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Figure 1: Main pipeline stages of the presented technique.

Robust camera-pose estimation is a fundamental stage of many computer
vision problems, being specially important for Visual Simultaneous Lo-
calization and Mapping (VSLAM) [1][6] and Visual Odometry (VO)[4][5]
systems. Here, the capability of estimating correct models in the presence
of noise and high level of outliers is a fundamental requirement. Dur-
ing the last decades, many approaches have been proposed to solve these
problems, being RANSAC [2] one of the most accepted and used. How-
ever, with the arrival of new challenges, such as large driving scenarios
for autonomous vehicles, along with the improvements in the data gath-
ering frameworks, new issues must be considered. One of these issues is
the capability of a technique to deal with very large amounts of data while
meeting the real-time constraint.

The use of large amounts of data to perform model estimation has
proven to be beneficial for improving model accuracy, as stated in [7].
In the past, the amount of input information was very limited, but now
modern front-ends are able to extract thousands of features from a set of
images and match them in real-time in a standard CPU. Nevertheless, se-
rious issues, as the presence of outliers within the flow of data still need to
be carefully addressed. RANSAC-like methods are affected by this “ex-
cess” of information, what produces an increment on the time dedicated
to evaluate and rank the generated models. In order to avoid this draw-
back, real-time implementations opt to use just a part of the available data,
therefore discarding a great amount of information and penalizing the ac-
curacy of the resultant models. To address these problems, in the pre-
sented work we propose a novel technique to perform robust camera-pose
estimation that is specially suitable to deal with large flows of data, some-
thing that is common in urban scenarios, where we successfully tested the
approach.

The main idea behind our proposal is to combine a very fast hy-
potheses assessment that produces sub-optimal evaluation and a proce-
dure capable of combining partially incorrect hypotheses into a new and
accurate hypothesis. The procedure is depicted by Fig. 1, and starts by
creatingN candidate modelsθi ∈ SE(3) from the available dataX =
{(xl,p,xr,p,xl,c,xr,c)

(i)}D
i=1, which represent matched points in the four

views of a moving stereo-rig (i.e., at two different time instants). This
step is carried out by optimizing Eq. 1 forM = 3 correspondences while
accounting for the manifold structure of the model.
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After generating the set of models{θi}

N
i=1, they are assessed byFcoarse

(Eq. 2), an evaluation function that has been designed to be extremely
fast. This is achieved thanks to the use of aReduced Measurement Matrix
(RMM) [3], an algebraical reduction of the input dataX that creates a
compact equivalentMMM under theℓ2-norm. The advantage of this reduction
is thatMMM can be efficiently computed even for very large collections of
data and this has to be done just once, at the beginning of the process.

Fcoarse(θ) = ∑D
i=1
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Figure 2: Results of theVO experiments for KITTI sequences 00 (left)
and 02 (right). Notice that, although all robust methods lead to similar
trajectories, C-Avg and P-Avg remain closer to the ground truth.

However,Fcoarse is not robust to noise and outliers, what will lead to
the wrong evaluation of some models. Fortunately, a thorough analysis
of real data sequences showed that models with a high number of inliers
(the expected good models) produce low residuals forFcoarse, even when
MMM contains outliers. On the other hand, models corresponding with a
low number of inliers present random values forFcoarse, producing low
residuals just occasionally. Our approach exploits this weak property by
selecting a subsetSk ⊆ {θi}

N
i=1 of partially corrupted models according to

the decision ofFcoarse.
Afterwards, all the models are combined in a robust and fast way to

generate a final and more accurate modelθ̂ . This is done by using the
Weiszfeld algorithm to performℓ1-averaging onSE(3) in order to respect
the structure of the camera pose. We show that, under the appropriate
conditions, the resultant modelθ̂ is very accurate, at the level of models
estimated by RANSAC, as shown in Fig. 2. The benefits of using this
approach against RANSAC are shown in the paper.
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