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Abstract

This paper proposes an adaptive joint kernel regression framework for single-image
super-resolution (SR). The basic idea is to regularize the ill-posed reconstruction problem
using a regression-based prior that exploits both local structural regularity and nonlocal
self-similarity of natural images. To this end, we first generalize the nonlocal means
method in the local kernel regression framework, and then extend such generalized re-
gressors to the nonlocal range. Combining them into one single regularization term leads
to a joint kernel regression scheme that simultaneously exploits both image statistics in a
natural manner. We further propose a measure called regional redundancy to determine
the confidence of these regression groups and thus control their relative effects of reg-
ularization adaptively. Adaptive dictionary learning and dictionary-based sparsity prior
are also introduced to interact with the regression prior for robustness. Quantitative and
qualitative results on SR show that our method outperforms other state-of-the-art meth-
ods, and can also be applied to other inverse problems such as image deblurring.

1 Introduction
Single image super-resolution (SR) refers to the task of estimating a high resolution (HR)
image from a single low resolution (LR) image. SR methods can be broadly categorized in-
to three classes: interpolation-based methods, reconstruction-based methods, and example-
based methods. Interpolation techniques (e.g. [12]) are simple and fast but tend to blur the
fine details. The reconstruction-based methods (e.g. [8, 16, 17, 23]) often incorporate prior
knowledge and additional information with the reconstruction constraint to obtain effective
solutions because SR is an ill-posed problem. Then how to design a good image prior is an
essential issue, and image priors are usually formulated as constraints or regularization terms
in the optimization function. The example-based methods (e.g. [7, 8, 9, 10, 21, 22]) halluci-
nate detailed textures from a training dictionary of LR/HR image or patch pairs. However,
such methods strongly rely on the chosen dictionary for satisfactory results.

In this paper, we focus on learning good image priors and robust dictionaries for SR re-
construction. Recently, natural image priors have been extensively studied in the literature.
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(a) (b)

Figure 1: (a) Graphical illustration of the adaptive joint kernel regression, where the dashed
boxes of different sizes indicate the regression groups with different confidence given by our
regional redundancy measure Ri (bigger box has larger Ri). The LR image is corrupted with
a Gaussian blur (σb = 2) and Gaussian noise (σn = 5), and the reference patch in each group
is marked as “R”; (b) Block diagram of our SR algorithm based on joint kernel regression.

The gradient profile prior is developed in [17] to preserve sharp edges, but is limited in mod-
eling the visual complexity of real images. Yang et al. [21] explored the sparse representation
prior of image patches with respect to a properly chosen dictionary, which usually suffers
from inconsistency between neighboring patches. Later, priors of image self-similarities and
local/nonlocal regularities have been exploited for more robust estimation. In [8], the nonlo-
cal self-similarity properties both within and across spatial scales are fully exploited, but the
local regularities are neglected. Zhang et al. [23] improved by assembling the Steering Ker-
nel Regression [18] (SKR)-based local prior and Nonlocal Means [1] (NLM)-based nonlocal
prior, whose connection, however, remains loose.

Another trend in SR is to combine the reconstruction- and example-based methods into a
unified framework to produce more compelling results. For example, the dictionary-induced
priors learned from example images are introduced into the regularized reconstruction in [5].
In fact, SR can be viewed as a regression problem aiming to map LR images to target HR
images. Then in this sense, dictionary-based methods do regression using bases learned from
an external database or the input image itself, while regression models directly estimate HR
pixels (kernel learning) or regularize the estimator. As for the regression models, exam-
ples include SKR [18], Gaussian Process Regression (GPR) [9], Kernel Ridge Regression
(KRR) [10] and Non-Local Kernel Regression (NLKR) [22], and they can all be effectively
exploited as a prior for SR reconstruction. Among them, NLKR is promising to overcome
the drawbacks of literature [23] by unifying the local and nonlocal priors into a single mod-
el in a complimentary way, but it discards the further potential enabled by the higher-order
statistics. Besides, it needs a separate deblurring process which is ill-posed by itself.

When it comes to the dictionary-based regression, preparing an appropriate dictionary
is nontrivial. Traditional choices are the analytically designed wavelet bases, but they are
lacking in flexibility to a given image. Other methods instead learn a dictionary (usually
over-complete) from an image database using techniques like K-SVD [13] and Principle
Components Analysis (PCA) [6]. These methods often enforce sparsity under the dictionary
representation. However, the flexibility is still limited since the dictionary is only learned to
perform well on average. Online dictionary learning from the given image offers a promising
alternative to exploit rich information contained in the input [2, 5]. One drawback is that the
learning process easily runs into the risk of building dictionaries with many artifacts under
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image corruptions (e.g. noise).
In this paper, we propose an Adaptive Joint Kernel Regression (AJKR)-based SR al-

gorithm that combines the local and nonlocal image priors in a coherent framework. Our
approach is different from others in several ways: 1) we combine a set of NLM-generalized
kernel regressors, which are more consistent with our nonlocal collaborative framework; 2)
the proposed regional redundancy measure introduces higher-order statistics at the region
level for each regression group, making the overall framework more coherent and adaptive
(see Fig. 1(a)); and 3) an adaptive PCA-based dictionary learning scheme is adopted to bridge
the gap of dictionaries learned online and offline by mixing them, and more importantly such
a scheme together with its induced sparsity prior can adapt to the AJKR process in response
to the regional redundancy measure (see the block diagram in Fig. 1(b)).

The rest of this paper is organized as follows. Section 2 reviews related works. In
Section 3 we describe our AJKR framework and its advantages over other models, and the
adaptive dictionary learning scheme is also discussed. Experimental results and comparisons
with state-of-the-art methods are provided in Section 4. We conclude the paper in Section 5.

2 Related Works
Single image SR aims to estimate an HR image X ∈ Rn from a single LR image Y ∈ Rm

(lexicographically ordered vector and m < n). The imaging model is usually expressed as

Y = DHX+V, (1)

where D ∈Rm×n and H ∈Rn×n are the downsampling matrix and blurring matrix respective-
ly, and V ∈ Rm is assumed to be an additive Gaussian white noise vector. Since the inverse
problem is highly ill-posed, regularization techniques are required to introduce prior knowl-
edge to restrict the solution space. Typically, the task of SR reconstruction is formulated as
a regularized least-square optimization problem as follows

X̂ = argmin
X

∥Y−DHX∥2
2 +λC(X), (2)

where λ is the parameter balancing the effects of the fidelity term and the regularization term
C(X). Most of the past works focus on designing different formulations for C(·).

2.1 Local Kernel Regression
Natural images often present relatively stable local structures, hence a query pixel can be
estimated from its neighboring pixels within a small area. This local structural regularity
offers an alternative for designing the regularization term C(·), and can usually be expressed
as a kernel regression function ẑ(xi)

ẑ(xi) = argmin
z ∑

j∈N (xi)

(Yj − z)2 wK
i j, (3)

where N (xi) denotes the local neighbors of location xi, Yj denotes the pixel observation at
x j, and wK

i j is the spatial kernel that describes the similarity between pixels at xi and x j. In
SKR [18], the steering kernel is adopted to account for the gradient which is defined as

wK
i j =

√
det (Qi)

2πh2
k

exp

(
−
(x j −xi)

T Qi (x j −xi)

2h2
k

)
, (4)
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where Qi is the symmetric gradient covariance matrix, and hk is a smoothing parameter.
In order to approximate the local structure better, higher-order estimation can be used.

Then ẑ(xi), being regarded as a regression function, can be modeled to be polynomial where
the image is assumed to be locally smooth to some order

âi = argmin
a

∥Yi −Φa∥2
WK

i
, (5)

where Yi is a patch of the neighboring pixels around xi represented as a vector, WK
i =

diag
[
wK

i1,w
K
i2, . . . ,w

K
iL
]

with L = |N (xi)|, and a represents the regression coefficients of the
polynomial bases from Taylor expansion defined by Φ (say second-order)

Φ =

 1 (x1 −xi)
T vechT

{
(x1 −xi)(x1 −xi)

T
}

...
...

...

 , (6)

where the vech(·) operator stacks the lower triangular part of a matrix into a column vector.
The first element of the regression coefficient vector âi is the desired pixel value estima-

tion at xi, therefore

ẑ(xi) = âi0 = eT
1
(
ΦT WK

i Φ
)−1 ΦT WK

i Yi, (7)

where e1 is a vector with the first element equal to one and the rest zero.

2.2 NLM-based Estimation

The NLM method [1], with the patch repetition assumption, restores a pixel by a nonlocal av-
eraging of pixels with similar neighborhoods in the whole image. It is the basis of designing
the nonlocal self-similarity constraint in SR reconstruction.

Mathematically, NLM algorithm is formulated as a least-square optimization problem

ẑ(xi) = argmin
z ∑

j∈P(xi)

(Yj − z)2 wN
i j, (8)

where P (xi) denotes the index set for similar pixels of xi found in a nonlocal range. The
weight wN

i j depends on the weighted Euclidean distance between the two involved pathes Yi
and Y j centered at xi and x j to describe their similarity, and is given by

wN
i j = exp

−

∥∥Yi −Y j
∥∥2

WG

h2
n

 , (9)

where WG is the weight matrix of a Gaussian kernel, and hn is the decay parameter.
The least-square problem in Eq. (8) has a closed form solution as

ẑ(xi) =
∑ j∈P(xi) wN

i jYj

∑ j∈P(xi) wN
i j

, (10)

which can be regarded as a zero-order regression compared with Eq. (7) as claimed in [3].
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3 Proposed Algorithm

3.1 Adaptive Joint Kernel Regression
The well-established methods of SKR [18] and NLM [1] allow us to make use of cues from
local structural regularity and nonlocal self-similarity, respectively. However, they are not
yet effectively utilized to attain the full power. We here propose an Adaptive Joint Kernel
Regression (AJKR) framework to simultaneously exploit both image priors in a higher-order
collaborative manner. To start with, the NLM is generalized in the local kernel regression
framework following [3], and is given by

âi = argmin
a

∥Yi −Φa∥2
WN

i
, (11)

where WN
i = diag

[
wN

i1,w
N
i2, . . . ,w

N
iL
]

1 again with L = |N (xi)|.
The difference with respect to Eq. (5) lies in the choice of kernel weights as the patch

similarity weight matrix WN
i is used instead of the spatial kernel matrix WK

i . In the zero-
order case, the matrix Φ simplifies to a column vector of all ones and Eq. (11) boils down to
the NLM algorithm Eq. (8), but in the local range.

The role of this generalization is two-fold. For the kernel regression, the patch-based
similarity can take into account the small-scale structures (see examples in Fig. 1(a)), and
thus avoids the too much attention paid by spatial kernels in SKR to the dominant structural
orientation and contour that are sometimes detail destroying. From the viewpoint of NLM,
the higher-order version is more descriptive of the underlying image structure by structural
regression, and allows for negative weights during averaging [3]. More radically, it paves the
way for our framework “harmonization” in a complete nonlocal sense.

Since the NLM-generalized regressors can be regarded as localized versions of NLM,
which somewhat violate its original concept, we extend them to the nonlocal range P (xi)
defined over a group of similar local patches to genuinely use the power of nonlocal redun-
dancy. Here we perform grouping simply via patch matching. Once a group is built, the com-
bination of its member regressors weighted by their mutual similarities wN

i j leads to a joint
regression scheme that exploits local and nonlocal priors simultaneously and collaboratively

âi = argmin
a ∑

j∈P(xi)

wN
i j
∥∥Y j −Φa

∥∥2
WN

j
. (12)

From this optimization function, we can see the local kernel regression regularizes the
observations found by nonlocal search via structural regression, while the nonlocal self-
similarity enhances the robustness of local estimation by providing redundancies. Besides,
the kernel regressors generalized from NLM are more consistent with this nonlocal fusion.
The pixel estimation at xi is again the first element of the vector solution of Eq. (12)

ẑ(xi) = eT
1 âi = eT

1

[
ΦT

(
∑

j∈P(xi)

wN
i jW

N
j

)
Φ

]−1

ΦT ∑
j∈P(xi)

wN
i jW

N
j Y j. (13)

We then define the row vectors kT
i j = eT

1

[
ΦT
(

∑ j∈P(xi) wN
i jW

N
j

)
Φ
]−1

ΦT ·wN
i jW

N
j to be

the equivalent kernels with which we perform the regression for xi. Since this single form of
1Note the weight wN

i j here is calculated in the same way as the patch similarity weight in Eq. (9), so we use
the same symbols for consistency concerns. However, the weights here are calculated from patch pairs in the local
neighborhood N (xi) instead of the nonlocal P (xi) in Eq. (9), which is worth noting to avoid confusion.
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Figure 2: Visualization of the redundancy measure Ri. From left to right: the original image
and its Ri map (brighter intensity means larger value), the corrupted image and its Ri map.

equivalent kernels can supply complementary views towards the regularity in natural images,
we plug them into the SR optimization function in Eq. (2) to act as the regularization C(·)

X̂ = argmin
X

∥Y−DHX∥2
2 +λ

n

∑
i=1

∥∥∥∥∥Xi − ∑
j∈P(xi)

kT
i jX j

∥∥∥∥∥
2

2

, (14)

where Xi denotes the pixel to be estimated at location xi, and X j is its similar patch centered at
x j found in the nonlocal range. To derive the matrix form, we should note it is highly possible
that the similar patches

{
X j
}

overlap. This means when they are returned to their original
locations, the multiple kernel weights in the overlapping part should be added up. To this end,
an operator F(·) is defined to realize this process, where F

([
kT

i1,k
T
i2, . . . ,k

T
iS

])
,S = |P (xi)|

packs the equivalent kernel set of xi into the ith row of the equivalent kernel matrix K. As a
result, we can rewrite Eq. (14) as

X̂ = argmin
X

∥Y−DHX∥2
2 +λ ∥(I−K)X∥2

2 , (15)

where I is the identity matrix.
So far, we have obtained a regularized model that captures both the local structures and

their dependencies in groups gained from the nonlocal redundancy. However, an important
fact has been neglected, i.e. the patches in a formed group may not be mutually similar
enough to enable reasonable joint regression. Actually, the degree of patch redundancy varies
significantly across different regions within an image, which largely affects the correctness
of our joint regression-based regularization. Therefore, we propose an explicit measure of
regional redundancy to determine the confidence of each regression group that gives

Ri = ∑
j∈P(xi)

(
wN

i j
)2
, wN

i j = exp

−

∥∥Xi −X j
∥∥2

WG

h2
n

 , (16)

which can also be regarded as penalizing the patch distances due to the way wN
i j is calculated.

Obviously, the smaller the distances are (i.e. the larger Ri), the more similar the grouped
patches are and the more patch redundancy there is in the nonlocal region. Hence we give
the name of regional redundancy to Ri. Figure 2 shows example maps of Ri, with large
values at smooth areas and edges while small values at textures. This measure is also shown
to be reasonably robust to corruptions with similar distributions, because it introduces such
higher-order statistics by lifting to the region level. Then we use it to adaptively control the
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(a) (b) (c)

Figure 3: (a) Example of the offline PCA dictionary B0 (centroids); (b) Examples of the
online PCA dictionaries B1, where the 8 first atoms are shown; (c) PSNR curves (×3) versus
iterations for different dictionary learning schemes with the corrupted lena image.

relative effects of regularization among all the regression groups (see Fig. 1(a)) and have

X̂ = argmin
X

∥Y−DHX∥2
2 +λ ∥(I−K)X∥2

R , (17)

where the diagonal matrix R = diag [R1,R2, . . . ,Rn]. This makes our idea of joint regression
more adaptive and complete by building a global image-region vision at higher level.

As mentioned earlier, some previous works such as [22, 23] are based on similar consid-
erations about the unified local/nonlocal priors. Compared with NLKR [22], our framework
is more coherent with the NLM-generalized kernel regressors embedded in, and is also more
adaptive with the regional redundancy measure that introduces higher-order statistics to ac-
count for the inter-group variance rather than in a blindly “group-wise” way as in NLKR.
Besides, we incorporate such model into the SR reconstruction framework as a regulariza-
tion prior, thus estimating the HR image as a whole rather than pixel by pixel in NLKR.
Compared with Zhang et al. [23], we enjoy the advantage of better capturing both image
priors in a collaborative framework instead of crudely imposing two penalty terms.

3.2 Adaptive Dictionary Learning
The above AJKR framework can further benefit from dictionary-based methods that do lo-
cal regression using the learned bases. We here propose a patch-based adaptive dictionary
learning scheme by combining the dictionaries learned online (B1 from input image) and
offline (B0 from external database). To learn B0, we adopt the adaptive PCA strategy in [6]
due to its simplicity and use the same training data (see Fig. 3(a)). For the B1, since we
have already formed many groups of similar patches in the AJKR process, we learn for each
group an adaptive dictionary using PCA to adequately code the patches in it (see Fig. 3(b)),
which is a popular choice in the literature [2, 5]. Figure 3(c) evaluates different dictionary
learning schemes on lena, showing superiority of the combined dictionary B = [B0 B1].

Once the dictionary B ∈ RL×d is built, we can represent an image patch Xi ∈ RL as a
linear combination of the atoms in B such that Xi = Bα i,αi ∈ Rd . Let the whole image be
the average of all the overlapping patch estimates, α the concatenation of all αi, and ◦ the
representation operator, we then reach to our final optimization function for SR as

α̂ = argmin
α

∥Y−DHB◦α∥2
2 +λ ∥(I−K)B◦α∥2

R +β ∥α∥1 , (18)

where β is the regularization parameter of the sparsity term. Notice that the constraint pro-
vided by AJKR may not be sufficient to regularize the optimization problem in Eq. (18). For
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example, an extreme case exists when a patch does not look like any other in the image (e.g.
with unique structures), then the joint kernel regression in a group of dissimilar patches can
be severely erroneous and hence suppressed to a large extent due to small Ri. Therefore, we
further enforce the sparsity of representation coefficients α by penalizing its ℓ1 norm.

Indeed, some recent works (e.g. [14, 15]) also consider mixing the online and offline dic-
tionaries. Compared with them, our combined dictionary together with its induced sparsity
prior distinguishes itself by offering the ability to adapt to the other prior (regression-based)
in a unified framework. The superiority of the combined dictionary B in Fig. 3(c) is a result
of such adaptation. Specifically, if no/few similar patches are found for a given one, its near-
zero redundancy measure Ri actually cancels out the erroneous regression prior as mentioned
above, thus reducing Eq. (18) to sparse coding only at that patch, which is performed mainly
over the bases in B0 because those in B1 learned online from mutually dissimilar patches
deviate too far from the true signal space. While in the case of high patch redundancy, the
large Ri imposes a strong effect of the joint regression prior, and on the other hand, the
online dictionary B1 dominates for enforcing the remaining sparse representation prior. Fig-
ure 1(b) illustrates the block diagram of our overall algorithm, and the optimization problem
(Eq. (18)) at each iteration can be efficiently solved by the iterative shrinkage algorithm [4].

4 Experiments
In this section we compare our method AJKR with several representative related as well as
state-of-the-art SR algorithms. The quantitative results are carried out only on the illuminance
channel for color images, in terms of the metrics of PSNR and Structural SIMilarity index
(SSIM) [19]. Since in real-world SR tasks the observed LR images are often contaminated
by noise, the robustness of SR methods with respect to noise is also evaluated.

In all experiments we use HR patches of 7×7 pixels (L = 49) with a 4-pixel overlap for
both local kernel regression and nonlocal patch matching. We set the support of the nonlocal
searching to be S = 10 nearest neighbors in a window of size 21×21, and use the parameters
λ = 50,β = 0.27,hn = 10. We first performed SR experiments on synthetic LR images. The
LR images were generated from 5 standard test images by a truncated 7×7 Gaussian kernel
(σb = 1.6) and down-sampled by a factor of 3. A Gaussian noise (σn = 5) was also added.

Table 1 shows the quantitative performance of our method, for both noiseless and noisy
cases, in comparison to three regression-based methods, GPR [9], KRR [10] and the method
of Zhang et al. [23], and to two dictionary-based methods, Centralized Sparse Representa-
tion (CSR) [5] and Sparse Coding (SC) method [21]. The GPR and KRR are two recent
regression methods that capture from input image the mapping between LR and HR patches
via Gaussian process regression and sparse kernel regression, respectively. For all the five
compared methods, we used their default parameter setup. As shown in the table, our method
constantly outperforms the others across all metrics for both cases, with the largest PSNR
improvements (over GPR) at 4.05 dB (noiseless) and 2.78 dB (noisy) on average which are
quite significant. The demonstrated robustness to noise of our method can be attributed to
the redundancy measure-guided prior adaptation and the responsive dictionary scheme.

Figure 4 offers an example for visual comparison. We can see our AJKR method can
preserve much sharper edges and more details than the other three regression methods. Our
result is also free of the jaggy artifacts with the other dictionary-based methods.

We further compare with other state-of-the-art algorithms on real images in Fig. 5. Com-
pared with NLKR [22] and the methods of Shan et al. [16], Glasner et al. [8] and Freedman
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Table 1: Comparison of SR results (×3, PSNR/SSIM) for both noiseless and noisy cases.
Images GPR SC KRR Zhang et al. CSR AJKR

Bike 21.9 / 0.635 23.3 / 0.739 23.2 / 0.717 24.1 / 0.786 24.7 / 0.802 25.4 / 0.833
Butterfly 23.0 / 0.796 24.6 / 0.821 24.8 / 0.855 26.9 / 0.896 28.2 / 0.921 28.6 / 0.937

Girl 31.7 / 0.765 30.9 / 0.804 32.5 / 0.788 33.0 / 0.810 33.7 / 0.826 33.9 / 0.840
Parrot 26.6 / 0.854 28.4 / 0.883 28.4 / 0.883 29.6 / 0.900 30.7 / 0.918 30.8 / 0.935
Plants 29.9 / 0.832 31.3 / 0.879 31.5 / 0.872 32.9 / 0.897 34.0 / 0.921 34.6 / 0.936

Noisy Bike 21.8 / 0.620 23.0 / 0.698 22.9 / 0.685 23.2 / 0.711 23.8 / 0.736 24.3 / 0.762
Noisy Butterfly 22.6 / 0.775 24.3 / 0.787 24.4 / 0.816 25.7 / 0.850 26.8 / 0.888 27.0 / 0.894

Noisy Girl 31.0 / 0.741 30.4 / 0.734 31.3 / 0.736 31.5 / 0.749 32.0 / 0.764 32.2 / 0.782
Noisy Parrot 26.4 / 0.829 27.7 / 0.800 27.8 / 0.816 28.5 / 0.856 29.5 / 0.878 29.6 / 0.892
Noisy Plants 29.4 / 0.807 30.0 / 0.795 30.3 / 0.805 30.8 / 0.825 31.7 / 0.860 32.0 / 0.868

(a) (b) (c) (d) (e) (f)

Figure 4: Visual comparison of SR results on Parrot image (×3, noiseless case).

(a) (b)

Figure 5: SR results on real images with a more challenging magnification factor 4.

(a) (b) (c) (d)

Figure 6: Real image deblurring (compared with Krishnan et al. [11] and Xu et al. [20]).

and Fattal [7], our improvements are evident. Note that we use the reported results of NLKR
since its source code is not available (so not compared previously). Fig. 6 shows an image
deblurring example by omitting the downsampling operator D from Eq. (18).

5 Conclusions
This paper introduces an adaptive joint kernel regression framework for single-image super-
resolution. This framework can make better use of the local and nonlocal image priors in
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a higher-order collaborative manner. An adaptive PCA-based dictionary learning scheme
is also integrated to interact with the regression prior for robustness. The large variety of
experiments show that the proposed algorithm achieves state-of-the-art performance and is
robust with minimum artifacts even under large amounts of noise and blur. The extension to
image deblurring also shows great potential to produce outstanding results as compared with
the best performing deblurring methods.
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