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Abstract
Contour detection is an important and fundamental problem in computer vision which

finds numerous applications. Despite significant progress has been made in the past
decades, contour detection from natural images remains a challenging task due to the d-
ifficulty of clearly distinguishing between edges of objects and surrounding backgrounds.
To address this problem, we first capture multi-scale features from pixel-level to segment-
level using local and global information. These features are mapped to a space where
discriminative information is captured by computing posterior divergence of Gaussian
mixture models and then used to train a random forest classifier for contour detection. We
evaluate the proposed algorithm against leading methods in the literature on the Berkeley
segmentation and Weizmann horse data sets. Experimental results demonstrate that the
proposed contour detection algorithm performs favorably against state-of-the-art meth-
ods in terms of speed and accuracy.

1 Introduction
Object contour is of prime importance as it contains essential visual information, such as
shape and identity that finds numerous applications. Contour detection is a fundamental
problem in computer vision which is closely related to other tasks, e.g., segmentation, shape
analysis, pose estimation, visual saliency, and object recognition, to name a few.

Numerous contour detection methods have been proposed in the literature [15]. The
Canny edge detector [6] computes image gradients with non-maximum suppression which
facilitates contour extraction. The compass operator [19] uses distributions of color pixels to
determine the orientation of a diameter that maximizes the difference between two halves of
a circular window, thereby identifying edges and contours. A tree-structured boosted edge
learning (BEL) method [8] is proposed by selecting a large number of features extracted
from image patches and combining them across different scales for edge and object bound-
ary detection. However, this method has high computational complexity as it involves a
large number of features. Stein et al. [20] propose a method based on over-segmented im-
age regions and appearance as well as motion cues to train a classifier for finding object
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boundaries. Ren [17] introduces a multi-scale boundary detection algorithm by combining
strength of both large-scale and small-scale detection results. With this multi-scale approach,
significant improvements are demonstrated in detecting boundaries on large sets of natural
images. The global probability of boundary (gPb) detector [3, 12] combines multiple local
cues in a probabilistic framework based on spectral clustering, which shows state-of-the-art
performance on the Berkeley segmentation data Set (BSDS500). Most recently, Papari et
al. [14] use steerable filters to construct a model with multilevel inhibition terms to remove
spurious edges in textured regions for contour detection.

In this work, we propose a learning algorithm for contour detection based on multi-level
visual cues. We extract pixel-level features that integrate both local and global visual infor-
mation. In addition, segment-level features are extracted to exploit structural information of
contours. All the features are mapped to a score space [10? ] for extracting discriminative
ones via a novel algorithm based on posterior divergence of Gaussian mixture models. The
motivates of introducing the feature mapping will be further explained in the second part of
Section 4. A random forest classifier is trained based on these features for contour detection.
In addition, a contour completion method based on the Gestalt theory is adopted to further
improve the detection results. We evaluate the proposed algorithm with state-of-art methods
on several databases including the Berkeley segmentation and Weizmann horse data sets.
Experimental results bear out feature selection from multi-scale visual cues via posterior
divergence with a random forest classifier facilitates effective contour detection in natural
images.

2 Pixel-Level Features
Pixel-level features provide raw and basic visual cues for detection of object contours. To
capture effective visual information on the pixel level, we extract local and global features
at multiple scales. Local visual cues extracted from edges are first exploited in order to
account for object contours at different scales. Global information extracted from visual
saliency is then incorporated to provide cues of salient objects in the scenes. These features
are integrated to form effective pixel-level features to represent object contours.

2.1 Multi-Scale Point Features
Basic point (pixel) features have been widely used for representing edge information of
grayscale and color images such as image gradients, texture inhibition, brightness and color
gradients as well as compass operators. As these features capture different visual informa-
tion, we extract and combine these features for contour detection.

Image Gradient. Each image I is convolved with a Gaussian kernel of width σ to compute
its gradient ∇I. The magnitude |∇I| reveals the strength of an edge at each pixel and the
direction or angle θ∇ contains the intensity discontinuity information. The magnitude (MG)
and direction (DG) of Gaussian gradients are extracted as local features.

Texture Inhibition. In order to remove small edges in highly textured regions, we use the in-
hibition term that suppress the response on the texture regions based on steerable filters [14].
It is computed by the convolution of the Gaussian gradient magnitude with the inhibition
term (IT):

t(x,y) = {Vo ∗ |∇I|}(x,y)+ re{e2iθ∇(x,y)[{V2 ∗ |∇I|}(x,y)]}, (1)

where re{·} returns the real part and ∗ is the convolution operator. The steering bases are de-
fined by V0(ρ,φ) =

ρ2

2 , V2(ρ,φ) =
ρ2

2 e2iφ , which are controlled by two parameters ρ and φ .
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It can be shown that the difference of magnitude of Gaussian gradient and the inhibition term
is the difference of Gaussian (DoG) feature [14] which provides useful edge information.

Brightness and Color Gradients. The probabilistic boundary (Pb) [13] and generalized
probabilistic boundary (gPb) methods [3, 12] exploit brightness, color, texture and segment-
ed regions to detect contours. For computational efficiency, we exploit the brightness and
color gradients in this work. Similar to [13], we use a circular disc of radius r at pixel (x,y)
and split into two half discs by a diameter at angle θ where they are represented by his-
tograms of brightness and color in the CIELAB space. We compute the χ2-distance between
two histograms of half discs to compute the oriented gradient G(x,y,θ ,r), thereby encoding
both the brightness gradient (BG) and color gradient (CG) features.

Compass Operator. The compass operator [19] determines the orientation of a diameter
which maximizes the difference between two half discs of a circular compass at each pixel
(x,y). It detects edges without assuming that the regions on both sides have constant color
by pixel distributions rather than the means. The distance between two color signatures is
computed by di j = 1−exp(−Ei j/γ), where Ei j is the Euclidean distance between color i and
color j, and γ is a constant. The distance between color signatures of equal mass of half discs
S1 and S2 are computed by aggregating the earth mover’s distance (EMD) [18] between the
color signatures of every pair of colors i and j which minimizes ∑i∈S1 ∑ j∈S2

di j fi j, where fi j
indicates the flow between color i and j subject to all the constraints that move all the mass
from S1 to S2 [18]. The resulting EMD can be represented as a function f (θ) (0◦≤ θ ≤ 180◦)
that finds the orientation of a diameter to maximize the difference between two half discs,
i.e., θ̂ = argmaxθ f (θ), and used as the compass operator (CO) feature.

Multi-Scale Representation. We extract the above-mentioned features on every point of
an image and integrate them to detect contours. In order to deal with the scale-space prob-
lem [11]. we obtain local features at different scales by changing the standard deviation of
image gradient and texture inhibition, direction of brightness and color gradient, and the s-
tandard deviation of a Gaussian derivative in the compass operator. These features provide
rich descriptions of image details at different levels, thereby rendering a multi-scale rep-
resentation. As edges can be extracted at different scales, several pixels on one edge have
equally strong response and they should be considered to describe contours. Thus, we extract
local features at three different scales.

2.2 Multi-Scale Global Features
It has been shown that object contours can be better extracted by incorporating global in-
formation (e.g., the gPb method [3, 12]) than simply local visual cues (e.g., the pb algo-
rithm [13]). However, existing methods that exploit global information (e.g., gPb) are often
time consuming. For efficiency and effectiveness, we incorporate global visual saliency [7]
in our approach. Cheng et al. [7] present a simple and efficient saliency extraction algorithm
based on region contrast which exploits histogram contrast and spatial information. Each
image is fist segmented into regions and the saliency value is computed by measuring its
color contrast to all other regions in the image: S(rk) = ∑rk 6=ri w(ri)Dr(rk,ri), where w(ri)
is the weight of region ri and Dr(·, ·) is the color distance between the two regions. The
weighting term can increase the effects of closer regions and decrease those farther regions.
With this method, the distinctness of each pixel is described in a saliency map S.

Given a pixel I(x,y), we consider the local contrast of the saliency values with respect
to its four neighbors. We take the maximum value of the difference between saliency values
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of its neighbors.With this saliency contrast (SC) feature, the difference of saliency values is
maximized when the pixel is right on the contour, thereby facilitating boundary detection.

3 Segment-Level Features
While the pixel-level features described in Section 2 can be utilized to determine contour
points, structural cues such as segments contain important information more than pixelwise
evidence. Toward this goal, we compute superpixels to extract structural segments with
the SLIC algorithm [1], which has been verified to perform well terms of efficiency and
effectiveness. Point features described in Section 2 are used to describe edge pixels on the
line fragment, and segment-level features are then extracted by computing their mean value,
variance and differences in this work.

(a) (b) (c) (d) (e) (f)

Figure 1: With 200 superpixels: (a) input. (b) superpixel. (c) edges in source image. (d) all
edges. (e) segment. (f) ground truth.

In this paper, we vary the number of superpixels (from 200 to 2000) to extract segments
at different scales. Figure 1 shows one example how segments are extracted when 200 su-
perpixels are used. From the superpixel results, edges can be extracted (Figure 1(c)-(d))
based on cluster value of each point (Figure 1(b)) with respect to its neighborhood. When
the pixels within a neighborhood of a point belong to more than two clusters, it indicates
the existence of a endpoint (e.g., the point on the T-junctions or Y-junctions of Figure 1(b)).
On the other hand, when the pixels within a neighborhood of a point belong to exactly two
clusters, it indicates the existence of a segment point. Thus, segments and endpoints can be
extracted as denoted by different colors in Figure 1(e) for contour extraction. We determine
whether a pixel belongs to a segment or not and then concatenate segment-level features and
the pixel level features.

At each point, as described in Section 2, 18 (6 features at 3 scales) local and 1 global
pixel-level features are extracted. We compute the mean, variance, minimum and maximum
values of 19 features from all the points on a segment. In addition, we compute 4 local
statistics (mean, variance, minimum and maximum values) in the neighborhood of the cor-
responding segment and obtain a 76-dimensional feature. Figure 1(f) shows the ground truth
of contour for comparison with the segments extracted from our method. One advantage of
our approach is that edge thinning is not necessary, and instead we directly operate on pix-
els to extract segments. By controlling the number of generated superpixels, segment-level
features at different scales can be obtained, and the smallest segment is a pixel itself.

4 Contour Detection via Random Forest
To extract discriminative information from features, we propose a mapping method based on
the posterior divergence (PD) measure over Gaussian mixture model (GMM).
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The posterior divergence approach is a generative discriminative scheme that determines
one or a few samples to update the model in every iteration of the EM step which has been
shown to be effective in several tasks [10]. We transform the vectors formed by point-level
and segment-level features based this mapping to obtain more discriminative information for
contour detection using a random forest classifier. While our method bears some similarity
to [10], the generative models and derivations for feature mappings are different.

Posterior Divergence of Gaussian Mixture. Let x ∈ RD be the observed random variable.
In the context of contour detection, x denotes the combination of multi-scale features. Let
z = {z1, · · · ,zK} be the hidden variable, where zk = 1 if the k-th mixture center is selected to
generate a sample and zk = 0 otherwise. The joint distribution of Gaussian mixture models

can be expressed as P(x,z |θ) =
K
∏

k=1
N(x;uk,Σk)

zk
K
∏

k=1
azk

k , where a = (a1, · · · ,aK)
> are the

mixture prior satisfying ak = EP(z)[zk]; uk and Σk respectively are the mean and variance
matrix of the k-th mixture center.

For any observed sample xt , similar to [9], we assume that the posterior distribution of
z takes the same from with its prior P(z) but with different parameter gt = (gt

1, · · · ,gt
K)
>,

Qt(z) =
K
∏

k=1
gt

k
zk . With the above joint distribution and approximate posterior distribution,

the free energy function F of the sample xt can be formulated with variational inference [9],

F(Qt ,θ) = EQt (z)[
K

∑
k=1

zk(
D

∑
d=1
−
(xt

d−ud)
2

2δ 2
d

− log
√

2π

D

∏
d=1

δ
D/2
d )+

K

∑
k=1

zk log
gt

k
ak

]. (2)

Let θ be the model estimated from a set of N− 1 training samples X = {xi}N−1
i=1 , and θ+t

be the model estimated from a set of N samples X ∪{xt}. The log likelihood of the EM
algorithm for the input sample xt is

Lt =
N

∑
i=1

[−F(Qi
+t ,θ+t)]−

N

∑
i6=t

[−F(Qi,θ)]

=
N

∑
i=1

(−EQi
+t (z)

[log
Qi
+t(z)

P(xt |z,θ+t)P(z|θ+t)
])−

N

∑
i 6=t

(−EQi(z)[log
Qi(z)

P(xt |z,θ)P(z|θ)
]).(3)

Similar to [10], we assume that Qi
+t(z) = Qi(z), and thus have

Lt = [
N

∑
i6=t

EQi(z) log
P(xt |z,θ+t)

P(xt |z,θ)︸ ︷︷ ︸
Φ

pd
x

+EQt (z) logP(z|θ+t)︸ ︷︷ ︸
Φ

f it
x

]

+[
N

∑
i 6=t

EQi(z) log
P(z|θ+t)

P(z|θ)︸ ︷︷ ︸
Φ

pd
z

+EQt (z) logP(z|θ+t)︸ ︷︷ ︸
Φ

f it
z

−EQt (z) logQt(z)]︸ ︷︷ ︸
Φent

z

, (4)

where the posterior divergence Φpd measures how much x affects the model, the fitness func-
tion Φ f it measures how well the sample fits the model, the entropy function Φent measures
how uncertain the fitting is. The feature mapping given by posterior divergence are derived
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as follows,

Φ
pd
x =

N

∑
i6=t

K

∑
k=1

D

∑
d=1

gi
k(−

(xt
d−ud,+t)

2

2δ 2
d,+t

+
(xt

d−ud)
2

2δ 2
d

+δ
D/2
d,+t −δ

D/2
d ) =

D

∑
d=1

Φ
pd
xd
, (5)

where Φ
pd
x is further decomposed to D terms according to the dimension of x, and Φ

pd
xd

measures how xd affects the model. Similarly, we have,

Φ
f it
x =

K,D

∑
k,d=1

gt
k(−

(xt
d−ud,+t)

2

2δ 2
d,+t

+δ
D/2
d,+t log

√
2π) =

D

∑
d=1

Φ
f it
xd
, (6)

where Φ
f it
xd measures how well xd fits the model. The feature mapping according to the

hidden variable z can be derived as follows

Φ
pd
z =

N

∑
i 6=t

K

∑
k=1

gi
k log

ak,+t

ak
=

K

∑
k=1

Φ
pd
zk
, (7)

where Φ
pd
zk = ∑

N
i6=t gi

k log ak,+t
ak

, and,

Φ
f it
z =

K

∑
k=1

gt
k logak,+t =

K

∑
k=1

Φ
f it
zk
, Φ

ent
z =

K

∑
k=1

gt
k loggt

k =
K

∑
k=1

Φ
ent
zk
. (8)

Therefore for input xt , we obtain a set of feature mapping:

Φ
t = vec({Φpd

xd
,Φ f it

xd
,Φpd

zk
,Φ f it

zk
,Φent

zk
}d,k). (9)

Feature Mapping via Posterior Divergence. To extract discriminative information from
multi-scale features, we map multi-scale features to the space via Equation 9 instead of
simply stacking features in a long vector. The reasons for using this mapping are twofold.
First, this feature mapping includes a data normalization procedure which reduces the metric
difference among different features. The normalization is carried out by (xt

d−ud)
2/(2δ 2

d ),
with which the derived feature mapping only responses to the relative quantities with respect
to the mean and variance. Second, this feature mapping exploits the hidden variable z which
encodes additional information, i.e., cluster or mixture center which is informative in image
representation (e.g., bag-of-words).

Random Forest Classifier. With the features mapped to the space induced in Section 4, var-
ious classifiers within the random forest [5] learning framework can be constructed based on
different representations. A random forest is an ensemble classifier consisting of numerous
decision trees where the class label is determined based on the mode of the outputs by indi-
vidual trees. Random forest algorithms have been shown to deal with large amount of data
points effectively and efficiently. In a randomized decision forest, the learning examples are
split into two descendant trees. We use the Gini ratio [16] to split the training examples so
that the descendant trees are “purer” than their parents. Aside from combining random forest
classifiers, better results can be achieved by considering the edges extracted from superpixels
for contour completion based on the Gestalt theory. Toward this, we compute the overlap
percentage of detected contours and the extracted edges from superpixels. If the percentage
exceeds some threshold, the incomplete edges are replaced by the entire ones extracted from
superpixels.
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Table 1: F-measures of contour detection on BSDS500.(a) different parts. (b) different con-
tour detection algorithms.

BSDS500
ODS OIS AP

MG+DG+IT+CG+BG+CO+Mulit+GMM-PD 0.72 0.74 0.78
MG+DG+IT+CG+BG+CO+Mulit 0.70 0.72 0.75

MG+DG+IT+CG+BG+CO 0.69 0.71 0.72
MG+DG+IT+CG+BG 0.68 0.70 0.71

MG+DG+IT+CG 0.67 0.69 0.70
MG+DG+IT 0.65 0.67 0.68

BSDS500
ODS OIS AP

human 0.80 0.80 -
MCDRF 0.72 0.74 0.78
gPb [3] 0.71 0.74 0.65
BEL [8] 0.66 0.67 0.68

Canny [6] 0.60 0.63 0.58
compass operator [19] 0.49 0.53 0.36

(a) (b)

5 Experiments
We evaluate the proposed algorithm for contour detection via a multi-scale random forest
of 50 trees (referred as MCDRF) on several data sets. The Berkeley segmentation data
set [3] includes 500 images of 481×321 pixels and human labeled segmentation results. For
fair comparisons, we use 300 images for training and the remaining ones for tests [3]. The
pixels on the ground-truth contours of the training set are used as positive examples, whereas
other pixels are utilized as negative examples. All experiments are performed on a machine
with 3.10 GHz CPU and 8 GB memory. More results can be found in the supplementary
document.

Feature Combination. We first evaluate different feature combination of the proposed al-
gorithm for contour detection. Table 1(a) and Figure 2(a) show the F-measures of contour
detection results using different feature combinations, where the F-measure is computed by
2·Precision·Recall
Precision+Recall . The results show that contours can be better detected by adding more fea-
tures.

Evaluation of Contour Detection Algorithms. We evaluate the proposed MCDRF algo-
rithm against other methods including the compass filter [19], Canny edge detector [6], gP-
b [3, 12], and BEL [8] methods using the BSDS500 data set. Figure 2(b) shows the precision-
recall curves with respect to human labeled ground truth. We use a training set to determine
the optimal data set (ODS) scale and fix it for all the test images [3]. We also evaluate the
performance the optimal image scale (OIS) for each image, and the average precision (AP)
on the full recall range [3]. Figure 2(b) shows the precision-recall curves and the F-measures
with different thresholds. The proposed MCDRF algorithm achieves the highest F-measures
and average precision among all methods. While the gPb method performs well in terms of
accuracy, the computational load is significant. On average, the proposed MCDRF method
is about 9 times faster than the gPb method (20 and 180 seconds on MATLAB respectively).

Figure 3 shows one contour detection results using features with and without using the
proposed feature extraction method via posterior divergence. In addition, the results in Ta-
ble 1(a) and Figure 2(a) show that contours can be better detected with the proposed feature
extraction method.

Figure 4 shows the contour detection results by all the evaluated algorithms. We note that
both the gPb and MCDRF methods are able to extract object contours with fewer spurious
edges. In addition, our method capture more contours and details than the gPb method.
Figure 4(a) shows the gPb misses some windows of the building and the contours in roof
is not clear or sharp as those generated by the proposed method. The results of the Canny
detectors without non-maximum suppression and no hysteresis are noisy (consistent with
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results shown in [3]) as the Gaussian kernel width is set based on ODS and OIS. The results
of the compass filter are based on the code provided by [19] with default parameters.

(a) (b) (c) (d)

Figure 2: Precision-recall curves (a) BSDS500: different feature combinations. (b) BSD-
S500: different contour detection algorithms. (c) WHD data set. (d) WSD data set.

input Image ground truth only features using mutli-features MCDRF

Figure 3: Contour detection results with and without feature extraction.

We carry out experiments on the Weizmann horse database (WHD) [4] and the Weizmann
segmentation database (WSD) [2]. The Weizmann horse database contains 328 side-view
color images with manually segmented results. It contains horses of different breed, color,
and size in various scenes. The Weizmann segmentation database contains 200 color images
with manual segmentation results by several subjects. The images in this data set contain
only one or two salient objects with relatively simple backgrounds. The foreground objects
differ significantly from the background either by intensity, texture, or other low level cues.

We note that all the parameters of the proposed MCDRF algorithm are fixed in the exper-
iments on three data sets. The proposed algorithm is evaluated against the gPb [3], compass
operator [19] and BEL [8] methods. Although these databases are developed for segmenta-
tion evaluation, we extract contours using the same approach as the BSDS500 [3] to compute
F-measures and precision-recall curves. Figure 2(c)-(d) shows the precision-recall curves of
MCDRF are significantly better than those by the gPb, compass operator and BEL methods.

Table 2 shows the F-measure and average precision by the MCDRF algorithm are greater
than those by the gPb [3], compass operator [19] and BEL [8] methods. The extracted con-
tours show that the proposed MCDRF algorithm performs better than other methods with
more details and less noise. Similar to the results with Weizmann horse data set, the ex-
tracted contours from this segmentation database show that the proposed MCDRF algorithm
performs better than other methods with sharper details and fewer spurious edges.

6 Conclusion
In this paper, we propose an efficient and effective algorithm for contour detection based on a
random forest classifier on features mapped from multi-scale local and global image features.
The model parameters of the feature space are learned from the posterior divergence of the
log likelihood of a Gaussian mixtures incrementally. We use posterior divergence to exploit
more information rather than use raw features with random forest classifier directly. The
proposed approach is evaluated qualitatively and quantitatively on three benchmark data
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Input Image

ground truth

MCDRF

gPb [3]

BEL [8]

Canny [6]

compass operator [19]

texture inhibition [14]

(a) (b) (c) (d)

Figure 4: Sample experimental results from the Berkeley segmentation data set.

Table 2: F-measures of contour detectors in WSD and WHD.

Weizmann horse data set
ODS OIS AP

MCDRF 0.62 0.63 0.62
gPb [3] 0.56 0.58 0.47
BEL [8] 0.52 0.54 0.50

compass operator [19] 0.35 0.36 0.23

Weizmann segmentation data set
ODS OIS AP

MCDRF 0.54 0.59 0.51
gPb [3] 0.54 0.58 0.45
BEL [8] 0.46 0.46 0.39

compass operator [19] 0.23 0.25 0.09

(a) (b)

sets against several state-of-art methods. Experimental results demonstrate the proposed
algorithm performs favorably against leading methods for contour detection. Our future
work includes more effective contour completion algorithms. In addition, we will develop
efficient algorithms for object recognition based on contours.
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