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Abstract

Image blur kernel classification and parameter estimation are critical for blind im-
age deblurring. Current dominant approaches use handcrafted blur features that are op-
timized for a certain type of blur, which is not applicable in real blind deconvolution
application when the Point Spread Function (PSF) of the blur is unknown. In this paper,
a Two-stage system using Deep Belief Networks (TDBN) is proposed to first classify the
blur type and then identify its parameters. To the best of our knowledge, this is the first
time that Deep Belief Network (DBN) has been applied to the problem of blur analysis.
In the blur type classification, our method attempts to identify the blur type from mixed
input of various blurs with different parameters, rather than blur estimation based on the
assumption of a single blur type in current methodology. To this aim, a semi-supervised
DBN is trained to project the input samples in a discriminative feature space, and then
classify those features. Moreover, in the parameter identification, the proposed edge de-
tection on logarithm spectrum helps DBN to identify the blur parameters with very high
accuracy. Experiments demonstrate the effectiveness of the proposed methods with bet-
ter results compared to the state-of-the-art on the Berkeley segmentation dataset and the
Pascal VOC 2007 dataset.

1 Introduction
Image blur is a major source of image degradations, although it can sometimes be required
for artistic purposes. Various sources can cause image blur, such as the atmospheric tur-
bulence (Gaussian blur), camera relative motion during exposure (motion blur), and lens
aberrations (out-of-focus blur) [16]. Assuming that we consider spatially invariant blurs, the
formation processes of these blurs can be described by global convolution models, which
will be explained in Sec.2.1.

The restoration of blurred photographs, image deblurring, is the process of inferring
latent sharp images with inadequate information of the degradation model. It can be cate-
gorized into blind and non-blind. Non-blind deblurring requires the prior knowledge of the
blur kernel and its parameters, while in blind deblurring we assume that the blurring oper-
ator is unknown. In most situations of practical interest the Point Spread Function (PSF)
is not acquired, so the application range of non-blind deblurring is much narrower than the
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blind deblurring [1]. In blind image deblurring, there are two main classes: multi-image
[4, 7, 17] and single-image deblurring. In the real application, a single blurred image is usu-
ally the case we need to deal with. For instance, Single-channel blind deconvolution within
Bayesian framework is considered in [18]. The parameter for Gaussian blur is determined
efficiently by wavelet decomposition in [27]. Restoring images degraded by motion blur is
discussed in [26]. Similarly, one popular approach is the application of radon transform,
which can estimate the blur kernel by analyzing the edges in the image [8]. Other methods
have also been tried for motion blur, such as cepstral method, and steerable filters [14].

While most previous work focuses on image deblurring, not as much research has been
done on blur classification, which is more practical because the type of blurs is usually un-
known in photographs. Based on the descriptor of blurs, there are a few blur classification
method without doing image deblurring. One of the state-of-the-art method is a Bayes Clas-
sifier based using blur features, for instance, local autocorrelation congruency [19]. Another
similar method has been proposed by Su et al. [29] based on the alpha channel feature, which
has different circularity of the blur extension. Though both of them managed to detect local
blurs in the realistic image, their methods are based on handcrafted features.

Although previous blur classification methods can perform well with handcrafted fea-
tures, their performance is still limited due to the diversity of natural images. Recently, many
researchers have moved their attention from the heuristic prior to the learned deep architec-
ture. The deep hierarchical neural network roughly mimics the nature of the mammalian
visual cortex, which has been applied in many vision tasks, such as object recognition, im-
age classification, and even image analysis. In Jain’s denoising work [13], they have shown
the potential of using Convolutional Neural Network (CNN) for denoising images corrupted
by Gaussian noise. In such an architecture, the learned weights and biases in the deep con-
volutional neural network are obtained through the training on sufficient amount of natural
images. For testing stage, these parameters in the network act like ’prior’ information for the
degraded images, which end up with better results compared to the top local denoising ap-
proaches. Another example is the blur extent metric developed by the multifeature classifier
based on Neural Networks (NN) [9]. It has proved that the combined learned feature works
better than individual handcrafted feature mostly.

Inspired by the practical blur type classification in [19, 29] and the merits of learned
descriptors in [9, 13], we intend to design another patch-based blur type classification and
parameters identification method to better solve the realistic blur analysis problem. Deep
Belief Network (DBN) is chosen for accomplishing the feature extraction and final classifi-
cation in this system. A two-stage framework is proposed: first, for the input image patches
with different blurs, the DBN is used for identifying the blur type; second, different samples
with the same blur type will be sent to the corresponding DBN blocks for further parameter
estimation. The DBN is trained in a semi-supervised way: the unsupervised training of the
DBN is done by a greedy layer-wise pre-training before the supervised backpropagation for
the fine-tuning. The unsupervised process helps the feature learning, and the backpropaga-
tion helps to construct the discriminative information.

In a word, our contributions are threefold:

• To the best of our knowledge, this is the first time that deep belief network has been
applied to the problem of blur analysis.

• A discriminative feature, derived from edge extraction on Fourier Transform coeffi-
cients, has been proposed to preprocess blurred images before they are fed into the
DBN.
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Figure 1: The TDBN architecture: DBN1 is the first stage for blur type classification, which
has 3 output labels. DBN2 is the blur PSF parameter identification, which has different output
labels for each blur type. P1, P2, and P3 are the estimated parameter labels, which can be seen
in Sec. 3.3.

• A two-stage framework is proposed to estimate the blur type and parameters for any
given image degraded by spatially invariant blur of an unknown type.

2 Two-stage Deep Belief Networks

In this section, we describe the proposed two-stage deep belief networks, for blur classifi-
cation and parameter identification. We explain the problem formulation, the proposed blur
features, and the training of DBNs in Sec. 2.1, Sec. 2.2, and Sec. 2.3, respectively. The
whole TDBN process is described in Sec. 2.4.

2.1 Problem Formulation

The image blurring can be modeled as the following degradation process from the high
exposed image to the observed image [24]:

g(x) = q(x)∗ f (x)+n(x) (1)

where x = {x1,x2} denotes the coordinates of an image pixel, g represents the blurred image,
f is the intensity of the original high quality image, q denotes the PSF of a certain blur type,
∗ indicates the convolution, and n is the additive noise.

In blind image deconvolution, it is very difficult to recover the PSF from a single blurred
image due to the loss of information during blurring [12]. Our goal is to classify the blurred
patches into their corresponding degradation functions and parameters. Several blurring
functions are considered in this paper.

In many applications, such as satellite imaging, Gaussian blur can be used to model the
PSF of the atmospheric turbulence:

q(x,σ) =
1√

2πσ
exp(−x2

1 + x2
2

2σ2 ), x ∈ R (2)

where σ is the blur radius to be estimated, and R is the region of support. R is usually set as
[−3σ ,3σ ], because it contains 99.7% of the energy in a Gaussian function [6].

Citation
Citation
{Molina, Mateos, and Katsaggelos} 2006

Citation
Citation
{Hu, Xue, and Zheng} 2012

Citation
Citation
{Chen and Ma} 2009



4 YAN, SHAO: IMAGE BLUR CLASSIFICATION AND PARAMETER IDENTIFICATION

Another blur is caused by linear motion of the camera, which is called motion blur [15]:

q(x) =

 1
M , i f (x1,x2)

(
sin(ω)
cos(ω)

)
= 0 and x2

1 + x2
2 ≤M2/4

0, otherwise
(3)

where M describes the length of motion in pixels and ω is the motion direction with its angle
to the x axis. These two parameters are what we need to estimate in our system.

The third blur is the out-of-focus blur, which can be modeled as a cylinder function:

q(x) =

{
1

πR2 ,
√

x2
1 + x2

2 ≤ R
0, otherwise

(4)

where the blur radius R is proportional to the extent of defocusing.

In the blur classification method of [19], a motion blur descriptor, local autocorrelation
congruency, is used as a feature for the Bayes classifier to discriminative motion blur from
defocus blur because the descriptor is strongly related to the shape and value of the PSF.
Later, Su et al. [29] have presented better handcrafted features for blur classification, which
gives better results without any training. Though both methods generate good results on
identifying motion blur and out-of-focus blur, the features they used are both limited to a
single or several blur kernels. In this paper, we attempt to find a general feature extractor
for common blur kernels with various parameters, which is closer to realistic application
scenarios. Therefore, enlightened by the previous success of applying deep belief networks
to discriminative learning [31], we consider to use the DBN as our feature extractor.

When designing the DBN, it is natural to use observed blurred patches as training and
testing samples. However, their characteristics are not as obvious as their frequency coeffi-
cients [5]. Hence, the logarithmic power spectra are adopted as input features for the DBN,
since the PSF in the frequency domain manifests different characteristics for different blur
kernels. Bengio et al. [3] have pointed out that the scaling continuous-valued input to (0,1)
worked well for pixel gray levels, but it is not necessarily appropriate for other kinds of input
data. From Eq.1 one can see that the noise might interfere the inference in the DBN [3], so
preprocessing steps are necessary for preparing our training samples. In this paper, we use
an edge detector to obtain binary input values for the DBN training, which has been proved
to benefit the blur analysis task.

We propose a two-stage classification system to both classify the blur kernel and identify
the blur parameters. These two stages have a similar network architecture but different input
layers. The first stage is an initial classification of the blur type, and the second stage is to
further identify the blur parameters within samples with the same label from the results of
the first stage. Since the variation between blur parameters of the same blur type is not as
great as that between different blur types, more discriminative features have been designed
for the second stage, which yields much better results than combining the two stages into
one in our experiments.
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2.2 Blur features

2.2.1 Features for motion and defocus blurs

If we apply the Fourier Transform (FT) to both sides of Eq. (1), we can obtain:

G(u) = Q(u)F(u)+N(u) (5)

where u = {u1,u2}. For the out-of-focus blur, Q(u) = J1(πRr)
πRr , r =

√
u2

1 +u2
2.

J1 is the first-order Bessel function of the first kind and the amplitude is characterized by
almost-periodic circles of radius R along which the Fourier magnitude takes value zero. 1

For the motion blur, the FT of the PSF is a sinc function: Q(u)= sin(πMω)
πMω

, ω =± 1
M ,± 2

M , ....
In order to know the PSF Q(u), we attempt to identify type and parameters of Q from

the observation image G(u). Therefore, the normalized logarithm of Q can be used in our
implementation:

log(|Q(u)|)norm =
log(|Q(u)|)− log(|Qmin|)
log(|Qmax|)− log(|Qmin|)

(6)

where Q represents Q(u), Qmax = maxu(Q(u)), and Qmin = minu(Q(u)).
As shown in Fig. 2, the patterns in these images (log(|Q(u)|)norm) can represent the

motion blur or the defocus blur intuitively. Hence, no extra preprocessing needs to be done
for the blur type classification. However, defocus blurs with different radii are easy to be
confused, which also has been proved in our experiments. Therefore, for blur parameter
identification, an edge detection step is proposed here.

Since the highest intensities concentrate around the center of the spectrum and decrease
towards its borders, the binarization threshold has to be adapted for each individual pixel,
which is computationally prohibitive. If a classic edge detector is applied directly, redundant
edges would interfere with the pattern we need for the DBN learning. Many improved edge
detectors have been explored to solve this issue, however, most of them do not apply to the
logarithmic power spectra data, which cause even worse performance [2, 22]. For instance,
Bao et al. [2] proposed to improve the Canny detector by the scale multiplication, which
indeed enhances the localization of the Canny detector. However, this method does not
generate good edges on our images.

We solve this issue by applying the Canny detector first, and then using a heuristic
method to refine the detected edges. Due to the fact that the useful edges are isolated near
zero-crossings, we need to refine the detection results from the logarithmic power spectrum.
The Canny edge detector is applied to form an initial edge map. Then, we design several
steps to select the most useful edges: 1) For both of the blur types, we select isolated edges.
Assuming the isolated region has the radius d, those edges, in the orthogonal direction of the
current edge within radius d, will be discarded [8]. 2) For the motion blur, we abandon short
and very curvy edges. We consider the orientations θ = [0,π] of the candidate edges within
radius d are considered. The criterion proposed by Watson [30] is utilized for estimating
their alignment [8].

1http://www.clear.rice.edu/elec431/projects95/lords/elec431.html
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2.2.2 Features for the Gaussian blur

For the Gaussian blur, the Fourier transform of the PSF is still a Gaussian function, and there
is no significant pattern change in the frequency domain. From Eq.(2), we can see that the
Gaussian kernel serves as a low pass filter. When the sigma of this filter is larger, more ’high
frequency information’ will pass in. However, from our observation, when the σ is larger
than 2, the pattern on the logarithmic spectrum image barely changes. In the experiment
section, we show that edge detection is not suitable in this case.

(a) (b) (c) (d) (e) (f)

Figure 2: The blur images and their logarithmic spectra. (a) Image with Gaussian blur.
(b) Image with motion blur. (c) Image with out-of-focus blur. (d) Logarithmic spectrum
of Gaussian blur (σ = 2). (e) Logarithmic spectrum of motion blur (M = 9,ω = 45). (f)
Logarithmic spectrum of out-of-focus blur(R = 30).

2.3 The Training Process of Deep Belief Networks

Deep belief nets are used as a generative model for feature learning in a lot of previous work
[31]. In this paper, we first construct the DBN by unsupervised greedy layer-wise training to
extract features in the form of hidden layers and then apply a fine-tuning for discriminative
weights in a supervised way.

The training process of an individual DBN is as follows:

1. The input layer is trained in the first Restricted Boltzmann Machine (RBM) as the
visible layer. Then, a representation of the input blurred sample is obtained for fur-
ther hidden layers. This representation is chosen to be the mean activations in our
experiments as p(hk+1) = 1|hk,k = 0,1, ...P, where P is the number of all the hidden
layers.

2. The next layer is trained as an RBM by greedy layer-wise information reconstruction.
The training process of RBM is to update weights between two adjacent layers and the
biases of each layer. In our scheme, Contrastive Divergence (CD) [11] is applied.

3. Repeat the first and second steps until the parameters in all the layers (visible and all
hidden layers) are learned.

4. In the supervised learning part, the labels are used for training the DBN to have dis-
criminant ability using backpropagation. Then, the goal for the optimization process
is to minimize the backpropagation error derivatives: φ ∗ = argminφ [−∑p yplogŷp],
where yp and ŷp are the estimated label and the correct label. The conjugate gradient
descent is used for this optimization.
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2.4 Forming the TDBN

The TDBN is formed by two-stage DBN learning (Fig. 1). First, the identification of blur
patterns is carried out in the first stage by using the logarithmic spectra of the input blurred
patches. The output of this stage is 3 labels: the Gaussian blur, the motion blur and the
defocus blur. With the label information, the classified blur vectors will be used in the
second stage for blur parameter identification. At this stage, motion blur and defocus blur
will be further preprocessed by the edge detector (Sec. 2.2) before the training but Gaussian
blur vectors remain the same. The output of this stage is various labels for individual DBNs
as shown in Sec. 3.3.

3 Experiments

3.1 Experimental setup

Training datasets: The Oxford image classification dataset 2, and the Caltech 101 dataset
are chosen to be our training sets. We randomly selected 4000 images from each of them.

The size of the training samples ranges from 32× 32 to 128× 128 pixels, which are
cropped from the original image. By empirical evaluation, the best results occur when the
patch size is 32× 32. The size of the training set is 12000 (randomly selected from those
cropped images). In those 12000 training samples, 4000 of them are degraded by Gaussian
PSF, 4000 of them are degraded by the PSF of motion blur, and the rest are degraded by the
defocus PSF.

Testing datasets: Berkeley segmentation dataset (200 images) has been used for our
testing stage, which has been applied to the denoising algorithms [21, 28]. Pascal VOC
2007: 500 images are randomly selected from this dataset [20].

2000 testing samples are chosen from each of them according to the same procedure as
the training set. The numbers of the three types of blurred patches are random in the testing
set.

Blur features: The Canny detector is applied to the logarithmic power spectrum of image
patches with automatic low and high thresholds. Afterwards, the isolated edges are selected
with the radius of 3 pixels according to the suggestions from [8].

Figure 3: Comparison of the three edge detection methods applied to a training sample. From
left to right: (1) the logarithmic power spectrum of a patch; (2) the edge detected by Canny
detector (automatic thresholds); (3) the edge detected by the improved Canny detector using
scale multiplication; (4) the edge detected by our method

DBN Training: For parameters of the DBN learning process, the basic learning rate and
momentum in the model are set according to the previous work [3]. In the unsupervised
greedy learning stage, the number of epochs is fixed at 50 and the learning rate is 0.1. The

2http://www.robots.ox.ac.uk/ vgg/share/practical-image-classification.htm
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Method Features CR1 CR2
Liu et al.’s method [19]

Handcrafted
79.3% 80.5%

Su et al.’s method [29] 81.6% 83.1%
SVM on our features [10] 78.2% 80.8%

NN [23]
Learned

92.5% 91.7%
CNN [25] 95.3% 96.8%
Proposed 99.7% 98.2%

Table 1: Comparison of obtained average results on the two testing datasets with the state-
of-the-art. CR1 is the Berkeley dataset, and CR2 is the Pascal dataset.

initial momentum is 0.5, and it changes to 0.9 after five epochs. Our supervised fine-tuning
process always converges earlier than epoch 30.

3.2 Image blur type classification
In our implementation, the input visible layer has 1024 nodes, and the output layer has 3
labels (Gaussian kernel, motion kernel, and defocus kernel). Therefore the whole architec-
ture is: 1024 −→ 500 −→ 30 −→ 10 −→ 3. These node numbers in each hidden layer are
selected empirically.

On the one hand, we compare our method with the previous blur type classification
methods based on handcrafted features: [19] and [29]. Their original frameworks contain
a blur detection stage, and the blur type classification is applied afterwards. However, in our
algorithm, the image blurs are simulated by convolving the high quality patches with various
PSFs. In our comparison, [19] has been trained and tested with the same datasets we used,
while [29] has been tested with the same testing set we used.

On the other hand, NN [23], CNN [25] and Support Vector Machine (SVM) have been
chosen for the classifier comparison. The same blur feature vectors are used for NN and
CNN. The SVM-based classifier was implemented following the usual technique: several
binary SVM classifiers are combined to the multi-classifier [10].

The classification rate is used for evaluating the performance:

CR = 100
Nc

Na
(%) (7)

where Nc is the number of the correct classified samples, and Na is the number of the total
samples.

We can observe from Table 1 that algorithms based on learned features perform better
than those based on handcrafted features, which suggests that learning based feature extrac-
tor is less restricted to the type of the blur we consider. Meanwhile, our method performs
best among all the algorithms using automatically learned features.

3.3 Blur kernel parameter identification
In this experiment, the parameters of the blur kernels are identified. For different blur k-
ernels, different parameters are estimated as explained in Sec. 2.1. The parameters are
set as: 1) Gaussian blur has 8 labels: σ = {0.5,1,1.5,2,2.5,3,3.5,4}; 2) Motion blur
has 8 labels: M = {3,9} ω = {0,45,90,135}; 3) Out-of-focus blur has 8 labels: R =
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Method CR11 CR12 CR13 CR21 CR22 CR23
SVM [10] 96.5% 97.2% 96.9% 95.1% 95.7% 94.9%
NN [23] 90.1% 92.6% 92.2% 90.9% 91.5% 90.6%

CNN [25] 97.9% 98.9% 98.5% 97.3% 98.1% 98.2%
DBN 97.8% 98.1% 97.9% 97.7% 97.8% 97.5%

TDBN1 99.5% 98.8% 98.4% 99.3% 98.5% 98.2%
TDBN2 99.2% 99.9% 99.4% 99.1% 99.7% 99.2%

Table 2: Comparison of obtained results on the two testing datasets with the state-of-the-art.
In CRxx the first x refers to the dataset type (1 for Berkeley and 2 for Pascal) and the second
x refers to the blur type (the Gaussian blur, the motion blur, and the defocus blur). DBN is
the case that the mixed blur patches are classified by a single DBN. TDBN1 is the case when
we use the logarithm spectrum for stage 1 and stage 2. TDBN2 is the case when we use the
logarithmic spectrum for stage 1 and edge detection for stage 2.

{2,5,8,11,14,17,20,23}. The architecture in each DBN is the same except for the output
layer: 1024 −→ 576 −→ 36 −→ 25 −→ number of labels for a certain blur type.

Our method is compared to the NN, CNN, and SVM with the same input layer of the blur
features. As shown in the following Table 2, our method achieves the best results among all,
especially for the motion and defocus blur due to the obvious patterns they have in their
logarithmic power spectra. Besides, for the Gaussian blur, we can observe that the edge
detector has not benefited them, which is consistent with our previous analysis. Moreover,
our proposed two-stage strategy works better than a single DBN as shown in Table 2.

4 Conclusions

In this paper, a two-stage deep belief network has been proposed for the blur type classifica-
tion and parameter identification. Our training samples are generated by patches from abun-
dant datasets, after the Fourier transform and our designed edge detection. In the training
stage, deep belief networks have been applied in a semi-supervised way. That is, the whole
network is trained in an unsupervised manner and afterwards the backpropagation fine-tunes
the weights. In this way, a discriminative classifier has been trained. The experimental results
have demonstrated the superiority of our TDBN compared to the state-of-the-art methods.
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