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Introduction

Recovering the ego-motion of a moving camera within a static scene sup-
ports many applications in robotics and computer vision. The presented
work is motivated by pre-vis applications in the film industry; specifi-
cally the ability to render digital assets into the scene during production
in real-time. A low-cost commodity depth camera can be easily mounted
on and calibrated to a high quality production cameras and used to extract
changes in sensor pose from the induced motion of the rigid scene. This
work explores the effectiveness of the computationally efficient range
flow technique to generate this real time pose information directly from
the depth stream of a Kinect sensor.
A number of challenges within the approach are addressed. First, an itera-
tive version of the small rotations motion estimator is developed to ensure
the most accurate inter-frame estimates. Second, the substantial issue of
drift is addressed - the accumulated error between true and estimated sen-
sor pose as motion estimates are temporally integrated. Anchor frames
which enjoy significant overlap with subsequent frames are stored and
used to provide additional temporal range flow constraint within the esti-
mation process. Where there are loops in the data sequence, it is advanta-
geous to select anchors from previously seen parts of the scene. Finally, in
some scene configurations, there is insufficient constraint from the depth
images. We exploit the availability of registered intensity images to fur-
ther constrain the sensor motion using the optical flow framework.
Analogous to optical flow, range flow is a per-pixel constraint on the 3D
displacement of an imaged 3D point given its local spatio-temporal depth
derivatives. These must be combined across a region or an image to pro-
vide sufficient constraint to extract 3D motion[1, 2].

The Optical Flow and Range Flow Constraints

The constant brightness equation relates how the luminance at a 3D scene
point is captured in temporally separated intensity images. A 3D point X
is imaged at pixel position x = (x,y)T in the intensity map It . This point
undergoes a 3D motion ∆X = (∆X ,∆Y,∆Z)T which results in an image
motion ∆x between frames t and τ and reprojects with the same intensity
at the new image location x + ∆x. Thus the optical flow constraint is
defined as

Iτ (x+∆x) = It(x) (1)

Analogous to the constant brightness equation, the following range
constraint relates how a 3D point is captured in temporally separated
depth images. A 3D point X (measured in the depth camera’s coordi-
nate system) is captured at pixel position x = (x,y)T in the depth map Zt .
This point undergoes a 3D motion ∆X which results, first, in an image
motion ∆x between frames t and τ , and second, in a change of the depth
∆Z of the 3D point captured at this new image location x+∆x. Thus the
range flow constraint is formulated as

Zτ (x+∆x) = Zt(x)+∆Z (2)

Motion Model

Scene displacement is induced by the movement of the camera whose
rotation ω and translation t motion parameters can be modelled using
the useful linear small rotation formulation when the movement between
consecutive frames is relatively small. Here the 3D displacement ∆X =
(∆X ,∆Y,∆Z)T of a 3D scene point X = (X ,Y,Z)T is given by

∆X = ω ×X+ t =

 Zωy −Y ωz + tx
Xωz −Zωx + ty
Y ωx −Xωy + tz

= M(X)a (3)

where a is a concatenation of the motion parameters a = (ω, t)T .

Minimising drift using Anchor Frames

Simply integrating between-frame motion estimates over time will in-
evitably result in drift i.e. the accumulated error between true and esti-
mated sensor pose. To minimise this, additional temporal constraint can
be included. Specifically we introduce the concept of an anchor frame.
In addition to recovering a parameter update for the motion between the
current frame and the previous frame, the same update is also constrained
by the motion between the current frame and its anchor. A depth frame
is an anchor to all subsequent frames with which it retains a significant
degree of overlap. Once the amount of overlap falls below a threshold,
the last frame is promoted as the next anchor. Updates to the motion are
now computed from two sources of range flow constraint.

When there are loops in the sequence, it would be advantageous to
select anchors from previously seen data rather than using the last frame.
Such constraint from early frames makes a significant impact on the de-
gree of drift. To this end, a list of all anchor frames is maintained. When a
new anchor is required, this list is searched for the earliest anchor overlap-
ping the current frame. However, a consequence of this approach, is the
linear growth in storage requirements for these anchors and in the compu-
tational cost of searching through these anchors as the length of the video
sequence grows.

Evaluation

The recently published TUM RGB-D Benchmark [3] is used to evaluate
the motion estimator. This resource provides Kinect depth and registered
RGB sequences with synchronized ground truth of the sensor pose for
extensive set of sequences of varying lengths and differing levels of chal-
lenge such as large visual velocities or large dominant planar surfaces.
Our study uses nine Freiburg1 (FR1) sequences in which the Kinect sen-
sor is moved within a typical indoor environment. The resource also
provides an evaluation tool that computes the root mean square error
(RSME) between an estimated trajectory and the associated ground truth
once these have been aligned. Specifically we use the translation and ro-
tation RMSE measures, T-RMSE and R-RMSE respectively, and add the
maximum value of the absolute trajectory error (MATE) which identi-
fies the maximum sensor positional error anywhere along the estimated
trajectory.

Conclusion

Pose accuracy can reasonably be judged as commensurate with SLAM
approaches (as represented by the RGB-D SLAM system) but available at
a fraction of the computational cost. Indeed a real-time implementation
is running on an old Samsung P460 Notebook. Given the low computa-
tional cost of generating reasonably accurate pose estimates, the presented
approach could usefully bootstrap more computationally expensive tech-
niques.
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