Anatomical Structure Sketcher for Cephalograms by Bimodal Deep Learning
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Bimodal DBM joint hidden layer connecting both modalities. Given twodaldties, the
patches/p and shape contouss, the joint distribution
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The partition functions are removed for clarity. The tefpis the ener-
gy between the joint hidden lay&f®) and the upper hidden layers with
respect to the patch and contour modalithigfl) and thfl), and

Figure 1: Flowchart of our cephalogram sketcher system.
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Lateral cephalogram X-ray (LCX) images are essential toigeopatient- Ej=-— Z ak h(K) 72 z aﬁ]flh(Kfl) + z Z Ry Kmp (K)
specific morphological information of anatomical struetur The auto- 7 ' m . ' !
matic annotation of anatomical structures in cephalograassbeen per- 3)

formed in the biomedical engineering for nearly twenty gedflost sys- |t s intractable to learn the parameters by maximizing theva likeli-

tems only handle a portion of salient craniofacial landmeek[1, 2, 3]. hood. Alternatively, the problem can be solved by mean<ielwhich

Although model-based methods can produce a full set of m&a{ke 7], minimized the KL-divergence(h|vp,\t) [6]. The model parameters are

the pattern fitting can fail to converge in blurry images.sithallenging initialized by learning the layer-wise stacking of RBMs.

to annotate LCX images with high fidelity. For the purpose of contour sketchingy [vp, 9 ) needs to be solved.
In this work, we propose a novel cephalogram sketcher systemn DBM, when given the observed modality, the missing modality;

shown in Flg 1 for the automatic anatomical-structure #aim, espe- can be generated by a|ternating Gibbs Samp"ng. Specﬁ’iggu;erves as

cially for the blemished images due to structure overlag@and device- input, while all the hidden units are initialized randoméyd. set at zeros

SpeCifiC distortions during projection. FirStIy, we intcaxd an hierarchical in our Case). In order to decide when to Stop the iterationmasure a

extension of a pictorial model to detect anatomical stnestu Secondly, score of the contour predication by the distance betweemgha image

the bimodal deep Boltzmann machine (DBM) is employed tocskéte patches and the reconstructed ones.

structure contours. Specifically, the contour sketchezdadvantages of

the path in the DBM to extract the contour definitions from plaéch tex- P(vt|vp, &) O exp(— HVp - V?Odel ) ; (4)

tures by alternating Gibbs sampling. odel: ) ) )
Given a cephalograrh the structure definitio, and the parametersVherevig°““'is the reconstructed image patch features, i.e. the HOG his-

© = (©q,©r) with respect to the intra- and inter-layer correlationg; tf°9rams in our system, anglis the input.

posterior probability distribution according to the Bayet is defined as  'MPlementation of this method is described in the paper. doclu-

P(S1,0) O P(1|S.©)P(S©), whereP(S0) is a shape prior distribution.Sion IS that the sketcher asan integration _o_f the hieraatpictorial mpd-

P(1|S,0) is the image likelihood given the hierarchical architeetand el and the deep Igarnlng can infer the posmons and contdansatomical

the model parameters. The likelihood can be factorized awdupt of Structures effectively, and robust to noisy data.
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¢(s) is potential of local structures computed based on the ¢ofiiEVM

classifiers as in [4], ang(s) = (1+exp(A fi(s) +Bi)) %, wheref; is

the output of the linear SVM classifier for tiyg kind of structures. A

linear SVM is trained for each kind of structures respetyiv@here the
parametersd; andB;, are predefined.

When given multimodal data, the deep architecture can laujtint
representation by virtue of hidden layers from each mogalibe shared [5] " / ! X '
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