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Abstract

The ego-motion of a moving RGB-Z sensor is computed using combined range flow
and optical flow pixel constraints. The emphasis of the work is on computationally cheap
yet accurate estimation of inter-frame translation and rotation parameters using a linear
small rotation model. To ensure accurate inter-frame motion estimates, an iterative form
of the estimator is developed which repeatedly warps the target frame and measures its
misalignment with the current frame. As these motion estimates are integrated tem-
porally, to minimise drift in pose over time, additional temporal constraint is provided
through the use of anchor frames. The algorithm is evaluated on the recently published
TUB RGB-D Benchmark which also includes a set of standard metrics. Results pre-
sented suggest that performance is commensurate with alternative methodologies such
as SLAM but at a fraction of the computational cost.

1 Introduction
Recovering the ego-motion of a moving camera within a static scene supports many appli-
cations in robotics and computer vision. The presented work is motivated by pre-vis ap-
plications in the film industry; specifically the ability to render digital assets into the scene
during production in real-time. A low-cost commodity depth camera can be easily mounted
on and calibrated to a high quality production cameras and used to extract changes in sensor
pose from the induced motion of the rigid scene. This work explores the effectiveness of the
computationally efficient range flow technique to generate this real time pose information
directly from the depth stream of a Kinect sensor.

A number of challenges within the approach are addressed. First, an iterative version
of the small rotations motion estimator is developed to ensure the most accurate inter-frame
estimates. Second, the substantial issue of drift is addressed - the accumulated error between
true and estimated sensor pose as motion estimates are temporally integrated. Anchor frames
which enjoy significant overlap with subsequent frames are stored and used to provide addi-
tional temporal range flow constraint within the estimation process. Where there are loops
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in the data sequence, it is advantageous to select anchors from previously seen parts of the
scene. Finally, in some scene configurations, there is insufficient constraint from the depth
images. We exploit the availability of registered intensity images to further constrain the
sensor motion using the optical flow framework.

The evaluation of new algorithms which exploit the depth modality require depth datasets
with associated ground truth. Our work is validated in section 5 using the recently published
TUB RGB-D Benchmark. This resource contains extensive sets of depth and video se-
quences of varying lengths and differing levels of challenge such as large visual velocities
or large dominant planar surfaces. The resource also provides an evaluation framework of
metrics as well as downloadable evaluation scripts and an online evaluation tool.

2 Related Work
There have been a variety of approaches developed to recover the motion of an image sensor
moving within a scene. These include the use of corresponding depth features [15], the
iterated closest point algorithm (ICP) [4, 12], simultaneous location and mapping (SLAM)
using tracked 2D features [6, 14] and range flow [10, 11]. Impressive real-time results have
been achieved particularly by SLAM which typically employs extended Kalman tracking of
persistent 2D features to recover necessarily both a 3D ‘map’ of the position of these features
and the location of the camera within the scene. As is the case in this work, an important
and potentially restrictive assumption is that the scene is rigid without independent moving
scene elements. Viable depth sensors have been available for over two decades whether
using laser range finders or stereo vision systems. It was quickly realized that the optical
flow mechanism could be easily extended to depth images [11, 16]. The recent availability of
commodity frame-rate depth sensors has given rise to renewed interest in recovering motion
from depth data[9, 12].

Analogous to optical flow, range flow is a per-pixel constraint on the 3D displacement
of an imaged 3D point given its local spatio-temporal depth derivatives. These must be
combined across a region or an image to provide sufficient constraint to extract 3D motion.
Where the goal is to recover a 3D displacement field given a possibly moving scene with in-
dependently moving objects (or even a single non-rigid object), this per-pixel constraint can
be embedded in a global energy functional which penalises pixel motions which do not sat-
isfy the local range flow constraints and which are not locally smooth [3, 9] - an approach es-
sentially equivalent to regularisation in optical flow[2]. Alternatively if some motion model
is used which is valid for the rigid scene (excluding any independently moving foreground
objects), then a large number of pixel constraints can be used to over constrain very few
motion parameters. In the case of optical flow, such models include affine motion, zoom and
the small rotation approximation of the 3D rotation and translation of the camera[1].

The benefits of combining the optical flow constraint with range flow have already been
recognised[3, 10, 13]. Barron and Spies embed these as error terms in a global energy func-
tional with additional local first-order smoothness constraints to extract the 3D displacement
field[3]. Quiroga et al generate 3D translation fields for image patches using a template
matching approach[13], while Haville et al recover the 3D pose changes of pre-segmented
image regions using an affine projection assumption[10].

Attention is also drawn to the relevant optical flow literature which informs the optimiza-
tion approach adopted here. In particular, the iterative robust regression approaches of Black
and Anandan[5] and Giaccone and Jones[8].
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3 Deriving constraint from the depth and intensity images

3.1 The Motion and Projection Models
Scene displacement is induced by the movement of the camera whose rotation ω and transla-
tion t motion parameters can be modelled using the useful linear small rotation formulation
when the movement between consecutive frames is relatively small. Here the 3D displace-
ment ∆X = (∆X ,∆Y,∆Z)T of a 3D scene point X = (X ,Y,Z)T is given by

∆X = ω ×X+ t =

 Zωy −Y ωz + tx
Xωz −Zωx + ty
Y ωx −Xωy + tz

= M(X)a (1)

where a is a concatenation of the motion parameters a = (ω, t)T , and

M(X) =

 0 Z −Y 1 0 0
−Z 0 X 0 1 0
Y −X 0 0 0 1

 (2)

Any small 2D image pixel displacement ∆x can be related directly to the 3D displacement
∆X of the point X which gave rise to it by differentiating the perspective projection equations
x = x0+X fx/Z and y = y0+Y fy/Z with respect to the components of the 3D point X (where
fx and fy are the normalised focal lengths and (x0,y0)

T is the centre of the image).

∂x
∂X

= P(X) =

[
fx/Z 0 −X fx/Z2

0 fy/Z −Y fy/Z2

]
(3)

Thus equations 1 and 3 linearly relate the 2D displacement ∆x(x,a) at pixel x to the 3D
motion a which gave rise to the displacement as

∆x(x,a)≈ P(X)M(X)a (4)

3.2 The Range Flow Constraint
Analogous to the constant brightness equation used to generate the optical flow constraint,
the following depth constraint relates how a 3D point is captured in temporally separated
depth images. A 3D point X (measured in the depth camera’s coordinate system) is captured
at pixel position x = (x,y)T in the depth map Zt . This point undergoes a 3D motion ∆X
which results, first, in an image motion ∆x between frames t and τ , and second, in a change
of the depth ∆Z of the 3D point captured at this new image location x+∆x. Thus the range
flow constraint is formulated as

Zτ(x+∆x) = Zt(x)+∆Z (5)

In practice an accurate estimator needs to iteratively refine estimates of the underlying 3D
motion a which gave rise to the displacements ∆X and ∆x. To achieve this, the above depth
constraint must be reformulated as follows

Zτ (x+∆x(x,a+∆a)) = Zt(x)+∆Z(x,a+∆a) (6)

where ∆a is an update of the current motion estimate a, and the image Zτ(x+∆x(x, ·)) is a
version of Zτ(x) warped by the displacement field ∆x(x, ·).



4 JONES: RECOVERY OF EGO-MOTION USING OPTICAL FLOW AND RANGE FLOW

Using equation 4, the term ∆x(x,a+∆a) from the left hand side of equation 6 can be
rewritten as ∆x(x,a+∆a) = ∆x(x,a)+P(X)M(X)∆a. Similarly, using equation 1, the term
∆Z(x,a+∆a) from the right hand side can be rewritten as ∆Z(x,a)+M3(X)∆a where M3(X)
is the third row of equation 2. Thus equation 6 can be rewritten as

Zτ

(
x+∆x(x,a)+P(X)M(X)∆a

)
= Zt(x)+∆Z(x,a)+M3(X)∆a (7)

A first-order Taylor expansion of the left hand side of the above generates

Zτ

(
x+∆x(x,a)+P(X)M(X)∆a

)
≈ Zτ

(
x+∆x(x,a)

)
+∇Zτ

(
x+∆x(x,a)

)
P(X)M(X)∆a

which allows the constraint equation to be rewritten to relate the motion update ∆a linearly
to (i) the gradient of the warped depth image ∇Zτ , (ii) the temporal depth difference, and
(iii) the current estimate of the change in depth. Combining the above two equations gives{

∇Zτ
(
x+∆x(x,a)

)
P(X)M(X)−M3(X)

}
∆a=

{
Zt(x)−Zτ

(
x+∆x(x,a)

)}
+∆Z(x,a) (8)

Computing the image gradients ∇Zτ (x+∆x(x,a)) of the warped image is problematic for
two reasons. First, these gradients would require recomputing with each iteration. Second,
the gradient calculation enhances the noise introduced by any interpolation process used in
the warping. However as a+∆a → a∗, the true motion, Zτ (x+∆x(x,a))→ Zt (x). There-
fore, we exploit our third approximation ∇Zτ (x+∆x(x,a)) ≈ ∇Zt (x) to generate the final
constraint equation

Φ(X)∆a =
{

Zt(x)−Zτ
(
x+∆x(x,a)

)}
+∆Z(x,a) (9)

where

Φ(X) = {∇Zt (x) ,−1}P(X)M(X) =


−Y −Zy fy −ZxXY fx/Z2 −ZyY 2 fy/Z2

X +Zx fx +ZxX2 fx/Z2 +ZyXY fy/Z2

−ZxY fx/Z +ZyX fy/Z
Zx fx/Z
Zy fy/Z

−1−ZxX fx/Z2 −ZyY fy/Z2



T

and ∇Zt(x) = (Zx,Zy) are the spatial derivatives of Zt(x).

3.3 The Optical Flow Constraint
The constant brightness equation relates how the luminance at a 3D scene point is captured in
temporally separated intensity images. A 3D point X is imaged at pixel position x = (x,y)T

in the intensity map It . This point undergoes a 3D motion ∆X which results in an image
motion ∆x between frames t and τ and reprojects with the same intensity at the new image
location x+∆x. Thus the optical flow constraint begins with the formulation

Iτ(x+∆x) = It(x) (10)

As before, iterative refinement of motion estimates require a formulation in terms of an
update ∆a to the current motion estimate a i.e.

Iτ(x+∆x(x,a+∆a)) = It(x) (11)



JONES: RECOVERY OF EGO-MOTION USING OPTICAL FLOW AND RANGE FLOW 5

A first-order Taylor expansion of the left hand side of the above generates

Iτ

(
x+∆x(x,a)+P(X)M(X)∆a

)
≈ Iτ

(
x+∆x(x,a)

)
+∇Iτ

(
x+∆x(x,a)

)
P(X)M(X)∆a

which allows the constraint equation to be rewritten in the classical optical flow formulation
relating the motion update ∆a linearly to the gradient of the warped intensity image ∇Iτ and
the temporal depth difference as follows.

∇Iτ
(
x+∆x(x,a)

)
P(X)M(X)∆a = It(x)− Iτ

(
x+∆x(x,a)

)
(12)

As before, rather than computing the intensity gradients ∇Iτ (x+∆x(x,a)) of the warped
image we again exploit the observation that as a+∆a→ a∗, the true motion, Iτ (x+∆x(x,a))→
It (x) to generate the final intensity constraint equation

Ψ(X)∆a = It(x)− Iτ
(
x+∆x(x,a)

)
(13)

where

Ψ(X) = ∇It (x)P(X)M(X) =


−Iy fy − IxXY fx/Z2 − IyY 2 fy/Z2

Ix fx + IxX2 fx/Z2 + IyXY fy/Z2

−IxY fx/Z + IyX fy/Z
Ix fx/Z
Iy fy/Z

−IxX fx/Z2 − IyY fy/Z2



T

and ∇It(x) = (Ix, Iy) are the spatial derivatives of It(x).

3.4 A Least Squares Estimator
The goal is to derive an estimator for recovering the rotational and translational motion of
a rigid moving scene between successive frames. This parameter estimation problem will
be posed as the optimisation of an error functional where the range flow and optical flow
constraints are expressed as the error terms eZ(x,∆a) and eI(x,∆a) respectively i.e.

eZ(x,∆a) = Φ(x)∆a−Γ(x,a), eI(x,∆a) = Ψ(x)∆a−Λ(x,a) (14)

where Γ(x,a) = Zt (x)−Zτ (x+∆x(x,a))+∆Z(x,a) and Λ(x,a) = It (x)− Iτ (x+∆x(x,a)).
Combining such error terms from multiple pixels across the depth image p ∈ I generates the
following pseudo-inverse estimator

∆a =
[

∑
p∈I

Φ(xp)
T Φ(xp)+λIΨ(xp)

T Ψ(xp)
]−1

∑
p∈I

Φ(xp)
T Γ(xp,a)+λIΨ(xp)

T Λ(xp,a)

(15)
The weight λI controls the relative influence of the two types of constraint. Least squares
estimators are particularly sensitive to outliers. In this application there are two principle
sources of such outliers. First, any independently moving object whose motion does not
conform to the rigid scene assumption. Second, pixels whose current and warped depth or
intensity data belong to different surfaces. For this reason, pixels where the difference in
depth between current and warped images exceeds 50mm are excluded from the estimator.
Similarly pixels whose intensity difference exceeds 33 greylevels are also excluded.
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4 Minimising drift using Anchor Frames
Simply integrating between-frame motion estimates over time will inevitably result in drift
i.e. the accumulated error between true and estimated sensor pose. To illustrate this, Fig-
ure 1 compares over time the three estimated translation components of the camera position
with the ground truth for the Freiburg 1 Room sequence from the publicly available RGB-D
SLAM Dataset and Benchmark[17]. The error plot (Euclidean distance between estimated
and ground truth position) clearly increases over time reaching a discrepancy of over 75cm.

To minimise this drift, additional temporal constraint can be included. Specifically we
introduce the concept of an anchor frame. In addition to recovering a parameter update
for the motion between the current frame and the previous frame, the same update is also
constrained by the motion between the current frame and its anchor. A depth frame is an
anchor to all subsequent frames with which it retains a significant degree of overlap. Once
the amount of overlap falls below a threshold, the last frame is promoted as the next anchor.
Updates to the motion are now computed from two sources of range flow constraint

eZ(x,∆a) = Φ(x)∆a−Γ(x,at,t−1,Zt ,Zt−1)

eA(x,∆a) = Φ(x)∆a−Γ(x,at,At ,Zt ,ZAt ) (16)

where Γ(x,a,Zt ,Zτ) = Zt (x)−Zτ (x+∆x(x,a))+∆Z(x,a), the parameters at,τ refer to the
motion from frame t to frame τ , and the index At refers to the anchor frame of the current
frame at time t. To exploit this additional constraint, the estimator of equation 15 must be
modified as follows

∆a =
[

∑
p∈I

λZΦ(xp)
T Φ(xp)+λAΦ(xp)

T Φ(xp)+λIΨ(xp)
T Ψ(xp)

]−1

∑
p∈I

[
λZΦ(xp)

T Γ(xp,at,t−1,Zt ,Zt−1)+λAΦ(xp)
T Γ(xp,at,At ,Zt ,ZAt )

+λIΨ(xp)
T Λ(xp,at,t−1, It , It−1)

] (17)

where the positive weights λZ , λA and λI (such that λZ +λA+λI = 1) control the relative
influence of the depth, anchor and intensity constraints.

When there are loops in the sequence, it would be advantageous to select anchors from
previously seen data rather than using the last frame. Such constraint from early frames
makes a significant impact on the degree of drift. To this end, a list of all anchor frames
is maintained. When a new anchor is required, this list is searched for the earliest anchor
overlapping the current frame. However, a consequence of this approach, is the linear growth
in storage requirements for these anchors and in the computational cost of searching through
these anchors as the length of the video sequence grows.

Whereas the initial estimate of the motion between a frame and its predecessor is a(0)t,t−1 =

0, the initial estimate a(0)t,At
of the motion between frame t and its anchor is computed from

the pose of the camera when the anchor frame was selected and the pose of the camera at the
previous frame. In fact, on the basis that the last motion estimate is a good approximation of
the current motion, in both cases, these initial estimates are first updated by a(∞)

t−1,t−2.
For this new estimator, Figure 2 compares the three estimated translation components of

the camera position with the ground truth for the Freiburg 1 Room sequence. In compar-
ison to Figure 1, the error plot clearly shows the impact of exploiting additional temporal
constraint from the anchor frames.
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Figure 1: Pose Accuracy: No drift control (solid ground truth, dotted estimated)

Figure 2: Pose Accuracy: Drift control using anchor frames (solid ground truth, dotted
estimated)

5 Evaluation

The recently published TUM RGB-D Benchmark [17] is used to evaluate the these motion
estimators. This resource provides Kinect depth and registered RGB sequences with syn-
chronized ground truth of the sensor pose for extensive set of sequences of varying lengths
and differing levels of challenge such as large visual velocities or large dominant planar
surfaces. As in the case of Endres et al (2012)[7], our study uses nine Freiburg1 (FR1)
sequences in which the Kinect sensor is moved within a typical indoor environment. The re-
source also provides an evaluation tool that computes the root mean square error (RSME) be-
tween an estimated trajectory and the associated ground truth once these have been aligned.
Specifically we use the translation and rotation RMSE measures, T-RMSE and R-RMSE
respectively, and add the maximum value of the absolute trajectory error (MATE) which
identifies the maximum sensor positional error anywhere along the estimated trajectory.

5.1 Algorithm Parameters

Optical flow and range flow constraint is calculated from a subset of the image pixels; specif-
ically every 14 horizontal and vertical pixels. Greylevel and depth spatial gradients are com-
puted by plane fitting to a 9× 9 neighbourhood around each subsampled pixel. Warping
uses a simple nearest neighbour interpolation scheme. The maximum number of iterations
per pixel is 50. However more typical values are 12-15. New anchors are selected once the
degree of overlap between a current depth frame and its current anchor is less than 80%.
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5.2 Combining Different Sources of Constraint
The first experiment shows the impact of augmenting the basic range flow algorithm with
additional sources of constraint. Tables 1 and 2 present the T-RMSE, R-RMSE and MATE
metrics for three different versions of the algorithm based on equation 17:
1. the basic range flow estimator (λZ = 1, λA = 0, λI = 0) in columns 3-5 of Table 1;
2. an estimator using depth and anchors (λZ = 0.33, λA = 0.67, λI = 0) in columns 6-8;
3. an estimator using depth, anchors and intensity (λZ = 0.25, λA = 0.5, λI = 0.25) in
columns 3-5 of Table 2.

Sequence Length Depth Constraint Only Depth and Anchor Constraint
(frames) T-RMSE R-RMSE MATE T-RMSE R-RMSE MATE

FR1 xyz 798 4.1 cm 3.1◦ 7.9 cm 3.2 cm 2.0◦ 6.6 cm
FR1 room 1360 7.4 cm 3.8◦ 35 cm 6.5 cm 3.2◦ 40 cm
FR1 rpy 722 7.9 cm 5.1◦ 23 cm 7.2 cm 4.9◦ 21 cm
FR1 360 755 10.6 cm 7.5◦ 24 cm 9.3 cm 6.7◦ 40 cm
FR1 teddy 1418 10.5 cm 5.5◦ 32 cm 9.7 cm 4.2◦ 34 cm
FR1 desk2 639 9.8 cm 6.4◦ 44 cm 12.6 cm 7.3◦ 41 cm
FR1 plant 1139 18.2 cm 5.8◦ 98 cm 13.7 cm 4.2◦ 44 cm
FR1 desk 595 Failed at frame 300 Failed at frame 300
FR1 floor 1245 Failed Failed at frame 0

Table 1: Measuring the Impact of Sources of Constraint

Sequence Length Depth, Anchor and Intensity RGB-D SLAM[7]
(frames) T-RMSE R-RMSE MATE T-RMSE R-RMSE MATE

FR1 xyz 798 3.3 cm 2.5◦ 6.5 cm 2.1 cm 0.9◦ -
FR1 room 1360 8.5 cm 3.1◦ 44 cm 21.9 cm 9.0◦ -
FR1 rpy 722 7.5 cm 4.9◦ 23 cm 4.2 cm 2.5◦ -
FR1 360 755 10.3 cm 6.7◦ 40 cm 10.3 cm 3.4◦ -
FR1 teddy 1418 10.4 cm 4.8◦ 34 cm 13.8 cm 4.8◦ -
FR1 desk2 639 12.6 cm 7.3◦ 41 cm 10.2 cm 3.8◦ -
FR1 plant 1139 13.9 cm 4.2◦ 40 cm 14.2 cm 6.3◦ -
FR1 desk 595 23.7 cm 12.5◦ 83 cm 4.9 cm 2.4◦ -
FR1 floor 1245 8.2 cm 2.8◦ 52 cm 5.5 cm 2.4◦ -

Table 2: Comparing the Range Flow Estimator with D-SLAM[7]

While there is considerable variation in performance between sequences, it is clear from
a comparison of corresponding metrics that the use of anchors significantly reduces drift.
Empirically it has been found that a ratio λA/λZ ≈ 2 leads to optimal performance. Figures
1 and 2 provide a visual demonstration of the benefit of this additional temporal support.

Despite the improvement, the method fails entirely on the desk and floor sequences.
Analysis of the frames at which this failure occurs points to a degeneracy in the structure of
3D data: specifically, the scene data is effectively planar. However, when constraint from
the intensity image is included (columns 3-5 of Table 2), plausible estimates of the sensor
motion continue to be generated. Overall, however, inclusion of constraint based on intensity
reduces the accuracy of the motion estimator. Empirically it has been determined that a
weight λI = 0.25 generates an optimal balance of increased robustness versus accuracy.
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5.3 Comparison with RGB-D SLAM
To provide a comparison of our approach with a state of the art technique, we present the
equivalent performance metrics of the RGB-D SLAM method of Endres et al[7]. In this ap-
proach SIFT intensity features are extracted and matched between frames. Using the depth
data associated with these features, the 3D inter-frame motion is recovered using RANSAC.
A further optimisation across all previous frames pose is used to generate global consistent
pose interpretation. The algorithm is run on the same nine TUM RGB-D Benchmark se-
quences. Their results are reproduced in columns 6 and 7 of Table 2. A comparison with the
corresponding metrics for the Range Flow approach (columns 3 and 4 of Table 2) for each
of the sequences suggests that their performances are commensurate.

5.4 Execution Times

Table 3 gives a breakdown of the typical
processing times for each stage of the algo-
rithm. The actual time is largely determined
by the number of iterations before conver-
gence. Reading depth frames from the disk
takes a substantial amount of time (≈ 43
msec) as compared to the 3 msec required
to read a depth and intensity frame from the
Kinect device. As a consequence, the algo-
rithm does generate real-time pose estimates
when directly connected to a Kinect device.
This C++ coded algorithm is compiled in Re-
lease Mode in Visual Studio and run on a

Samsung P460 Notebook i.e. a Intel Core2
Duo T6400 @ 2.00GHz processor.

Stage Time (msecs)
Reading images 42.8
Anchor Selection 3.0
Masks and gradients 13.3
Errors and motion 12.4
Warping images 8.6
Total 80.1

Table 3: Algorithm Times

6 Discussion
A real-time range flow-based estimator has been developed and evaluated on the TUB RGB-
D Benchmark. The estimator recovers the translation and rotation components of a sensors
motion and integrates these temporally. To minimise drift in the pose, additional temporal
constraint is provided through the use of anchor frames. Compared to traditional SLAM ap-
proaches, range flow estimators enjoy significant advantages. No computationally expensive
recovery of complex image features is required, Moreover no tracking of these features is re-
quired. Range flow and optical flow constraints are computed relatively cheaply using simple
smoothed gradients and temporal differences on simple rectangular grids. A notable failure
mode of the basic approach arises where there is insufficient constraint to perform the matrix
inversion in equation 17. The integration of optical flow constraints robustly addressed this
problem in a very straight forward manner.

Using the TUM RGB-D Benchmark, pose accuracy can reasonably be judged as com-
mensurate with SLAM approaches (as represented by the RGB-D SLAM system) but avail-
able at a fraction of the computational cost. Indeed a real-time implementation is running on
an old Samsung P460 Notebook. Given the low computational cost of generating reasonably
accurate pose estimates, the presented approach could usefully bootstrap more computation-
ally expensive techniques.
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