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Abstract

We present a novel approach for cross-speed gait recognition. In our approach, the
cyclic walking action is considered as residing on a manifold which is homeomorphic to a
unit circle in the gait space. Thin Plate Spline (TPS) kernel-based Radial Basis Function
(RBF) interpolation is used to fit the walking manifold for each gait sequence. The sub-
ject related kernel mapping coefficients are learned for representing the gait. According
to the property of TPS, the coefficients can be naturally separated as an affine component
and a non-affine component. The affine component is the style factor corresponding to
the deformation of the homeomorphic manifold caused by the walking action, while the
non-affine component is the shape factor, invariant to the walking speed. We denote this
non-affine component as Speed Invariant Gait Template (SIGT) and use it as cross-speed
gait feature. To address the curse of dimensionality issue and speed up the recognition,
we use Globality Locality Preserving Projections (GLPP) to reduce the dimensions of
SIGTs. Two walking speeds related gait databases are employed for evaluating our pro-
posed method. The experimental results demonstrate the superiority of our method over
the state-of-the-art.

1 Introduction

In the recent decade, more and more researchers pay attention to gait recognition, since
the gait is the only perceptible biometric trait at a distance, and can tolerate low resolution
imagery that other biometrics cannot be perceived [18]. However, compared to other biomet-
rics, gait recognition is sensitive to more factors such as walking speed, clothing, briefcases,
and even the walking environment. Among these factors, walking speed is regarded as one of
the most common changing factors in real life. Although, several works have been proposed
to tackle this problem from different perspectives [10, 16, 21, 24], but this issue still remains
unsolved.

Generally speaking, gait recognition approaches can be roughly classified to model-
based approaches and model-free approaches (feature/appearance-based approaches) [18].
Model-based approaches try to model the walking action using static or dynamic body pa-
rameters [ 1, 24, 26]. Model-free approaches focus on directly extracting holistic gait features
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(a)

(b
Figure 1: The visualization of SIGTs (a) The sparsely sampled gait silhouettes of half cycle
from OU-ISIR Treadmill Dataset A, (b) The extracted SIGTs from the gait sequences.

from gait sequences. Compared to the model-free approaches, model-based approaches seem
to be more popular recently [6, 10, 11, 12, 15, 16, 17, 22, 28] because of its simplicity and
robustness.

The solutions for cross-speed gait recognition also follow the previous two paths. A re-
cent representative model-based cross-speed gait recognition method is the speed variation
based silhouette transformation model [24]. This method separates the gait silhouettes into
dynamic and static features via fitting a human model. Then a bilinear model is applied to the
dynamic features for transforming the reference speed to another arbitrary speed. With re-
gard to the model-free cross-speed gait recognition, Liu et al [16] proposed a Hidden Markov
Model (HMM) based time-normalization gait feature. Similarity measurement is presented
in a Linear Discriminant Analysis (LDA) Space. Similarly, Tanawongsuwan et al [21] pro-
posed a stride normalized gait features for gait recognition via learning the statistic relation
between the walking speed and stride. Differential Composition Model (DCM) [10] is a
recent cross-speed gait recognition method that utilizes both appearance feature and prior
knowledge of body parameters to solve this issue. It uses a descriptor called Higher-order
Derivative Shape Configuration (HSC) to describe the gait sequences. Then, it separates the
signature into different local parts based on the body parameters, and measure their similari-
ties individually. In general, the normalization-based method is simple but does not perform
well in the situation of large speed variation. On the other hand, the methods which need the
prior knowledge of body parameters are very complex.

In this paper, we aim at extracting speed invariant gait features directly without any body
parameters. We use a manifold analysis approach to extract gait features, since recent studies
indicate actions reside on manifolds [20, 23], and the manifold of walking action is topolog-
ically equivalent to a unit circle [3, 4, 13]. Consequently, the problem of gait feature extrac-
tion can be formatted as a problem of gait manifold fitting. For addressing this problem, Thin
Plate Spline (TPS) kernel based RBF interpolation [9] is used to fit the gait manifold. The
obtained mapping coefficients are considered as a gait feature, since they potentially preserve
the characteristics of people motion. Furthermore, there is a unique property of TPS that it
separates the mapping coefficients into an affine component and a non-affine component
[27] and a natural assumption can be given that the affine component depicts the manifold
deformation caused by walking and the non-affine component preserves the static features
irrelevant to motion. Hence, the non-affine component is a gait feature robust to the walking
speed variation and we call it Speed Invariant Gait Template (SIGT) (see figure 1). The di-
mensions of original SIGTs are still high. It can often results in overfitting and the feature
is too sparse for characterizing the topography of essential gait space. Thus, the application
of dimensionality reduction is necessary. In this paper, we use a recent method: Globality-
Locality Preserving Projections (GLPP) for dimensionality reduction [8]. Unlike Principal
Component Analysis (PCA)[25] and Linear Discriminant Analysis (LDA)[19], GLPP is an
improved Locality Preserving Projections (LPP) method which can better preserve the data’s
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geometric structures via considering the geometric structures of both samples and classes.

Two walking speed related gait databases are chosen for evaluating our method. Sev-
eral recent template-based methods and cross-speed methods are used for comparison. The
experimental results demonstrate that our method outperforms them. There are 3-fold con-
tributions of our method:

1. The novelty of our method is that we translate the gait feature extraction problem
into a manifold fitting problem and use the RBF interpolation to generatively model
the walking action without any body parameters. To the best of our knowledge, our
method is the first manifold based cross-speed gait recognition method and template-
based gait recognition method.

2. We provide a natural way to separate the dynamic features and static features via
thin plate spline kernel based RBF interpolation. The separation between dynamic
features and static features is general issue to the other computer vision issues. For
example, the facial expression can be separated to expressing motion and static facial
characteristics via this model.

3. We choose a new dimensionality reduction method to improve the SIGTs and speed
up the recognition. This method can well preserve the geometric structures of data and
perform very well cross different gait features.

The rest of paper is organized as follows: we introduce our method in section 2; section

3 describes the dimensionality reduction using GLPP; experiments are presented in section
4; the conclusion is finally summarized in section 5.

2 Speed Invariant Gait Template
2.1 Silhouette Representation

In this paper, we will not discuss the procedure of the gait sequence extraction and period
detection. We assume the input sequence is a full cycle gait sequence. Besides, an important
point should be noted is that the walking phase should be in the same order for all gait
sequences in our case. This is because our method is temporal order cared method. However,
manually aligning the gait sequences is very hard, since the length of each gait sequence
is different and the frames are sampled discretely. In order to address this problem, we
follow the strategy of Lee et al [14]. The work of Lee et al [14] also uses homeomorphic
manifold analysis to model gait sequences for a general human identification. However,
different to our approach, it focuses on using the manifold model to generatively synthesize
the same length gait sequence for each instance, and use a bilinear model to identify them.
In our approach, we just use a part of their works for gait sequence alignment and it will be
introduced in section 2.3.

Implicit function based representation is chosen to present the gait silhouettes. This
is a landmark free representation and typically used in level-set based method. The main
advantage of this representation is that it is robust to the noise and silhouette fragmentation.
We represent each gait silhouette as an implicit function y(x) at each pixel x that y(x) = 0 on
contour, y(x) > 0 inside the contour, and y(x) < 0 outside the contour. The signed distance

function is used:
d.(x), x inside contour

y(x)=1<¢ 0, X on contour (1)
—d.(x), x outside contour

where d,(x) is the distance to the closest point on the contour with a positive sign inside the
contour and a negative sign outside the contour. Finally, each represented gait silhouette is a
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point y; € Rl,i = 1,...,N in the gait space where [ is the dimension of the gait space, i is the
index of silhouette in the gait sequence and N is the length of sequences.

2.2 Manifold Fitting using TPS based Interpolation

Some recent studies indicate the gait manifold is topologically equivalent to a unit circle
[3, 4, 13], while some factors like walking style, walking speed and human shape translate
and deform the circle depending on the subjects. Thus, these subject related factors can
be obtained from gait sequences by learning the nonlinear mapping between the actual gait
manifold and the unit circle.

We use TPS kernel based RBF interpolation for learning the mapping between the em-
bedding space of walking action (a unit circle) and the input visual space (the gait space).
LetY = {y; €R',i=1,--- ,N} be a gait sequence in the gait space and X = {x; € R>,i =
1,---,N} be the corresponding points in the embedding space. T = {t; € R*, j=1,--- ,N;}
denotes N; equally spaced centers in the embedding space. We can solve for multiple TPS
kernel interpolants f* : R> — R where k is the kth element (dimension) of the signed distance
function based gait vector (the vectorizated gait image) in the gait space and f* is a RBF
interpolant. We minimize a regularized risk criteria to learn the nonlinear mapping from
the embedding space to each individual dimension in the visual input space that satisfies
yf‘ = f*(x;). From the representer theorem [9], such a function admits a representation of the
form of linear combination of basis functions around arbitrary points (centers). Thus, to the
kth dimension of the input, the form of function f*(x) is as follows:

Ny N
@) =@+ Y df oIl —1ill2) = p* () + ) df ke — il lplog (|l —l2) (@)
i=1 i=1

1

where function ¢ (1) = u?log(u) is a thin plate spline function and p*(x) = [1,x7]-s* denotes
the TPS smoothness term as a linear polynomial function with coefficients s*. The matrix
form of interpolation is as follows:

fx) =W -&(x) 3)

where W is a [ x (N; +3) coefficients matrix with the kth row [d¥,-- ,det,s"T] and ®(x)
is a vector that ®(x) = [@(||x—ti[2), -, 0 (|[x —1tw,||2),1,xT]. The matrix W represents the
mapping coefficients which are the / nonlinear mappings from the embedding space to gait
space. In order to make the problem be well posed and insure the orthogonality, an additional
constraint should be added:

Ny
Zdipj(xi):07j:17273 (4’)
i=1

where p; is the linear basis of the polynomial part p(x).
Thus, the mapping coefficients W can be obtained by directly solving the following linear

SyStemS:
C Px T C Px T Y
( BT 033 ) ( BT 033 >( ) ( 03%; ) )

where C is a N x N; matrix with Cj; = ¢ (||xi —¢j||2),i=1,--- ,N,j=1,--- ,N;, PrisaN x 3
matrix with ith row [1,x;7], P, is a N; x 3 matrix with ith row [1,7]. D= [d},--- ,dy,] is a
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[ x N; coefficient matrix of TPS based interpolants and S = [s”] is a [ x 3 coefficient matrix
of the smoothness term. Y is an aligned gait sequence.

Compared to other splines, TPS has a desirable property that it can always be decom-
posed into a global affine and a local non-affine component and the TPS smoothness term is
solely dependent on the non-affine components [27]. Therefore, the TPS based interpolation
provides a natural separation between the dynamic features caused by walking action and
the static features invariant to the walking action. In our case, the dynamic features are em-
bedded in the matrix D while the static features are embedded in the matrix S. Consequently,
the / x 3 matrix S is a speed-invariant gait features. The matrix S naturally provides three
I dimensional gait templates. Finally, we yield these three templates as a 3 x [ vector. We
name this vector Speed Invariant Gait Templates (SIGT) and apply it for cross-speed gait
recognition.

2.3 Gait Sequences Alignment via Synthesized Data

Algorithm 1 Gait Sequence Alignment
Require:
The input unaligned gait sequence, Y = [y1, -+ ,ym];
The mapping coefficients learned from a manually aligned gait sequence, W,;
The equally spaced mapping centers T = {t; = [cos(2(j — 1)7/N;),sin(2(j — )&/ N;)]T € R?, j=1,--- ,N;}
Ensure:
The aligned gait sequence, E;
1: Calculate the length of input gait sequences, M = length(Y );
2: Calculate the corresponding equally spaced points in the embedding space of walking action,
X = {x; = [cos(2(i — 1)m/M),sin(2(i — \)x/M)|" € R*,i=1,--- ,M};
3: Calculate the matrices C, P, P, based on X and T;
4: Synthesize the ordered gait sequence as an exemplar sequence based on C, F;, P, and W,

(Z)-( 5 o
"\ Oy )T \RT 033 o
where G = [g1,- -+ ,gum] is the synthesized gait sequence.

5: for eachi € [1,M] do

6: Shift the input gait sequence Y from frame i to yield a new gait sequence NY = [y;, -+ , YN, V1, Yi—1);

7: Calculate the similarity score between the shifted gait sequence NY and the synthesized gait sequence G and

put the similarity score into array Score(i) = ||NY — G||2;
8: end for

9: Find the index of array j whose element owns the minimum similarity;
10: Align the input gait sequences with that index, E = [yj,--- ,ym,y1, - ,¥j-1);
11: return E;

Our method is a temporal order information cared gait recognition method. Thus, the
input gait sequences should be full cycle and their walking phases should be at the same
order. So, we must align the input gait sequences into the same order for meeting the input
requirement. Since our model is generative, we can follow the Lee’s strategy [14] to use
the synthesized gait sequence to align the gait sequences and the experimental result from
[14] also proves that this strategy can achieve a good alignment. The detail gait sequence
alignment procedure is described in Algorithm 1.

3 Dimensionality Reduction using GLPP

Although we convert the whole sequence into a vector yielded by three gait templates, the
dimension of this gait feature is still very high. This high dimensions lead to overfitting and
slow up the recognition. In order to tackle this problem, we use an Improved LPP method
name Globality-Locality Preserving Projections (GLPP) [8] to reduce dimensionality. Com-
pared to some conventional methods, such as PCA and LDA, such kind of LPP-based method
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takes the geometric structures of data into consideration and this geometric information can
benefit the data classification [2, 7, 8]. Furthermore, compared to the conventional LPP,
GLPP can better preserve the geometric structures of data, since it not only preserves geo-
metric structures of samples, but also preserves geometric structures of classes.

Given a list of SIGTs, X = {x; € R?,i=1,--- N} where d = 3/, we aim at learning the
GLPP projections W = [wy, -+ ,wy,| to transform the original SIGTs into a low-dimensional
representation ¥ = {y; € R",i=1,--- ,N}. The vector C = [1,---,h] denotes the category
labels and X;, j € C denotes the mean of the samples belonging to class j. Similarly, y;,j € C
denotes the mean of the projected samples belonging to class j.

GLPP has two objective terms. The globality preserving objective term O, is used to
preserve the geometric structures of classes and the locality preserving objective term O,,
is used to preserve the geometric structures of samples. They are defined respectively as
follows:

0, = Z (5 —¥)*Bij = Z (W% —w'%;)B;; (6)
ijec ijec

Ow = Y Y 0i—y)Sii=Y Y w'xi—wlx))’s; (7)
ceCi,jec ceCi,jec

where matrices S and B are the adjacency weight matrices of the objective terms O,, and
O, respectively. According to work of Cai et al [2], there are three ways to construct these
matrices. In this paper, we choose the dot-product weighting to construct each adjacency
matrix.

GLPP aims at preserving the geometric structures of both samples and classes via mini-
mizing both these two objective terms:

W= argmin(Og+f-Oy) (8)
= argrrgn( Z (WT)ZZ' — WT)EJ')ZB,'J' +B- Z Z (WTX,' - WTx]‘)ZS,'j)
ijeC ceCirjec
= argrrgn(wT (XKX" +B Y (XL XD))w) = argrrgn(wTAw)
ceC

where matrix X is a matrix containing the mean of each class, and matrix X, is the matrix
of the samples belonging to class ¢. Matrices K and L. are the Laplacian matrices of X
and X, respectively. B > 1 is a parameter balances the two objective terms. The matrix A
is a positive semi-definite matrix. Therefore, this problem can finally solved as a general
eigenvalue problem as follows:

Aw = Aw 9)

The optimal solution is the eigenvector corresponding to the first m minimum nonzero eigen-
value A. Thus we can finally obtain the GLPP projection matrix W = [wy,---,wy,]. Then
we can transform the SIGTs to a more compact representation via the GLPP projection and
measure the similarity for gait recognition.

4 Experiments

4.1 Databases

Two walking speed related databases, CMU Mobo gait database [5] and OU-ISIR Treadmill
dataset A [24], are used to evaluate the performances of different gait recognition methods
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in this paper. The CMU Mobo gait database [5] has 25 subjects with 6 views. There are four
subsets including Slow Walk, Fast Walk, Ball and Incline subsets. We only choose the Slow
Walk and Fast Walk subsets for studying the gait recognition performance cross various
walking speeds. The walking speed of the Slow Walk subset is 3.3km/h and the walking
speed of the Fast Walk subset is 4.5km/h. OU-ISIR Treadmill dataset A [24] is designed
for studying the effect of speeds variation on gait recognition. This database contains 34
subjects with speed variation from 2 km/h to 10 km/h at 1 km/h interval. Each subject has
two sequences of "gallery" and "probe".

4.2 Compared Methods

Because our method is a template-based method, three recent influential template-based
methods, namely, Gait Energy Image (GEI) [6], Gait Flow Image (GFI) [12] and Chrono-
Gait Image (CGI) [28], are chosen for comparison. Besides, the experimental results of two
cross-speed gait recognition methods, Shape variation-based frieze pattern (SVFP) [15] and
Differential Composition Model (DCM) [10], are also referenced for comparison.

4.3 Cross-speed Gait Recognition Results

In these experiments, the size of gait silhouette is 128 x 88 and 12 equally spaced points
around the unit circle are considered as centers. The Euclidean distance is the similarity
metric.

With regard to the experiments of Mobo database, only two subsets, Slow Walk subset
and Fast Walk subset, are chosen for experiments. Furthermore, we do the experiments for
each views individually instead of cross views. This is because our objective mainly focuses
on studying the cross-speed gait recognition. We define two group of experiments on Mobo
database. In the first group of experiments, the Slow Walk subset is used as a gallery and
used to learn the projections while the Fast Walk subset is the probe. In the second group of
experiments, the Fast Walk subset is the gallery and the Slow Walk subset is the probe.

Table 2 shows the experimental results of different gait recognition methods on Mobo
database. The recognition rates in table 2 are the average recognition rate of the best results
under different views. From the observations of table 2, SIGTs, dynamic features (Deform in
table 2) and whole features (both dynamic and static features, Wheole in table 2) outperform
the compared methods. We also can deduce that the walking-related dynamic features can be
also well used for identifying human when the walking speed is not changing a lot. However,
there is a disadvantage of the dynamic features and whole features. They have a much higher
dimension than the static features (SIGT). So, if the performances of the SIGTs, dynamic
features and whole features are similar, we can choose the lower dimensional one.

OU-ISIR database is a more challenging database since the walking speeds of this database
are extremely various. For studying the recognition performance with various speeds, we di-
vide the database into three subsets. The configurations of these subsets are described in the
table 1.

subset gallery probe

subsetl | 2,3,4 km/h | all walking speeds (2—10 km/h)
subset2 | 5,6,7 km/h | all walking speeds (2—10 km/h)
subset3 | 8,9,10 km/h | all walking speeds (2—10 km/h)

Table 1: The configurations of different subsets on OU-ISIR Treadmill dataset A
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We can clearly see in table 3 that our method prominently outperforms the recent gait
template-based methods in all three subsets. The gains of our method over the second-
ranked method are 3.65%,7.09% and 9.62 % in first, second and third subset respectively.
These experimental results demonstrate the superiority of our method for gait recognition
particularly when the walking speeds are extremely various. However, compared to the
SIGTs, the whole features and the dynamic features are not performing well on this database.
This is because the walking speeds are more variant on OU-ISIR database which results in
the drastic change of the dynamic information caused by the walking action.

Rank-1 Recognition Rate(%) Rank-5 Recognition Rate(%)

Gallery \ Probe Slow\fast fast\slow Total | Slow\fast fast\slow Total
GEI + LDA [6] 84.85 81.73 83.09 89.97 86.63 88.30
GEI + PCA[6] 80.77 75.55 78.27 87.55 81.98 84.77
GEI + LPP 90.39 90.52 90.46 91.84 90.61 91.23
GEI + GLPP 92.32 91.88 92.10 93.22 92.72 92.97
GFI + LDA[12] 83.68 64.97 74.59 86.45 67.94 77.20
GFI + PCA 78.22 57.61 67.92 84.85 69.29 77.07
GFI + LPP 81.95 79.44 80.70 84.09 79.61 81.85
GFI + GLPP 83.89 74.79 79.34 84.99 79.02 82.01
CGI + PCA[28] 75.73 78.60 77.17 81.14 83.42 82.28
CGI + LDA[28] 79.25 81.64 80.45 79.94 82.15 81.05
CGI + LPP 76.97 83.42 80.20 77.18 83.50 80.34
CGI + GLPP 79.60 84.77 82.19 80.43 86.04 83.24
DCM[10]! 92.00 88.00  90.00 \ \ \

FSVB[15]! 82.00 80.00  81.00 \ \ \

SIGT + PCA 81.88 79.36 80.62 90.11 84.35 87.23
SIGT + LDA 92.67 88.24 90.46 93.29 90.52 91.91
SIGT + LPP 90.53 91.03 90.78 91.77 91.03 91.40
Deform + GLPP 92.32 91.88 92.10 93.22 92.72 92.97
Whole + GLPP 92.88 91.79 92.34 93.98 92.13 93.06
SIGT + GLPP 92.88 91.88 92.38 93.98 92.13 93.06

Table 2: Recognition performance comparison (in percents) using Mobo database. Deform
represents the dynamic features extracted by TPS based manifold fitting, Whole represents
the whole features (both the dynamic features and SIGTs).

Several experiments are conducted for studying the SIGT’s tolerance of speeds variation.
Figure 2 shows these results. In these figures, SIGT, which is the non-affine part of TPS
mapping coefficients, is more insensitive to the speed variation in comparison with Whole,
which is the whole mapping coefficients, and Deform, which is the affine part of mapping
coefficients. Although the recognition performance of SIGT is falling along with the speed
interval increasing, but it falls much more smoothly and slowly than Deform and Whole.
So, we think this phenomenon justifies that the non-affine part (SIGT) is related to the static
feature of gait sequence which is more robust to the speed variation.

Furthermore, according to the experimental results of both Mobo database and OU-ISIR
database, GLPP as a dimensionality reduction method almost outperforms all the other di-
mensionality methods cross all the gait features.

I'These experimental results are directly reference from recent paper of Kusakunniran et al [10].
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The best Rank-1 Recognition Rate (retained dimension)

Methods

subset1 subset2 subset3 total
GEI + LDA [6] 64.75(33) 69.87(33) 59.90(27) 64.84
GEI + PCA [6] 52.32(313) 54.99(409) 39.61(392) 48.97
GEI + LPP 63.97(79) 69.24(52) 54.63(120) 62.21
GEI + GLPP 66.50(66) 73.95(341) 58.99(120) 66.48
GFI + LDA [12] | 30.97(33) 44.17(33) 40.80(33) 38.65
GFI + PCA 28.79(79) 36.80(551) 37.85(35) 34.48
GFI + LPP 33.29(40) 46.14(35) 43.26(103) 40.90
GFI + GLPP 35.39(118) 46.49(69) 40.80(86) 40.89
CGI + PCA [28] | 50.42(261) 52.74(69) 41.15(494) 48.10
CGI + LDA [28] | 61.03(33) 66.15(33) 45.72(33) 57.53
CGI + LPP 58.57(118) 67.21(69) 45.93(239) 57.24
CGI + GLPP 62.36(40) 68.05(443) 45.79(375) 58.73
SIGT + PCA 42.63(118) 46.14(103) 40.10(52) 42.96
SIGT + LDA 64.53(23) 73.59(31) 53.79(9) 63.97
SIGT + LPP 63.20(79) 71.77(79) 56.32(188) 63.76
Deform + GLPP | 47.05(53) 49.44(222) 41.26(424) 45.92
Whole + GLPP 51.06(144) 52.39(103) 41.15(307) 48.20
SIGT+ GLPP 70.15(313) 81.04(104) 68.61(273) 73.27

Table 3: Recognition performance comparison (in percents) using OU-ISIR Treadmil-
1 dataset A

5 Conclusion

We presented a novel gait templates for cross-speed gait recognition. These gait templates
can be extracted by a TPS Kernel based RBF interpolation. Furthermore, a very recent
method, GLPP is applied to reduce the dimensions of gait templates. The experimental re-
sults demonstrate that the proposed method outperforms the compared methods, particularly
when the walking speeds are extremely changing. In this paper, our proposed method is a
very basic version. There are still many meaningful tasks that can be done. For example,
the extracted dynamic features can be fused with SIGT to present a more general gait recog-
nition. We also can manipulate the SIGT like other template-based methods to synthesize
more templates to predict the gait recognition under unknown situations. Furthermore, this
model is not also just suitable to the gait recognition, the dynamic feature and static feature
separation can be also applied in other computer vision tasks, such as expression analysis
and gesture recognition.
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