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Abstract

We provide this additional material with the intention of helping readers to better
understand the concepts presented in the manuscript. The issues addressed here are the
expressions for the logarithm and the exponential map along with the analytical form of
the Jacobian of the cost function that serves to generate the models.

1 On the expressions of the exponential and the logarithm
maps

The link between a Lie algebra and its Lie group is called the exponential mapexp. This
map and its inverseexp−1 = log allow us to move between the vector space generated by
a Lie algebra and the group. It is important to remark that, for Lie groups likeSO(3) or
SE(3), the exponential map is surjective but not injective. In other words, all the elements
of these groups can be “reached” from the algebra by the exponential map, but there are
infinite elements in the algebra that will be mapped to the same group element (non-unique
mapping) [1]. In the same way,log is a map just defined for some regions and under certain
circumstances. This does not represent a problem for our method since all the modelsθi ∈
SE(3) are closely enough to each other.

The exp map can be generally defined for all matrix groupsG ⊂ GL(n,R), where
GL(n,R) is the group ofn×n real invertible matrices. In this way,exp(A) is defined as:

exp(A) = In + ∑
k≥1

Ak

k!
= ∑

k≥0

Ak

k!
, (1)

c© 2013. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronicforms.



2 ROS et al: FAST AND ROBUSTℓ1-AVERAGING-BASED POSE ESTIMATION

whereIn is then×n identity matrix. It is proven that this series is absolutelyconvergent for
any matrix [1]. However, there are explicit ways of calculatingexp for some specific groups.
This is the case ofSE(3), the group of rigid transformations inR3. Here, the exponential
map can be computed as:

exp(S) = I4+S+
(1− cos(α))S2

α2 +
(α − sin(α))S3

α3 . (2)

This expression is an adaptation of the well known Rodrigues’ formula [2]. Here,S ∈ se(3),
which is the Lie algebra corresponding to the tangent space of SE(3) and is parametrized

asS =

[
ω̂ v
~0 0

]

. Whereω = (ωx,ωy,ωz) is a 3-vector representing a 3D rotation andω̂ =




0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0



 is its representation inso(3), as a 3×3 real skew-symmetric matrix;

v ∈ R
3 is a column vector that represents the translation andα = ‖ω‖ℓ2, i.e., the amount of

rotation in the direction defined byωα . It is also important to note thatse(3) is isomorphic
with R

6, which means that there exists a map that transforms betweenboth spaces. We will
take advantage of this property by representing elements ofse(3) as the 6-vectorψ.

In the same way, the logarithm map, for a general matrixA ∈GL(n,R) has the following
expression:

log(A) = ∑
k≥0

(−1)k+1 (A− I)k

k
(3)

It is easy to see that the convergence of this series is very slow. Fortunately, in the case of
the groupSE(3) it is possible to define a close form expression for computingthe log map,
as presented below:

logSE(3)(θ =

[
R3×3 T3×1
~0 1

]

) =

[

r T − r̂T
2 + 2sin(‖r‖)−‖r‖(1−cos(‖r‖))

2r2 sin(‖r‖)
r̂2T

~0 1

]

(4)

wherer = logSO(3)(R) (see Eq.5), and ˆr is r put as a 3×3 skew-symmetric matrix.

logSO(3)(R) =

{

0 if β = 0
β

2sin(β ) (R−RT ) if ‖β‖ ∈ (0,π) (5)

Hereβ = arccos(Trace(R)−1
2 ).

2 The Jacobian of the cost function

Eq. 6 shows the cost function that is optimized in order to generate each of the models. To
perform this optimization we apply a couple of iterations ofLevenberg-Marquardt, which
requires the computation of the Jacobian of6. Usually, when a standard optimization frame-
work is used, there is no need to provide the Jacobian of the full expression, but instead, it is

enough with providing the Jacobian forF(i)
l andF(i)

r (Eq.7).
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C(ψ) =
M

∑
i=1

∥
∥
∥K Π3

(

expr(ψ)X̂ (i)
l,p

)

× x̂(i)l,c

∥
∥
∥

2

ℓ2
+
∥
∥
∥K

(

Π3

(

expr(ψ)X̂ (i)
l,p

)

−~B
)

× x̂(i)r,c

∥
∥
∥

2

ℓ2
=

(6)
M

∑
i=1

∥
∥
∥F(i)

l

∥
∥
∥

2

ℓ2
+
∥
∥
∥F(i)

r

∥
∥
∥

2

ℓ2
(7)

The Jacobian ofF(i)
l can be computed from its derivatives as presented in Eq.8–10. F(i)

r is
computed in a similar fashion but accounting for the vectorB̂.

F(i)
l = K Π3

(

expr(ψ)X̂ (i)
l,p

)

× x̂(i)l,c (8)

∂F(i)
l

∂ψ
= ∂ψ

[
K

(

Π3expr(ψ)X̂ (i)
l,p

)]
× x̂(i)l,c +K Π3

(

expr(ψ)X̂ (i)
l,p

)

×∂ψ
[
x̂(i)l,c

]

︸ ︷︷ ︸

0

= (9)

K Π3

(

∂ψ
[
expr(ψ)

]
X̂ (i)

l,p

)

× x̂(i)l,c (10)

Eq.10defines the derivative of the cost function in terms of the derivative of the exponential
map.∂ψ expr(ψ) has to be computed according to the retraction used, in this case the Cardan
map (11). This can be easily done by deriving (11) with respect to each component ofψi,
giving rise to the six 4×4 matrices as shown by Eq.12–17.

expr(ψ) =

[
cosψ2 cosψ3 −cosψ2 cosψ3 −sinψ2 ψ4

cosψ1 sinψ3−sinψ1 sinψ2 sinψ3 cosψ1 cosψ3+sinψ1 sinψ2 sinψ3 −sinψ1 cosψ2 ψ5
sinψ1 sinψ3+cosψ1 sinψ2 cosψ3 sinψ1 cosψ3−cosψ1 sinψ2 sinψ3 cosψ1 cosψ2 ψ6

]

(11)

∂ψ1expr =

[
0 0 0 0

−cosψ1 cosψ3 sinψ2−sinψ1 sinψ3 −cosψ3 sinψ1+cosψ1 sinψ2 sinψ3 −cosψ1 cosψ2 0
−cosψ3 sinψ1 sinψ2+cosψ1 sinψ3 cosψ1 cosψ3+sinψ1 sinψ2 sinψ3 −cosψ2 sinψ1 0

0 0 0 0

]

(12)

∂ψ2expr =

[
−cosψ3 sinψ2 sinψ2 sinψ3 −cosψ2 0

−cosψ2 cosψ3 sinψ1 cosψ2 sinψ1 sinψ3 sinψ1 sinψ2 0
cosψ1 cosψ2 cosψ3 −cosψ1 cosψ2 sinψ3 −cosψ1 sinψ2 0

0 0 0 0

]

(13)

∂ψ3expr =

[
−cosψ2 sinψ3 −cosψ2 cosψ3 0 0

cosψ1 cosψ3+sinψ1 sinψ2 sinψ3 cosψ3 sinψ1 sinψ2−cosψ1 sinψ3 0 0
cosψ3 sinψ1−cosψ1 sinψ2 sinψ3 −cosψ1 cosψ3 sinψ2−sinψ1 sinψ3 0 0

0 0 0 0

]

(14)

∂ψ4expr =

[
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

]

(15)

∂ψ5expr =

[
0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

]

(16)

∂ψ6expr =

[
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

]

(17)
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