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Low-rank matrix recovery (LRMR) model, aiming at decomposing a
matrix into a low-rank matrix and a sparse one, has shown the potential
to address the problem of saliency detection, where the decomposed low-
rank matrix naturally corresponds to the background, and the sparse one
captures salient objects. This is under the assumption that the background
is consistent and objects are obviously distinctive. Unfortunately, in real
images, the background may be cluttered and show low contrast with ob-
jects. Thus directly applying the LRMR model to the saliency detection
has limited robustness. This paper proposes a novel approach that ex-
ploits bottom-up segmentation as a guidance cue for the matrix recovery.
This method is fully unsupervised, yet obtains higher performance than
the supervised LRMR model.

A key and distinguishing element of this model is the use of proposed
segmentation prior integrating to the low-rank matrix recovery. Firstly,
let us take a look at the images and their coarse-grained (CG) segmenta-
tions in Figure 1. Salient objects locate at diversity of positions: center,
bottom, left, right and corner. Both background and objects are typically
segmented into several regions, thus, the bottom-up segmentation can not
be expected to totally separate objects from the background. However, the
segmented regions of background have very high probability of connect-
ing with the border of the image, while very few regions of objects link to
it. Even if an object is truncated on the border, like the bike and the child
of the two right-most images, border regions of object are small compared
to the whole object in the image. In contrast, the border regions of the
background are usually large, as the background appears more uniform,
like sky, road, tree, wall, etc. This observation implies that objects can be
roughly separated from the background by the bottom-up segmentation.
Therefore, we propose the segmentation prior according to the connectiv-
ity between each region and image border. Let rm be a segmented region
of image I, the segmentation prior of region rm is defined as

hm = exp(−‖rm∩C‖
σψm

) (1)

where ‖ · ‖ denotes the length of intersection, C is the border of image
I, ψm is the outer perimeter of region rm, and σ is a balance parameter
which is set to 0.3 in our experiments. Clearly, if a region touches the
image border, its prior value is in the range of (0,1), otherwise it is equal
to 1. In other words, the segmentation prior gives a small weight to the
region touching the image border. Using (1), segmentation priors of all
regions can be computed, and form the prior of the input image.

In Figure 1, one might observe that, on one hand, there are still some
regions of the background without connection with the image border, on
the other hand, some regions of objects are inevitably merged with the
background. Indeed, such a strategy can not perfectly separate the objects
from the background. However, the segmentation prior can serve as a
guidance cue for LRMR model to address the task of saliency detection.

Suppose an input image I is segmented into N superpixels, and repre-
sented by a feature matrix A = [a1,a2, · · · ,aN ]. Let Hc = [hc

1,h
c
2, · · · ,h

c
N ]

denote a set of CG segmentation prior values of the superpixels. In order
to recover well salient objects with the LRMR model, the feature matrix
A is firstly modulated by the CG segmentation prior Hc

B = [hc
1a1,hc

2a2, · · · ,hc
NaN ]. (2)

Then, the modulated feature matrix B is used as the input of the standard
LRMR model

min ‖U‖∗+λ‖E‖1

s.t. B = U+E
(3)

 

Figure 1: Examples of segmentation prior. First row: input images; sec-
ond row: segmentation results; last row: segmentation prior.
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Figure 2: ROC curves and AUC scores of different models on MSRA-
1000 (left) and PASCAL-1500 (right) datasets.

where λ is a coefficient to balance U and E, ‖ · ‖∗ denotes the nuclear
norm of matrix U (the sum of singular values of U), and ‖ · ‖1 indicates
l1-norm which ensures to produce a sparse matrix E. With the optimal
sparse matrix E, the saliency of a superpixel is given by the l1 energy of
corresponding vectors in E.

The success of the proposed segmentation prior modulated low-rank
matrix recovery model (SLR) is mainly due to two reasons. On one hand,
real images typically possess high redundancy in the feature space, and
object pixels tend to be salient compared to the background, which en-
ables to discover objects from the sparse matrix E. On the other hand,
as the segmentation prior assigns small weights to most of background
feature vectors in B, the l1 energies of the corresponding vectors in the
recovered matrix E are inclined to be small. Therefore, objects can be
captured more effectively from the matrix E.

The proposed SLR model is evaluated on two datasets (2500 im-
ages in total): the widely used MSRA-1000 dataset and the newly intro-
duced but more challenging PASCAL-1500 dataset. The performance of
saliency detection is measured by receiver operator characteristic (ROC)
curve and the area under the curve (AUC). As shown in Figure 2, the pro-
posed model outperforms 8 state-of-the-art models [1-8] on both datasets,
with 1.1% and 3.7% improvement in terms of AUC score on MSRA-1000
and PASCAL-1500, respectively, compared to the best one among the ref-
erence models.
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