in Section 5.

2 Related Work

2.1 Mobile Mapping & Scene Stitching
A general description of the problem of mobile mapping, solution strategies and applica-
tions is given in [17]. Loop closure can be crucial if one want to produce highly accurate
models. The FAB-MAP algorithm, a s-o-a topological mapping method [3] uses a bag of
words approach to model locations in an appearance-based manner. By assigning a proba-
bility of an observation having come from a previously visited place, a fast yet robust system
is developed that enables real-time mobile mapping. However, only 40% of re-occurrences
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are detected, and these detections highly depend on the amount of occlusion and the driving
direction. The same limitations apply to [21], that uses a holistic descriptor and an efficient
matching scheme for recognition. Even stronger assumptions are made here, since the holis-
tic BRIEF descriptor is sensitive to scaling and translation. FAB-MAP has been extended
using graph theory [16] and faster implementations have been designed [4, 6].

CAT-SLAM [12] and its graphical extension CAT-GRAPH [13] augment this sequential
appearance-based place recognition with local metric pose filtering to improve the frequency
and reliability of appearance-based loop closure. The method shows similarities with FAB-
MAP, but uses odometric information from previous results in order to increase the number
of correct loop closures.

Both FAB-MAP and CAT-SLAM deliberately avoid to build a 3D map and settle with a
binary decision, i.e. whether or not the location was visited already. In the envisioned appli-
cation however, it is desirable to have a 3D reconstruction to better handle correspondences
over longer time lapses. An approach closer to this goal, by directly attempting to match
local features among images, is described in [18, 19, 20]. Typically, a post-processing step
that prunes false positives is performed. The epipolar constraint is used in [18, 19]. This con-
straint does not completely guard against false positives however, since a correspondence in
one image is only bound to lie on a line in the other image. [20] resorts to another, rather
intuitive spatial consistency measure to check the consistency of matches.

2.2 Feature Detection & Description

In several stages of the algorithm, image matching is performed. Searching for discrete im-
age point correspondences in a local manner mainly includes three steps [1]: interest point
detection, description and matching. A detector should have high repeatability. The descrip-
tor ought to be as distinctive as possible and robust to noise and geometric and photometric
deformations. These vectors are then in a last step matched and putative correspondences
are retained. Matching can follow several metrics and efficient implementations exist [15].

Following [14], Hessian-based detectors [10] are more stable than their Harris-based [7]
counterparts. At the descriptor side, the Scale-Invariant Feature Transform (SIFT) [11] is a
very popular descriptor due to its high degree of distinctiveness and computational efficiency.
The Speeded-Up Robust Features (SURF) [1] descriptor is a further speed-up of the SIFT
descriptor without compromising performance, with box-filters replacing the Difference-of-
Gaussians (DoG).

3 Scene stitching

Globally, consider a set of evenly spaced locations - also called a pose set hereafter - {pi}
np
i=1

with np the number of locations or ‘poses’. The set that comprises the pose set indices is
denoted P. Each pose pi∈P is related to a rotation and translation with respect to the global
coordinate system. An example of the poses’ translations that are derived from a single
recording is shown in Fig. 1, where each pose has a different color.

The van is equipped with eight cameras {c j}7
j=0, i.e. the four aforementioned stereo pairs

{c0,c1}, {c2,c3}, {c4,c5} and {c6,c7}. The cameras are calibrated with respect to each other
(internally and externally). A single recording moment at a certain pose thus relates to eight
images Ii, j, where i ∈ P denotes the pose index and j is the camera index.
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3.1 Candidate Pose Pair Detection
Region of interest extraction. Subsets of the pose set, so called routes R ⊂ P, that occur
around the same van locations but from van passages at sufficiently different times, are col-
lected from the pose set. A route corresponds to one such different van passage. The search
radius around which the system scans, depends on the maximal drift in the model and was
set to 15m. In one detected cluster Cq = {Rk}nr

k=1 for the current query pose q ∈ P, all pos-
sible nr−1 route pairs with the route that is found first are made. No need to say that nr is
typically low, like 2, sometimes 3 or more.

Pose pair selection. From a route pair (Rk,Rl) one pose has to be selected from every route,
resulting in a cross-route pose pair: CRPP =

(
pr̃k , pr̃l

)
, where r̃k ∈ Rk, r̃l ∈ Rl are well-

chosen pose indices. For a quick pruning, one could resort to the pose information to only
take into consideration poses that are very close. Since we want to rely minimally on the
actual extracted pose information however, all poses from one route should be checked with
all poses from the other route in all possible orientation settings, in order not to miss out on
any possible match; an enormous task.

Figure 1: An example path cor-
responding to a set of poses re-
sulting from the SfM algorithm.

In order to find a good candidate pose pair quickly,
a Naive Bayes framework was developed. Exhaustively,
for all images Irk, j and Irl , j linked to the poses, a severely
downscaled image (154× 203 pixels) is described using
NNB 64-dimensional Upright SURF descriptors [1]. For
every possible pose combination, matching is performed
for every possible image combination. If one thus has |Rk|
poses in the first route1, |Rl | poses in the second route,
and 4 cameras per pose2, this means 16×|Rk|× |Rl | pairs
must be matched, before a decision can be made on which
CRPP is the most promising to continue with. The pose
pair and specific orientation that globally obtains the best
similarity score is denoted CRPP and is selected for fur-
ther calculation.

3.2 Cross-route pose pair matching
When a suitable CRPP is obtained, the effective correspondence search between the images
linked to pr̃k and the images linked to pr̃l is initiated. We have the stages earlier introduced:
single pose cloud construction, cross-route image matching and PROSAC robust estimation.

3.2.1 Single Pose Cloud Construction

The poses in the CRPP =
(

pr̃k , pr̃l

)
are treated separately at first. In the following section,

pr̃ will be used as the pose in question.
Using the four stereo camera pairs that were introduced earlier, accurate positions of

physical points surrounding pr̃ are extracted. The downscaled images are subjected to in-
terest points detection and description, again using the SURF scheme [1]. The resulting
descriptors for every stereo pair are matched: Ir̃, j↔ Ir̃, j+1, for j = 0,2,4,6.

1|X | denotes the cardinality or size of the set X .
2The number of calculations is reduced by a factor 4 when only considering one image of each stereo pair instead

of going through all cameras. The increase in accuracy is minimal, since the overlap between the images of a stereo
pair is substantial.
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Three pruning methods are built in. First of all, crossmatching is performed as in the NB
framework, whereby it is demanded that a match from left to right image is consistent with
the corresponding match from right to left image.

Another pruning is built in based on the Nearest Neighbor Distance Ratio (NNDR)
method as in [9, 11]. This condition translates the demand for a certain distinctiveness of the
keypoint descriptors and easily rules out ambiguities that can occur in repetitive patterns for
example. Here, we fix the NNDR threshold to 0.8.

Finally, another intervention is pursued to increase the confidence in the tentative matches.
Since the calibration parameters of the cameras are available, an epipolar constraint is im-
posed. To relate two cameras that are close, the fundamental matrix F is used. For a pair of
proposed corresponding points xci and xci+1 the following must thus hold (with ε ≈ 0.01):
x>j,ci+1

Fci,ci+1x j,ci < ε , where Fci,ci+1 is directly found from the cameras’ projection matrices.
Triangulation of the surviving correspondences is straightforward, using the camera cal-

ibration and the algorithm provided in [8]. The result is a point cloud of physical points that
denote distinctive elements of buildings, street features and other urban elements, originat-
ing from 8 images and 4 matching procedures in total. Only four stereo pairs are available,
and only the regions that are contained in both fields of view of a stereo pair can result in
triangulation. The result is a point cloud with irregular occupancy around the van.

To augment the point cloud with even more points, one can resort to the previous and
the next poses of the van on the same route. Again using the three tests, matches are tracked
between images Ir̃, j of the current pose pr̃ and camera c j and Ir̃+1, j of the next pose pr̃+1 and
the same camera c j. Similarly, this is done between Ir̃, j and Ir̃−1, j of the previous pose in the
same route. Next pose and previous pose matching are each carried out for four images, i.e.
one image for each stereo pair:

Ir̃, j↔ Ir̃+1, j, Ir̃, j↔ Ir̃−1, j, for j = 0,2,4,6 (1)

The epipolar check can still be carried out, since the drift error in translation and orientation
between two subsequent poses is negligible. The result of this extra matching step is a
more uniform point density of the cloud around the van. The computation of such a denser
cloud however is time expensive and should only be calculated when needed, i.e. when a
transformation between two clouds (see 3.2.2) was not found.

3.2.2 Cross-Pose Image Matching

Now that there is geometrical information available for pr̃k and pr̃l separately, the two images
from the different routes, are now matched to each other:

Ir̃k, j ↔ Ir̃l , j′ , for j = 0,2,4,6. (2)

where j′ is determined based on the NB framework results and now informs the systems
on the image combinations that should be matched. Since this orientation led to a minimal
score in the NB scheme, it is safe to assume that the matching should follow this line of work.
In fact, the NB scheme used a very coarse, fast but exhaustive cross-route image matching
scheme, which is now done carefully.

The matching is again performed by using the SURF descriptors. In this point of the
algorithm, no further feature extraction is needed since this has already been done to con-
struct a cloud around each pose. To be able to relate image features to 3D points, only these
features are retained that actually led to a triangulated point during the cloud construction.
These features previously survived the three tests, proving that they were distinctive on a
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Figure 2: Different pipeline steps for an example with a high degree of occlusions and po-
sition discrepancy. Left: within correspondences for two poses after the three tests. Right:
cross-pose image matches after PROSAC. Note that these are not the only correspondences
found; also for other image combinations matches are tracked.

same-route basis. Matching the features that have 3D information associated, on a cross-
route basis is performed by means of the crossmatching test as before as well as the NNDR
test. In this stage, using the epipolar constraint does not make sense, since the purpose of the
entire algorithm is to detect inconsistencies between poses that relate to very distant record-
ings. We cannot trust on the geometric relations between cameras linked to two such poses
and we compute arrays of putative cross-route image correspondences (CRIC) containing
3D information results. It should be noted very clearly that the resulting CRICs are a collec-
tion of the 4 matching algorithms defined in Equation (2). The typical view-view approach
is extended to a pose-pose approach.

3.2.3 PROSAC robust estimation

For the remaining putative CRICs, that represents putative links between the two single pose
point clouds, a RANSAC scheme is run [5] that removes false connections (see Figure 2).
Since scores are available from the NNDR test, a prioritized RANSAC scheme can be de-
vised. We use the Progressive Sample Consensus (PROSAC) [2] algorithm. The PROSAC
draws samples from progressively larger sets of top-ranked correspondences and typically a
speed-up of two order of magnitude is expected as stated in [2] with respect to RANSAC.

If a transformation is found, its inliers are denoted true cross-route correspondences and
all information that lead to the determination of the 3D points are reintroduced in the bundle
adjustment system. Accuracy is expected to increase substantially by adding this informa-
tion. The earlier remark that false positives are to be avoided at all cost is respected due to
the continuous pruning out of bad results and the RANSAC scheme.

4 Experimental Setup & Results
Dataset & Test Bench. Since it concerns a system-specific application, a specialized dataset
is devised that comprises a substantial amount of images from an urban environment. Two
different recordings were tested. The images are 618×814 pixels. The first dataset, GRB_03_4
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# #DNB Descriptor INC Matching Rate Comp. Time
1 100 SURF-128 7 44/49 89.8 % 1232 s 100.0%
2 100 SURF-128 3 45/49 91.8 % 887 s 72.0%
3 20 SURF-128 7 40/49 81.6 % 1114 s 90.4%
4 20 SURF-128 3 43/49 87.8 % 746 s 60.6%
5 100 SURF-64 7 46/49 93.9 % 1312 s 106.5%
6 100 SURF-64 3 48/49 98.0 % 782 s 63.5%
7 20 SURF-64 7 45/49 91.8 % 1224 s 99.4%
8 20 SURF-64 3 45/49 91.8 % 624 s 50.6%
9 100 USURF-128 7 45/49 91.8 % 1188 s 96.4%

10 100 USURF-128 3 46/49 93.9 % 724 s 58.8%
11 20 USURF-128 7 46/49 93.9 % 1073 s 87.1%
12 20 USURF-128 3 46/49 93.9 % 568 s 46.1%
13 100 USURF-64 7 48/49 98.0 % 1259 s 102.2%
14 100 USURF-64 3 48/49 98.0 % 592 s 48.1%
15 20 USURF-64 7 47/49 95.9 % 1177 s 95.5%
16 20 USURF-64 3 47/49 95.9 % 483 s 39.2%
17 10 USURF-64 3 42/49 85.7 % 534 s 43.4%

Table 1: Investigation of time decreasing techniques on GRB_03_4 dataset. #DNB stands
for number of descriptors used for NB matching. Descriptor provides type and dimension of
the descriptor. INC shows if the incremental approach is enabled. Matching rate is given in
ratios and percentages, i.e. the amount of stitched scenes out of the total number of extracted
CRPPs. Computation time is provided in seconds, relative to the Setup 1, the baseline.

(5531 poses), was used to investigate the different time decreasing measures and tuning the
method. The second one, GRB_02_1 (14999 poses), was used to test the method and to
build up the mockup examples. Prior to calculations, the poses are subsampled to a subset
with approximately evenly spaced (1m) poses. Experiments were carried out using a desktop
computer equipped with an i5-3570 3.40Ghz processor.

Time-decreasing techniques. Table 1 summarizes the results that justify the time-decreasing
techniques proposed throughout. Lowering the number of descriptors used for Naive Bayes
Matching typically represents a 15% decrease in computation, while the drop in matching
rate is not substantial, as shown for image classification in [22]. The use of shorter descriptor
lengths and the simpler Upright SURF version3 during the cloud construction and the CRPP-
matching have a positive impact on timing as well as results. The incremental method that
does not directly perform triangulation using pprev and pnext in every route has a highly posi-
tive effect on computation time: cross-route image matches are already found when a sparse
cloud of irregular density is queried. On top of this, detection rate is often even higher for the
incremental approach, revealing that overloading the clouds with points can reduce the de-
tection probability for the cross-pose image matching and subsequent RANSAC procedure.

Incremental USURF-64 using NB20, i.e. rotation-variant Upright SURF using 64 di-
mensional feature vectors and 20 descriptors in NB matching, proved to be a good basis for
validation. To further research if this setup allows a further drop of the number of features
for NB, setup 17 was tested, but the running time increased (more often a richer cloud had
to be extracted) and the performance degraded as well.

To reveal where the most computation-demanding steps in the algorithm are located, a
breakdown experiment was performed on two setups, namely setup 13 (top-performing yet
time-expensive) and 16 (well-performing and fast). The results of these setups, on dataset
GRB_03_4, are shown in Figure 3. Two different break-ups are treated, of which the second

3SURF where the rotation invariance is disabled. This is a wishful property, since the number of ambiguities
decreases in this setting.
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Figure 3: Computation time break-down in two categories. Left: absolute values, right:
percentual values. The upper two bars denote the division in main steps. The lower bar goes
further into detail, revealing the bottlenecks.

# #DNB Descriptor INC ANC Matching Rate Comp. Time
1 100 USURF-64 3 7 213/234 91.0% 2988 s 100.0%
2 20 USURF-64 3 7 220/234 94.0% 2307 s 77.2%
3 100 USURF-64 3 3 61/72 84.7% 904 s 30.3%
4 20 USURF-64 3 3 55/64 85.9% 695 s 23.3%
5 100E USURF-64 3 7 226/234 96.6% 3409 s 114.0%
6 20E USURF-64 3 7 230/234 98.3% 2563 s 85.8%
7 100E USURF-64 3 3 61/65 93.8% 1055 s 35.3%
8 20E USURF-64 3 3 63/65 96.9% 898 s 30.1%

Table 2: Validation of the determined setup on GRB_02_1 dataset. We report as in Table 1,
and for another time-decreasing method is introduced, namely the anchoring, denoted ANC.
E in the #DNB property designates the exhaustive approach.
one is the most unraveling. It seems that image loading and feature computation, for the NB
step as well as for later image description, and retriangulation (in non-incremental mode)
form major bottlenecks; they account for 77% of the processing time for the fast Setup 16.

Validation. The determined setup is applied to a different, longer dataset (GRB_02_1) to
confirm our conclusions. Specifically for the envisioned application, there is no need to have
loop-closing information every several meters in order to greatly enhance accuracy. For this
reason an extremely simple yet effective measure was introduced, that neglects the clusters
following a detected cluster within a reasonable distance (in experiments set to 50m). The
number of treated clusters reduces, and thus the overall computation time drops significantly.
Results of this approach are added to previous measures, with the different setups summa-
rized in Table 2. As an addition, to check whether matching rate will increase if several NB
ranked combinations are checked if for the top scoring candidate CRPP no matching was
found, 4 setups were added. We can conclude that the selected setup is justified, and that
exhaustive matching, improves the matching rate but at the cost of increased running time.

Figure 4: Perturbed posesets around a crossroads region. From left to right: the original ex-
cerpt, poseset perturbed by translation, by combined translation and rotation, and by skew-
ing, where the translation is perturbed increasingly from a certain pose on, mimicking the
effects of very substantial drift. The red markings show the endpoints for the perturbation.
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(a) Robustness to perturbations in MSE terms on
three representative mock-up examples: cross-
roads (blue line), same direction (green) and dif-
ferent directions (red).

(b) Example of system embedding, where all the
matched points are visualized in red. The van’s
path is drawn in black.

Figure 5

Mockup Examples. The dataset that was worked with already has a high degree of accu-
racy already; the SfM algorithm did a good job without loop closing techniques. However,
to fully test our algorithm and to prove that it is, apart from a very low GPS dependency,
robust to many types of deformations, three excerpts from the database (crossroads, con-
catenating routes in both same and opposite direction) were perturbed, as demonstrated in
Figure 4. Thus, for two overlapping routes/posesets (distant recordings, therefore with dif-
ferent images and estimations for their poses and camera parameters), only one poseset was
artificially perturbed to mimic the SfM drift in the estimated parameters. For translations a
shift in x-coordinate was applied, for the rotations the posesets were turned around an anchor
pose and for the skew, the translations of the pose were perturbed to mimic a substantial drift.
On the perturbed mockup our procedure was used to restore from the perturbation by finding
the local transformation from one poseset to the other. Then we computed the errors between
the original poseset before applying the perturbation and the restored poseset. The results
(see Figure 5a) show that mean square error (MSE) is not dependent of the applied trans-
formation. However, for the most challenging crossroads excerpt, the MSE is considerably
larger. No systematic error is apparent from these tests.
System embedding. Figure 5b shows all resulting sets of CRICs for an entire recording in a
suburban American area. One clearly sees that almost everywhere the van passed more than
once the system was able to extract a high number of matches (marked in red). When routes
cross, a limited number or no matches are found. The blue circle marks a site with many
trees. The associated lack of distinctiveness for the features extracted from this site leads
to few found correspondences. The integration of our loop closure results into the current
bundle adjustment algorithm is expected to increase the accuracy of the system.

Discussion. Overall, it can be stated that our system is robust to noise (see Figure 5a),
while achieving high matching rates (see Figure 2). The system outperforms state-of-the-art
approaches, but uses the prior built map for quick candidate selection which thus demands
careful comparison. Furthermore, as shown in Figure 3, the major bottleneck in the system
is feature extraction, both in the NB matching step and in the image matching itself. Finally,
the processing time is high, but the addition of this technique is expected to leverage a time
decrease by two orders of magnitude compared to the original bundle adjustment of the
system. The number of false positives was zero for all experiments.
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5 Conclusion
In this paper, an original approach to the loop closing problem was proposed. By extending
the typical image-to-image matching scheme to a general pose-to-pose matching technique,
the matching rate showed to increase substantially in numerous experiments. Comparison
with state-of-the-art techniques is however not straightforward because of differing datasets.
Several time-decreasing steps were thoroughly researched in order to lighten the system
requirements, where considerable decrease can be obtained without compromising perfor-
mance drastically. Future work is to construct a confidence measure in order to inform the
bundle adjustment system of the reliability and precision of the information. The feature
extraction was found to be a bottleneck, and alternative techniques for description in the
Bayesian framework need to be researched. Finally, further thorough validation of the de-
veloped technique must be carried out.
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