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Abstract

We address Multiple Object Tracking (MOT) in crowds, where the type of target ob-
jects is generic and not limited to pedestrians as in most previous work. Following the
popular tracking-by-detection strategy, we decompose this problem into two main tasks,
detection and tracking, and formulate them under the Multiple Task Learning (MTL)
framework. A binary detector is learnt to detect objects in images, whilst multiple track-
ers are learnt on top of the detector by MTL to trace detected objects in subsequent
frames. The detector is utilised to anchor the trackers, helping them not drift away from
targets. The trackers are jointly learnt by sharing common features. To further improve
the performance, we use a smoothness term which considers all labelled and unlabelled
data globally. Experiments on challenging new generic object sequences as well as a
publicly available sequence show that the proposed method significantly outperforms the
state-of-the-art methods.

1 Introduction

Multiple Object Tracking (MOT) is an important topic in the computer vision community. It
is relatively easy when objects are isolated or can be clearly distinguished from background
and other objects. However, in crowd scenarios, there are frequent occlusions and inter-
actions among objects and many objects have similar appearance, leading to confusion. A
large volume of studies have tackled these challenges. Owing to the great success in ob-
ject detection (especially human or pedestrian detection), most current approaches take the
tracking-by-detection strategy for MOT problems, and goodresults are reported on some
public data sets. However, existing methods for MOT mainly rely on the pedestrian detector
and thus have been applied to sequences of pedestrians only,rather than sequences of general
type objects.

In this paper, we propose a method for tracking multiple objects of a general type by the
tracking-by-detection strategy. Similar to multiple pedestrian tracking, we need a detector
which is aware of objects of a generic type, and multiple trackers which can track these
discovered objects individually. From the methodologicalperspective, this is a problem
composed of two stages. In the first stage, we treat it as a binary classification problem,
which has a goal of distinguishing objects from background.In the second stage, each object
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is discriminated from other objects via tracking, thus it can be considered as a multi-class
classification problem.

In the aforementioned two-stage problem, each sample has two kinds of labels. For
detection, the label is “object” or “background”. For tracking, its label is “objecti” or not.
This problem differs from the traditional MOT problem, where target objects (pedestrians),
despite being of the same type, have quite different appearances due to e.g. clothes. In our
problem, target objects are of the same type and visually more alike (see Fig.1). Similar
objects can be jointly modeled effectively, and this motivates us to formulate our problem as
a Multiple Task Learning (MTL) problem.

In the MTL literature, it has been proven helpful to learn related tasks jointly rather than
individually. The relevance among the tasks is typically encoded by sharing a common part
of features or embedding the learners in a low rank subspace.We treat objects commonly for
detection and individually for tracking in our MOT problem,and we therefore consider the
problem composed of two main tasks: detection and tracking.The main tracking task is fur-
ther partitioned into multiple sub-tasks, each for tracking one object. For the detection task,
we train a detector to distinguish all the objects from background. For multiple sub-tasks of
tracking, we train multiple trackers. In the proposed method called the Mean-Regularised
Joint Feature Learning, the two main tasks are associated inthe manner that the trackers are
learnt not to deviate much from the mean i.e. the detector, while the multiple sub-tasks of
tracking are associated by sharing common features.

Most previous methods for MOT train a detector off-line and then classify each testing
sample i.e. a scan-window independently (thus locally). Incontrast, contextual information
such as similarities among samples can help learn a better detector. We employ the Laplacian
SVM [3] which includes a smoothness constraint among all labelledand unlabelled samples
at present (thus globally) for object detection. The smoothness term is also incorporated into
tracking, yielding better trackers.

The main contribution of this paper is threefold:
• We consider objects of a general type rather than pedestrians for MOT in crowds. To

the best of our knowledge, this is the first attempt to tackle the detection and tracking of
multiple generic objects in crowds.
• The MOT problem is formulated into MTL, which is our originalidea. We propose

the novel Mean Regularised Joint Feature Learning method. In the method, the detection
and tracking of the general type multiple objects are linkedusing the detector as the mean to
regularise the multiple trackers. Also we learn to select sharable features among the different
trackers to better relate one tracking task to the others forour MOT problem.
• We derive formulations for a linear Laplacian SVM classifierfor detection. The

smoothness term in the modified linear Laplacian SVM enablesus to view the candidates
globally. The linear classifier is easy to incorporate into the MTL framework. We also
introduce a smoothness term into the multiple trackers.

2 Related Work

Generally, methods for MOT form two categories: one using information only from the
previous frames, and one using information from both the past and the future frames. Meth-
ods belonging to the former category derive robust appearance models [18], delicate motion
models and interaction models [32, 42] and develop a cost function considering multiple
types of information up to the current frame and estimate thelowest cost state [6, 14, 24,
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36, 46]. Approaches [2, 4, 8, 19] considering both the past and the future information typ-
ically require low-level observations such as foreground,tracklet, or trajectory, etc. These
types of low level observations can be obtained by background modelling [35] (to acquire
foreground), or by associating confident responses of a human detector, head detector or
part-based detector into tracklets [7, 12, 17, 25, 33, 43, 44, 45] (this is the most popular
approach since significant progress has been made in the detection field [13, 16]), or by es-
timating trajectories based on the KLT tracker [36] or Kalman Filter [12]. Then, these types
of low level observations are associated by optimisation methods, such as Markov Chain
Monte Carlo (MCMC) [35], Dynamic Programming, Hungarian algorithm [33, 43], greedy
bipartite algorithm [34], network flow [41] and K-Shortest Paths (KSP) algorithm [5].

As an effective method, MTL [9] performs better than single task learning as it learns
multiple related tasks simultaneously rather than independently. These tasks are related by
several strategies such as Mean-Regularised MTL [15], embedded feature selection [27],
low-rank subspace learning [20], clustered MTL [49], tree structured MTL [23], and graph
structured MTL [11]. In [37], MTL is combined with the boosting framework to learn the
features shared by multiple classes to conduct multi-classdetection, avoiding constructing
a specialised classifier for each class. MTL is also utilisedto handle single object tracking
in [47] by treating representation of multiple particles based onthe collected templates as
multiple tasks.

With regard to the generality of objects’ types, our work is related to multi-class object
detection [29, 37, 40] to some extent. However, for multi-class object detection, the classes
of objects are known in advance and there are sufficient training samples to train good clas-
sifiers. In our case, we do not know the type of objects and we can only collect training data
online. The most relevant work to ours for tracking multipleobjects of a general type is [48].
It employs the detector in the Tracking-Learning-Detection (TLD) framework [21] to detect
similar objects, but it still focuses on pedestrian tracking.

3 Approach

3.1 Overview

In our approach, the tracking-by-detection strategy is employed for multiple object tracking
in crowds. Given the initial bounding box of an arbitrary target object, we train a classifier
to discriminate all target objects from background. For each of the detected objects, we form
a tracker using the corresponding object as a positive sample, and other objects around it
and random background patches as negative samples. Then we use the trackers to follow
those objects in the subsequent frames respectively. Afterprocessing every few frames, we
select the objects which are tracked confidently to retrain the detector. When the detector is
aware of new objects or disappearance of existing objects, we form new trackers or delete
the existing trackers. Fig.1 illustrates the overview of our approach.

3.2 Generic Detector

For detection, we generate candidates using the sliding window strategy [38]. Like the pre-
vious work, we can reject most of the candidates confidently.However, unlike pedestrian
detection, we do not know the type of objects, thus we are not given deliberately designed
features with a high false positive rate and a low false negative rate in advance. To tackle this
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Figure 1: An overview of our approach. (a) Problem decomposition within the MTL frame-
work. (b) Detection by the linear Laplacian SVM (given one initial bounding box). We show
graphs of two continuous frames here. (c) Tracking results of continuous two frames. We
zoom in a part of the image to give a clear view. (d) Tracking bythe detector regularised
multiple trackers (see Section3.3). Each object is associated with a graph. The dotted line
between each tracker and the detector indicates their association. This figure is best viewed
in colour.

problem, we employ some efficient criterions in the following to measure the objectness of
candidate windows and then reject candidates which are not likely to be objects.

Region Variance. This criterion computes the variance of the pixels within acandidate
region asRV= 1

NR−1 ∑i(gi− ḡ), whereNR is the number of pixels in the region,gi is the gray
intensity of pixeli andḡ is the mean intensity of all the pixels in this region. This criterion
can reject some candidates from the background such as grassor sky.

Edge Density. This criterion calculates the density of edge pixels within a region as
ED = 1

NR
∑i 1{i ∈ ER}, where 1{·} is the indicator function,ER is the set of pixels which

belong to edge. This criterion helps to reject candidates which are too smooth. Note that
in [1] the Edge Density is also a cue to measure the objectness, buthere we use different
methods to calculate the edge density.

Colour Contrast. We borrow the Colour Contrast cueCC(θCC) = χ(hRegion,hSurr(θCC))
in [1] to measure the objectness of a window.hRegionis the colour histogram of the region and
hSurr(θCC) is the colour histogram of the surrounding of the region (θCC measures how large
the surrounding is), andχ(·, ·) is the chi-square distance function. Although this criterion is
used in [1] that there is only one object in the image scene, it is also helpful to reject some
windows in our case.

Typically the number of sliding windows is greater than 30,000, and the number of
windows survived from these three rejecters is about 1000. This enables us to adopt an
elaborate detector. We treat the survived windows as unlabelled samples and write them
asXu = [x1, ...,xnu], wherexi ∈ R

d, d is the dimension of the feature space. As we have
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been given an initial bounding box as a target object, we augment the positive sample set
by adding some slight disturbance to it. At the same time, we sample instances in a further
distance (betweenr1 and r2) as negative data. The corresponding labels of them areyi ∈
{1,−1}, i = 1, · · ·,nl , whereyi = 1 meansxi is object andyi = −1 corresponds to non-
object (background). Along with the unlabelled candidates, we write all then samples as
X = [Xl , Xu] ∈ R

d×n.
Let us define the detector asf (x) = wT

0 x, wherew0 ∈ R
d. To tackle the detection prob-

lem, we minimise the following objective function:

Lp = γ1‖w0‖
2+ γ2wT

0 XLXTw0+ γ3

nl

∑
i=1

[1− yi f (xi)] (1)

In Eq. 1, the first term is the regularisation of the classifier to improve the generalisation
ability, the second term is the smoothness among all the samples and the third term is the
fitting error of the labelled samples.L is the Laplacian matrix calculated from the graph
constructed based on all the samples. It is notable that thisobjective function has the same
form as Laplacian SVM [3]. However, here we modify the original Laplacian SVM to the
linear case.

Introducing the slack variablesεi we have the primal problem as:

min
w0,εi

γ1‖w0‖
2+ γ2wT

0 XLXTw0+ γ3

nl

∑
i=1

εi

s.t. yiwT
0 x≥ 1− εi, i = 1,2, ...,nl

εi ≥ 0, i = 1,2, ...,nl

(2)

Following the primal-dual formulation, we have:

max
α∈Rnl

nl

∑
i=1

αi−
1
2

αT Qα

s.t. 0≤ αi ≤ γ3, i = 1,2, ...,nl

(3)

whereQ=YTJTXT(2γ1I+2γ2XLXT)−1XJY, J= [I 0]T is an×nl matrix withI as thenl×
nl identity matrix,Y = diag(y1, ...,ynl ) ∈R

nl×nl andα = [α1, ...,αnl ]
T ∈Rnl are Lagrangian

multipliers.
This problem is a typical quadratic optimisation problem which can be solved by standard

optimisation software. Afterα is obtained, we can acquirew0 in Eq. 4. For more details,
please refer to [3].

w0 = (2γ1I+2γ2XLXT)−1XJYα (4)

Detection:  All  target

objects are detected

as the single object class

Tracking: detected objects

are tracked individually

All tasks are related

Each task is unique

MOT MTL

Figure 2: Formulation of the MOT problem into MTL. This figureis best viewed in colour.
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3.3 Detector Regularised Trackers

As mentioned before, we maintain an individual tracker for each object. However, they are
objects of the same type, which is confirmed by the detector. From this perspective, our MOT
problem can be naturally formulated within the MTL framework. All the tasks in MTL are
related, while all the objects are treated as the same type ofobjects in the detection stage.
All the tasks in MTL are different from each other, while we treat objects differently when
tracking them. Fig.2 illustrates how the MOT and MTL problems are inherently linked.

Based on the above inspiration, we treat detection and tracking of multiple objects as
two main tasks, and tracking of each object as a sub-task within the MTL framework. We
denote the tracker for objectt as ft (x) = wT

t x. To relate the two main tasks, we penalise the
deviation of each tracker from the detectorw0 using the cost function as the following,

T

∑
t=1

‖wt −w0‖
2 (5)

This regularisation term benefits the trackers in two aspects. Firstly, as‖wt‖
2 = ‖wt −

w0+w0‖
2≤‖wt−w0‖

2+‖w0‖
2, and we have minimised‖w0‖

2 in the detection stage, thus
minimising‖wt −w0‖

2 equals minimising‖wt‖
2, further improving the generalisation abil-

ity of each tracker. Secondly, this term can prevent trackers from drifting to the background
as we enforce each tracker to be close to the detector.

Furthermore, we encode the relatedness of multiple sub-tasks by learning the features
jointly shared by all the trackers via a regularisation term‖W‖2,1, whereW ∈ R

d×T is the
matrix composed of all the trackers as[w1, · · · ,wT ]. ‖W‖2,1 is theℓ2,1 norm of W which
first computes theℓ2 norm of each row to obtain a column vector, then computes theℓ1 norm
of the column vector. This regularisation term can result inthat only some rows ofW are
non-zero, which correspond to the features shared by all sub-tasks.

In addition, we introduce a smoothness term for each tracker. The smoothness term
enables the tracker to view the labelled and unlabelled samples (candidates) together. It has
been applied to the MTL framework by Luoet al. [28] to handle semi-supervised learning.
Here we introduce it to gain the smoothness property of all the trackers.

We sample the nearby instances and the farther instances in the current frame as positive
data and negative data respectively, and we take the surrounding samples in the next frame
as unlabelled data. Having obtained training data, we propose the Mean Regularised Joint
Feature Learning algorithm which minimises the following objective function:

min
W∈Rd×T

1
2

T

∑
t=1

‖JT
t XT

t wt −Yt‖
2+ρ1‖W‖2,1+

ρ2

2

T

∑
t=1

‖wt−w0‖
2+

ρ3

2

T

∑
t=1

wT
t XtLtXT

t wt (6)

whereXt ∈ R
d×(nl

t+nu
t ) is the combination ofnl

t labelled samples andnu
t unlabelled samples

for a sub-taskt, Jt = [
I 0
0 0

] is a(nl
t +nu

t )× (nl
t +nu

t ) matrix with I as thenl
t ×nl

t identity

matrix. Yt ∈ R
(nl

t+nu
t ) is the label vector of the taskt (we give the neutral label 0 to the

unlabelled data).Lt is the Laplacian matrix associated with the graph of the taskt, and
ρ1, ρ2, ρ3 are the trade-off parameters. The above objective functioncaptures the relatedness
of the multiple tasks from two perspectives. One lies in the feature level, which makes the
tasks share a common set of features. The other one lies in theclassifier level, which encodes
that all of the trackers should not be too different from the detector.
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Solving Eq. 6. We adopt the Accelerated Gradient Method (AGM) [30] to solve this
composite optimisation problem. Compared to the traditional gradient method, the AGM
has the convergence speed ofO( 1

k2 ) (i.e. it achieves the solution withO( 1
k2 ) residual from

the optimal solution afterk iterations), which is the optimal among the first order meth-
ods. For the sake of convenience, we write Eq.6 as a combination of a smooth component
L(W) = 1

2 ∑T
t=1‖J

T
t XT

t wt −Yt‖
2+ ρ2

2 ∑T
t=1‖wt −w0‖

2+ ρ3
2 ∑T

t=1 wT
t XtLtXT

t wt and a non-
smooth componentΩ(W) = ρ1‖W‖2,1. The AGM here iterates by using a linear combina-
tion of previous two points as the search point, rather than the latest point in the traditional
gradient method. Each AGM iteration is composed of two steps: (1) Generalised Gradient

Mapping which updatesW(k+1) given the search pointW(k)
S , (2) Updating the current search

pointW(k)
S by combining the previous two points.

(1) Generalised Gradient Mapping: given the current searchpoint W(k)
S , the estimation

W(k+1) can be obtained by solving Eq.7

W(k+1) = argmin
W

γ
2
‖W− (W(k)

S −
1
γ

∇L(W(k)
S ))‖2F +Ω(W) (7)

whereγ is a step parameter and∇L(W) is the gradient ofL(W). Each column of∇L(W)
is:

XtJt(JT
t XT

t wt −Yt)+ρ2(wt −w0)+ρ3XtLtXT
t wt , t = 1, · · · ,T (8)

Considering the computation procedure ofℓ2,1 norm, Eq.7 can be decoupled asd disjoint
sub-problems in Eq.9 (one for each row vectorWi),

W(k+1)
i = argmin

Wi

1
2
‖Wi−Ui‖

2
2+λ‖Wi‖2, i = 1, · · · ,d (9)

whereU = W(k)
S −

1
γ ∇L(W(k)

S ), Ui is the ith row of U andλ = ρ1/γ. Following [10, 47], the
solution to Eq.9 is the following:

W(k+1)
i = max(1−

λ
‖Ui‖2

,0)Ui , i = 1, · · · ,d (10)

(2) Updating the current search point as a linear combination of the previous two points:

W(k+1)
S = (1+α)W(k+1)−αW(k) (11)

whereα = (t(k)− 1)/t(k+1) and t(k+1) = 1
2(1+

√

1+4(t(k))2). The algorithm terminates
when the change of the function is lower than a threshold or the number of iterations has
achieved the maximum. Our Mean Regularised Joint Feature Learning algorithm is sum-
marised in Algorithm1. Note that we implement this algorithm based on the code fromthe
MALSAR package [50].

After we obtain the solutionW, each columnwt is the tracker for each sub-task (each
object). And we select the most confident candidate as the estimation of each object, i.e.,

x∗t = argmax
x∈Xu

t

wT
t x (12)

whereXu
t is the unlabelled part ofXt .
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Algorithm 1 Mean Regularised Joint Feature Learning for MOT
Input: Xt ,Yt ,w0, t = 1, · · · ,T.
Output: W
1. Initialisation: each column ofW(0) andW(1) is Xt ∗Yt , t(0) = 0, t(1) = 1, k = 1,α =

(t(0)−1)/t(1), W(1)
S = (1+α)W(1)−αW(0)

2. Whilenot converged,do

3. ObtainU = W(k)
S −

1
γ ∇L(W(k)

S ),

4. Solve Eq.9 via Eq.10 to acquireW(k+1)
i , i = 1, · · · ,d

5. Update the search point asW(k+1)
S = (1+α)W(k+1)−αW(k)

6. k← k+1, t(k+1)← 1
2(1+

√

1+4(t(k))2), α ← (t(k)−1)/t(k+1).
7. End

Figure 3: Images excerpted from the sequences. From top to bottom they are Zebra, Red
crab, Antelope and UBC Hockey sequences. The number attached to each bounding box is
the object’s ID and the yellow line is its estimated trajectory. This figure is best viewed in
colour.

4 Experiments

Feature. We compute HOG [13], LBP [39] and the Colour Histogram as features and con-
catenate these feature vectors to represent a window. The joint feature learning in our algo-
rithm will select the useful features for MOT.

Tracking Management. At runtime, we maintain a list to save the objects. If the detector
discovers a new object, we assign it a weight and buffer it. Inthe following once it is detected
we increase its weight and once it is not detected the weight is decreased. If the weight is
greater than a thresholdτ, a tracker is initialised for it. For the objects existed in the list, we
have the opposite process to delete objects when they disappear from the image scene.

Parameters. Here we note the setting of some parameters. For the Colour Contrast cue,
we use the default parameters as in [1] exceptθ . As we do not have enough training examples
to learn it we empirically set it as 60, and it works well on ourdata sets. When constructing
graph, we employ the10-NNand therbf kernel to calculate the adjacency matrix.
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Sequence MOTA↑ MOTP↑ Rec.↑ Prec.↑ MT ↑ ML ↓

Zebra (eTLD) 58.73% 64.48% 60.37% 92.14% 15.94% 42.03%
Zebra (BS1) 72.31% 58.23% 78.58% 93.10% 30.43% 34.78%
Zebra (BS2) 69.40% 67.12% 75.30% 93.08% 33.33% 34.78%

Zebra 77.69% 66.78% 80.30% 97.02% 43.48% 30.43%
Red crab (eTLD) 6.77% 64.62% 21.49% 58.20% 4.85% 86.41%
Red crab (BS1) 26.95% 59.39% 47.63% 69.24% 8.74% 76.70%
Red crab (BS2) 32.70% 59.40% 45.25% 77.89%9.71% 74.76%

Red crab 39.06% 60.00% 51.50% 80.65% 9.71% 70.87%
Antelope (eTLD) 8.76% 64.98% 29.08% 57.05% 23.53% 76.47%
Antelope (BS1) 24.46% 67.29% 65.31% 61.75% 35.29% 39.71%
Antelope (BS2) 23.62% 66.73% 65.55% 61.27%38.24% 38.24%

Antelope 35.58% 63.31% 73.97% 65.81% 36.76% 36.76%
UBC Hockey (eTLD) 54.66% 64.66% 65.04% 84.25% 17.86% 25.00%

UBC Hockey [7] 79.7% 60.0% 80.5% 98.9% - -
UBC Hockey [6] 76.5% 57.0% 77.7% 98.8% - -
UBC Hockey [31] 67.8% 51.0% 68.7% 100% - -

UBC Hockey 80.30% 69.09% 92.37% 89.20% 67.86% 10.71%

Table 1: Quantitative results compared with the extended TLD, our baselines (BS1, BS2) and
other MOT approaches. In the metrics with the upward arrow, the greater number indicates
the better performance (and vice versa for the downward arrow). For each data sequence, the
last line shows our result. The best accuracies are in bold. Note that [7][6][31] do not supply
the MT and ML results.

We firstly test our approach on three challenging data sets named Zebra, Red crab and
Antelope respectively. There are scale changes in the Zebrasequence and there are back-
ground clutter, scale variation and rotation in the Red crabsequence. For the Antelope se-
quence, there exist severe occlusions and out-of-plane rotation. For comparison, we extend
the TLD framework [21] for MOT. The detector of the TLD framework is based on random
ferns, which can detect non-specific type objects. The extended TLD selects the detected
similar objects to track. At the same time, to verify the improvement from the joint feature
learning term and the smoothness term, we form another two baselines to be compared with.
The first one (BS1) is formed by only keeping the fitting error term and the mean-regularised
term. The second one (BS2) is formed by that we incrementallyadd the jointly feature
learning term to BS1 (still without the smoothness term).

To evaluate the tracking performance quantitatively, we employ the Multiple Object
Tracking Accuracy (MOTA) and Multiple Object Tracking Precision (MOTP) metrics pro-
posed in [22]. MOTA considers the false positive, missed objects and ID switches. MOTP
simply calculates the average overlap between the ground truth and the estimated objects.
We also compute Recall and Precision, the number of Mostly Tracked (MT), and Mostly
Lost (ML) trajectories [26] for further comparison. Table1 and Fig.3 show the results. For
more results, please see our supplementary videos.

The figures in Table1 reveal that the extended TLD performs slightly worse than our
approach on the Zebra sequence, but on the other two sequences its results are much worse
than ours. That is because the crabs and the antelopes do not have evident patterns like the
zebras and the backgrounds of the two sequences are cluttered (see Fig.3). It is also easy to
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observe the improvement from the jointly feature learning term and the smoothness term if
our results are compared with those of our two baselines.

To further illustrate that our approach is effective, we also test it on a public data set
named UBC Hockey [31]. We compare our results with some MOT approaches [6, 7, 31].
The purpose of comparison with other MOT approaches is to certify that our approach can
also work well on some human data sets even if we do not have an elaborate human detector.

5 Conclusion

We have shown how generic object crowd tracking is formulated into the multiple task learn-
ing problem and have proposed the novel methods. We have decomposed the problem into
two main tasks and represented their relation by the proposed Mean Regularised Joint Fea-
ture Learning algorithm. The optimisation functions of these two main tasks have the terms
for the generalisation ability, the smoothness, the fittingerrors and feature learning. Solving
the optimisation problems yields the desired list of detected and tracked objects in frames.
Experimental results on the challenging data sequences have confirmed the efficacy of our
approach over the state-of-the-art ones.
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