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Abstract

We address Multiple Object Tracking (MOT) in crowds, where type of target ob-
jects is generic and not limited to pedestrians as in mosiique work. Following the
popular tracking-by-detection strategy, we decomposegitoblem into two main tasks,
detection and tracking, and formulate them under the Meltifask Learning (MTL)
framework. A binary detector is learnt to detect objectsrages, whilst multiple track-
ers are learnt on top of the detector by MTL to trace detectgdcts in subsequent
frames. The detector is utilised to anchor the trackergihglthem not drift away from
targets. The trackers are jointly learnt by sharing comneatures. To further improve
the performance, we use a smoothness term which considéabelled and unlabelled
data globally. Experiments on challenging new generic abjequences as well as a
publicly available sequence show that the proposed meibadisantly outperforms the
state-of-the-art methods.

1 Introduction

Multiple Object Tracking (MOT) is an important topic in theraputer vision community. It
is relatively easy when objects are isolated or can be glel#stinguished from background
and other objects. However, in crowd scenarios, there aguént occlusions and inter-
actions among objects and many objects have similar appegrieading to confusion. A
large volume of studies have tackled these challenges. @twoitthe great success in ob-
ject detection (especially human or pedestrian detectimo}t current approaches take the
tracking-by-detection strategy for MOT problems, and goesllts are reported on some
public data sets. However, existing methods for MOT maigely on the pedestrian detector
and thus have been applied to sequences of pedestriansathéy, than sequences of general
type objects.

In this paper, we propose a method for tracking multiple ciisjef a general type by the
tracking-by-detection strategy. Similar to multiple pstlan tracking, we need a detector
which is aware of objects of a generic type, and multiplekeas which can track these
discovered objects individually. From the methodologisaispective, this is a problem
composed of two stages. In the first stage, we treat it as aybatassification problem,
which has a goal of distinguishing objects from backgroundhe second stage, each object
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is discriminated from other objects via tracking, thus ih ¢ considered as a multi-class
classification problem.

In the aforementioned two-stage problem, each sample hakitvds of labels. For
detection, the label is “object” or “background”. For traudy, its label is “object” or not.
This problem differs from the traditional MOT problem, wbdarget objects (pedestrians),
despite being of the same type, have quite different appeasadue to e.g. clothes. In our
problem, target objects are of the same type and visuallyeratike (see Fig.1). Similar
objects can be jointly modeled effectively, and this mdtgaus to formulate our problem as
a Multiple Task Learning (MTL) problem.

In the MTL literature, it has been proven helpful to learratet! tasks jointly rather than
individually. The relevance among the tasks is typicallg@ted by sharing a common part
of features or embedding the learners in a low rank subspeé¢reat objects commonly for
detection and individually for tracking in our MOT probleand we therefore consider the
problem composed of two main tasks: detection and tracKihg.main tracking task is fur-
ther partitioned into multiple sub-tasks, each for tragkime object. For the detection task,
we train a detector to distinguish all the objects from baokgd. For multiple sub-tasks of
tracking, we train multiple trackers. In the proposed mdthalled the Mean-Regularised
Joint Feature Learning, the two main tasks are associatib@ imanner that the trackers are
learnt not to deviate much from the mean i.e. the detectoitevitne multiple sub-tasks of
tracking are associated by sharing common features.

Most previous methods for MOT train a detector off-line ahdrt classify each testing
sample i.e. a scan-window independently (thus locallykdntrast, contextual information
such as similarities among samples can help learn a beteatde We employ the Laplacian
SVM [3] which includes a smoothness constraint among all labelfetiunlabelled samples
at present (thus globally) for object detection. The smoesis term is also incorporated into
tracking, yielding better trackers.

The main contribution of this paper is threefold:

e \We consider objects of a general type rather than pedestitaMOT in crowds. To
the best of our knowledge, this is the first attempt to tack&e detection and tracking of
multiple generic objects in crowds.

e The MOT problem is formulated into MTL, which is our originidliea. We propose
the novel Mean Regularised Joint Feature Learning methodhd method, the detection
and tracking of the general type multiple objects are linksidig the detector as the mean to
regularise the multiple trackers. Also we learn to seleatable features among the different
trackers to better relate one tracking task to the othersdoMOT problem.

e We derive formulations for a linear Laplacian SVM classiffer detection. The
smoothness term in the modified linear Laplacian SVM enalet® view the candidates
globally. The linear classifier is easy to incorporate irite MTL framework. We also
introduce a smoothness term into the multiple trackers.

2 Related Work

Generally, methods for MOT form two categories: one usirfgrimation only from the
previous frames, and one using information from both th¢ aag the future frames. Meth-
ods belonging to the former category derive robust appeararodels 18], delicate motion
models and interaction model37, 42] and develop a cost function considering multiple
types of information up to the current frame and estimateldhest cost state] 14, 24,
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36, 46]. Approaches?, 4, 8, 19] considering both the past and the future information typ.
ically require low-level observations such as foregrouratklet, or trajectory, etc. These
types of low level observations can be obtained by backgtenadelling B5] (to acquire
foreground), or by associating confident responses of a hutegector, head detector or
part-based detector into trackles [L2, 17, 25, 33, 43, 44, 45 (this is the most popular
approach since significant progress has been made in thetidetBeld [13, 16]), or by es-
timating trajectories based on the KLT track&6]or Kalman Filter [L2]. Then, these types
of low level observations are associated by optimisatiothods, such as Markov Chain
Monte Carlo (MCMC) B5], Dynamic Programming, Hungarian algorith®3[ 43], greedy
bipartite algorithm 34], network flow [41] and K-Shortest Paths (KSP) algorithj.[

As an effective method, MTLY] performs better than single task learning as it learn:
multiple related tasks simultaneously rather than inddpatly. These tasks are related by
several strategies such as Mean-Regularised MIH], [embedded feature selectiof7],
low-rank subspace learning(], clustered MTL B9, tree structured MTL 23], and graph
structured MTL [L1]. In [37], MTL is combined with the boosting framework to learn the
features shared by multiple classes to conduct multi-dassction, avoiding constructing
a specialised classifier for each class. MTL is also utiligeandle single object tracking
in [47] by treating representation of multiple particles basedtencollected templates as
multiple tasks.

With regard to the generality of objects’ types, our workatated to multi-class object
detection P9, 37, 40] to some extent. However, for multi-class object detectthe classes
of objects are known in advance and there are sufficientibigigamples to train good clas-
sifiers. In our case, we do not know the type of objects and wevndy collect training data
online. The most relevant work to ours for tracking multiptgects of a general type i§§].

It employs the detector in the Tracking-Learning-Detat{ibLD) framework P1] to detect
similar objects, but it still focuses on pedestrian tragkin

3 Approach

3.1 Overview

In our approach, the tracking-by-detection strategy isleygal for multiple object tracking
in crowds. Given the initial bounding box of an arbitrarygar object, we train a classifier
to discriminate all target objects from background. Foihezfdhe detected objects, we form
a tracker using the corresponding object as a positive sgrapd other objects around it
and random background patches as negative samples. Thesevtbeutrackers to follow
those objects in the subsequent frames respectively. pfteressing every few frames, we
select the objects which are tracked confidently to retifandetector. When the detector is
aware of new objects or disappearance of existing obje@down new trackers or delete
the existing trackers. FidL. illustrates the overview of our approach.

3.2 Generic Detector

For detection, we generate candidates using the slidindawirstrategy 38]. Like the pre-

vious work, we can reject most of the candidates confideidlywever, unlike pedestrian
detection, we do not know the type of objects, thus we are ivenhgleliberately designed
features with a high false positive rate and a low false negedte in advance. To tackle this
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Figure 1: An overview of our approach. (a) Problem decomjmrswvithin the MTL frame-
work. (b) Detection by the linear Laplacian SVM (given onigial bounding box). We show
graphs of two continuous frames here. (c) Tracking resdltontinuous two frames. We
zoom in a part of the image to give a clear view. (d) Trackinghey detector regularised
multiple trackers (see Sectiéh3). Each object is associated with a graph. The dotted line
between each tracker and the detector indicates theiriatisoc This figure is best viewed

in colour.

problem, we employ some efficient criterions in the follogito measure the objectness of
candidate windows and then reject candidates which arekeby ko be objects.

Region Variance. This criterion computes the variance of the pixels withiceadidate
region aRVv = ﬁ ¥i(gi —0), whereNR is the number of pixels in the regiog, is the gray
intensity of pixeli andgis the mean intensity of all the pixels in this region. Thigezion
can reject some candidates from the background such asayrsisg

Edge Density. This criterion calculates the density of edge pixels withiregion as
ED= NiR yil{i € Er}, where ¥} is the indicator functionfx is the set of pixels which
belong to edge. This criterion helps to reject candidateishware too smooth. Note that
in [1] the Edge Density is also a cue to measure the objectnesbebeitwe use different
methods to calculate the edge density.

Colour Contrast. We borrow the Colour Contrast c@C(6cc) = X (hregion hSu”(eCC))
in [1] to measure the objectness of a winddiegionis the colour histogram of the region and
PNsurr(acc) 1S the colour histogram of the surrounding of the regiéic(measures how large
the surrounding is), ang(-, ) is the chi-square distance function. Although this crigris
used in [] that there is only one object in the image scene, it is aldpfhieto reject some
windows in our case.

Typically the number of sliding windows is greater than B@0, and the number of
windows survived from these three rejecters is about 1008is &nables us to adopt an
elaborate detector. We treat the survived windows as ulidabsamples and write them
asXy = [X1,...,Xn,], Wherex; € RY, d is the dimension of the feature space. As we have
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been given an initial bounding box as a target object, we angiiine positive sample set
by adding some slight disturbance to it. At the same time, avepde instances in a further
distance (betweeny andr;) as negative data. The corresponding labels of theny,are
{1,-1},i=1,---,n, wherey; = 1 meansx; is object andy; = —1 corresponds to non-
object (background). Along with the unlabelled candidates write all then samples as
X = [X, Xy] € RN,

Let us define the detector d$x) = w] x, wherewo € RY. To tackle the detection prob-
lem, we minimise the following objective function:

N
Lp = yi|wol/>+ vZWEXLxTwOﬂsZ[lfyif(xi)] 1)
i=

In Eq. 1, the first term is the regularisation of the classifier to ioyerthe generalisation
ability, the second term is the smoothness among all the Ilssnapd the third term is the
fitting error of the labelled sampled. is the Laplacian matrix calculated from the graph
constructed based on all the samples. It is notable thabtbijéctive function has the same
form as Laplacian SVMJ]. However, here we modify the original Laplacian SVM to the
linear case.

Introducing the slack variableswe have the primal problem as:

n
mig yillwol|? + ygngLXTwoerngsi
1€l |:

2
st. ywdx>1—g,i=12..n @
§>0i=212,..n
Following the primal-dual formulation, we have:
n 1
max a—Za'Qa
ack" S 2 ®3)

st. 0<ai<y,i=12..n

whereQ = YTITXT 2yl +2)XLXT)~IXJY, I =1 0T is an x n, matrix with| as then; x
ny identity matrix,Y = diag(ys, ..., Yn, ) € R"*" anda = [0, ...,an]T € R™ are Lagrangian
multipliers.

This problem is a typical quadratic optimisation problemaktcan be solved by standard
optimisation software. Aftea is obtained, we can acquive in Eq. 4. For more details,
please refer tod].

Wo = (21l +2)XLXT)"IXaY a (4)

Detection: All target
objects are detected —> All tasks are related
as the single object class

Tracking: detected objects
are tracked individually <—p Each task is unique

Figure 2: Formulation of the MOT problem into MTL. This figuisebest viewed in colour.
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3.3 Detector Regularised Trackers

As mentioned before, we maintain an individual tracker facteobject. However, they are
objects of the same type, which is confirmed by the detectomFhis perspective, our MOT
problem can be naturally formulated within the MTL framewoAll the tasks in MTL are
related, while all the objects are treated as the same typbjetts in the detection stage.
All the tasks in MTL are different from each other, while weadt objects differently when
tracking them. Fig2 illustrates how the MOT and MTL problems are inherently &dk
Based on the above inspiration, we treat detection anditrgei multiple objects as
two main tasks, and tracking of each object as a sub-tasknatitle MTL framework. We
denote the tracker for objetas fi (x) = w{ x. To relate the two main tasks, we penalise the
deviation of each tracker from the detectay using the cost function as the following,

-
le\wthon (5)
=

This regularisation term benefits the trackers in two aspegirstly, as|w; > = [|w; —
Wo +Wo|? < ||wt —Wo||%+ [[wol|?, and we have minimiselfvo||2 in the detection stage, thus
minimising ||w; —wo||? equals minimising|w; |2, further improving the generalisation abil-
ity of each tracker. Secondly, this term can prevent trexkem drifting to the background
as we enforce each tracker to be close to the detector.

Furthermore, we encode the relatedness of multiple sWs-ta learning the features
jointly shared by all the trackers via a regularisation téi|2 1, whereW € R9<T is the
matrix composed of all the trackers @, --- ,wt]. ||[W|21 is the/>1 norm of W which
first computes thé, norm of each row to obtain a column vector, then computeg;therm
of the column vector. This regularisation term can resuthet only some rows ofV are
non-zero, which correspond to the features shared by altasks.

In addition, we introduce a smoothness term for each trackée smoothness term
enables the tracker to view the labelled and unlabelled Eenfpandidates) together. It has
been applied to the MTL framework by Lue al. [28] to handle semi-supervised learning.
Here we introduce it to gain the smoothness property of alttackers.

We sample the nearby instances and the farther instandes autrent frame as positive
data and negative data respectively, and we take the sulirgusamples in the next frame
as unlabelled data. Having obtained training data, we meploe Mean Regularised Joint
Feature Learning algorithm which minimises the followirgezxtive function:

L TyT 2 P2 « 2 P37 T
min o % (|3 Xg We = Ye[[“+palWll22+ 5 > Iwe —wol[“+ = S wy XeLeXi we (6)
WeRAXT 2t: 2 = 2 =

whereX; € R (M+) js the combination ofi labelled samples ang unlabelled samples
0 8 Jis a(nl 4 n¥) x (nl +n) matrix with | as then! x n} identity
matrix. Yi € R+ s the label vector of the task(we give the neutral label 0 to the
unlabelled data).L; is the Laplacian matrix associated with the graph of the tasind
p1, P2, p3 are the trade-off parameters. The above objective funcapiures the relatedness
of the multiple tasks from two perspectives. One lies in gwtidre level, which makes the
tasks share a common set of features. The other one liesdfetbfier level, which encodes
that all of the trackers should not be too different from tlegedtor.

for a sub-task, J; = | !
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Solving Eg. 6. We adopt the Accelerated Gradient Method (AGK)][to solve this
composite optimisation problem. Compared to the tradifigradient method, the AGM
has the convergence speed@(fk—lz) (i.e. it achieves the solution Wit@(k—lz) residual from
the optimal solution aftek iterations), which is the optimal among the first order meth:
ods. For the sake of convenience, we write E@s a combination of a smooth component
LOW) =3 5 13X we = Y2+ 2 50 [[we —wol|* + 5 5T wi XeLeX{ w; and a non-
smooth componer®(W) = p1||W||21. The AGM here iterates by using a linear combina-
tion of previous two points as the search point, rather tharlatest point in the traditional
gradient method. Each AGM iteration is composed of two stépsGeneralised Gradient
Mapping which updatew““l) given the search poifW<Sk), (2) Updating the current search
pointwgk) by combining the previous two points.

(1) Generalised Gradient Mapping: given the current sep(xhhtw(sk), the estimation
w1 can be obtained by solving E@.

WO = argming [ W - (W - %DMW(S”))H% +Q(W) Y

wherey is a step parameter andC(W) is the gradient oZ(W). Each column of1£(W)
is:
XeJe(I X{ We — Yt) + p2(We — Wo) + paXeLeX{w, t=1,---,T (8)

Considering the computation procedurésf norm, Eq.7 can be decoupled adisjoint
sub-problems in EcP (one for each row vectdl;),

.1 i
W) = argmin [Wi — U3 +A [ Wiz, i =1, d ©

whereU = W<Sk) - %,DE(WSO), Ui is the throw of U andA = p;/y. Following [10, 47], the
solution to Eq9 is the following:

W = max(1—

A
2o, i=1.d 10
1o Y (10)

(2) Updating the current search point as a linear combinatidhe previous two points:
W = (14 ayw kD — qw® (11)

wherea = (t0 — 1)/t*k+1) andt®*D) = 1(1+ \/1+4(t®)2). The algorithm terminates
when the change of the function is lower than a threshold @mtlmber of iterations has
achieved the maximum. Our Mean Regularised Joint Featuaeniregy algorithm is sum-
marised in Algorithml. Note that we implement this algorithm based on the code tram
MALSAR package 50].

After we obtain the solutioV, each colummw; is the tracker for each sub-task (each
object). And we select the most confident candidate as tivea#in of each object, i.e.,

x; = argmaw x (12)
XeX!

whereX{' is the unlabelled part of;.
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Algorithm 1 Mean Regularised Joint Feature Learning for MOT
Input: X¢,Y¢,Wo, t=1,---T.

Output: W
1. Initialisation each column oftV© andw@ is X; x Y, 1@ =0,tM =1, k= 1,0 =
@ —1)t®, W = (14 a)W® — aw©

2. Wh|lenot converged;lo
3. ObtainU =Wy’ —i0cwy),

4. Solve Eq9via Eq.10to acquire\Ni(kH), i=1---,d

5. Update the search point el = (1+ a)W("“) —aw®
6

7

ke k+1,t0D 114+ /14 4(t0)2), a « (t® — 1) 40+,
.End

Figure 3: Images excerpted from the sequences. From topttonbdhey are Zebra, Red
crab, Antelope and UBC Hockey sequences. The number attdctemch bounding box is
the object’s ID and the yellow line is its estimated trajegtor his figure is best viewed in
colour.

4 Experiments

Feature. We compute HOGJ3], LBP [39] and the Colour Histogram as features and con-
catenate these feature vectors to represent a window. Tritdgature learning in our algo-
rithm will select the useful features for MOT.

Tracking Management. At runtime, we maintain a list to save the objects. If the dite
discovers a new object, we assign it a weight and buffer ithéfollowing once it is detected
we increase its weight and once it is not detected the wesgtiecreased. If the weight is
greater than a threshofd a tracker is initialised for it. For the objects existedhe tist, we
have the opposite process to delete objects when they @iaafrpm the image scene.

Parameters. Here we note the setting of some parameters. For the Colour&X cue,
we use the default parameters aslifgxceptf. As we do not have enough training examples
to learn it we empirically set it as 60, and it works well on data sets. When constructing
graph, we employ th&0-NNand therbf kernel to calculate the adjacency matrix.
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Sequence MOTA MOTP{ Rec.t Prec.t MT?T ML |
Zebra (eTLD) 58.73% 64.48% 60.37% 92.14% 15.94% 42.03%
Zebra (BS1) 72.31% 58.23% 78.58% 93.10% 30.43% 34.78%
Zebra (BS2) 69.40% 67.12% 75.30% 93.08% 33.33% 34.78%

Zebra 77.69% 66.78% 80.30% 97.02% 43.48% 30.43%

Red crab (eTLD) 6.77% 64.62% 21.49% 58.20% 4.85% 86.41%
Red crab (BS1) 26.95% 59.39% 47.63% 69.24% 8.74% 76.70%
Red crab (BS2) 32.70% 59.40% 45.25% 77.89%71% 74.76%
Red crab 39.06% 60.00% 51.50% 80.65% 9.71% 70.87%
Antelope (eTLD) 8.76% 64.98% 29.08% 57.05% 23.53% 76.47%
Antelope (BS1) 24.46% 67.29% 65.31% 61.75% 35.29% 39.71%
Antelope (BS2) 23.62% 66.73% 65.55% 61.2798.24% 38.24%
Antelope 35.58% 63.31% 73.97% 65.81% 36.76% 36.76%
UBC Hockey (eTLD) 54.66% 64.66% 65.04% 84.25% 17.86% 25.00%
UBC Hockey [7] 79.7% 60.0% 80.5% 98.9% - -
UBC Hockey F] 76.5% 57.0% 77.7% 98.8% - -
UBC Hockey B1] 67.8% 51.0% 68.7% 100% - -
UBC Hockey 80.30% 69.09% 92.37% 89.20% 67.86% 10.71%

Table 1: Quantitative results compared with the extenddd, Tur baselines (BS1, BS2) and
other MOT approaches. In the metrics with the upward arrbe/greater number indicates
the better performance (and vice versa for the downwara@rifeor each data sequence, the
last line shows our result. The best accuracies are in badte that [7][6][31] do not supply
the MT and ML results.

We firstly test our approach on three challenging data seted&ebra, Red crab and
Antelope respectively. There are scale changes in the Zs=uaence and there are back-
ground clutter, scale variation and rotation in the Red seduence. For the Antelope se-
quence, there exist severe occlusions and out-of-plaa&ant For comparison, we extend
the TLD framework 1] for MOT. The detector of the TLD framework is based on randorm
ferns, which can detect non-specific type objects. The e@TLD selects the detected
similar objects to track. At the same time, to verify the imygment from the joint feature
learning term and the smoothness term, we form another taelibas to be compared with.
The first one (BS1) is formed by only keeping the fitting erssnt and the mean-regularised
term. The second one (BS2) is formed by that we incremenégally the jointly feature
learning term to BS1 (still without the smoothness term).

To evaluate the tracking performance quantitatively, weplesnthe Multiple Object
Tracking Accuracy (MOTA) and Multiple Object Tracking Pigion (MOTP) metrics pro-
posed in 2. MOTA considers the false positive, missed objects andildches. MOTP
simply calculates the average overlap between the grourtid &and the estimated objects.
We also compute Recall and Precision, the number of Mostigked (MT), and Mostly
Lost (ML) trajectories 26] for further comparison. Tablé and Fig.3 show the results. For
more results, please see our supplementary videos.

The figures in Tabld reveal that the extended TLD performs slightly worse than ou
approach on the Zebra sequence, but on the other two sequnoesults are much worse
than ours. That is because the crabs and the antelopes daveogvident patterns like the
zebras and the backgrounds of the two sequences are diffteFig.3). It is also easy to
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observe the improvement from the jointly feature learngmgt and the smoothness term if
our results are compared with those of our two baselines.

To further illustrate that our approach is effective, wepatisst it on a public data set
named UBC Hockeyd1]. We compare our results with some MOT approacltes[31].
The purpose of comparison with other MOT approaches is tifgénat our approach can
also work well on some human data sets even if we do not haviaborate human detector.

5 Conclusion

We have shown how generic object crowd tracking is formudlatt the multiple task learn-
ing problem and have proposed the novel methods. We havemesed the problem into
two main tasks and represented their relation by the prapban Regularised Joint Fea-
ture Learning algorithm. The optimisation functions of¢adéwo main tasks have the terms
for the generalisation ability, the smoothness, the fitdmgrs and feature learning. Solving
the optimisation problems yields the desired list of detécnd tracked objects in frames.
Experimental results on the challenging data sequencesdmfirmed the efficacy of our
approach over the state-of-the-art ones.
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