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Figure 1: The TDBN architecture: DBN1 is the first stage for blur type
classification, which has 3 output labels. DBN2 is the blur PSF parameter
identification, which has different output labels for each blur type. P1, P2,
and P3 are the estimated parameter labels.

Image blur kernel classification and parameter estimation are critical for
blind image deblurring. Current dominant approaches use handcrafted
blur features [5, 6] that are optimized for a certain type of blur, which is
not applicable in real blind deconvolution where the Point Spread Func-
tion (PSF) of the blur is unknown. Inspired by the successful applications
of deep learning techniques to object recognition and image processing
[2, 4], in this paper, a Two-stage system using Deep Belief Networks
(TDBN) is proposed to first classify the blur type and then identify its
parameters.

In this paper, we intend to design a patch-based blur type classifica-
tion and parameters identification method to better solve the realistic blur
analysis problem. Deep Belief Network (DBN) [3] is chosen for accom-
plishing the feature extraction and final classification in this system. A
two-stage framework is proposed: first, for the input image patches with
different blurs, the DBN is used for identifying the blur type; second, d-
ifferent samples with the same blur type will be sent to the corresponding
DBN blocks for further parameter estimation. The DBN is trained in a
semi-supervised way: the unsupervised training of the DBN is done by a
greedy layer-wise pre-training before the supervised backpropagation for
the fine-tuning. The unsupervised process helps the feature learning, and
the backpropagation helps to construct the discriminative information.

In a word, our contributions are threefold: 1) To the best of our knowl-
edge, this is the first time that deep belief network has been applied to the
problem of blur analysis; 2) A discriminative feature, derived from edge
extraction on Fourier Transform coefficients, has been proposed to pre-
process blurred images before they are fed into the DBN; 3) A two-stage
framework is proposed to estimate the blur type and parameters for any
given image degraded by spatially invariant blur of an unknown type.

To begin with, for the input blurred patches, the logarithmic spectra
are used as a type of feature for the identification of the blur pattern, which
is shown in the following Fig. 2. Three types of blur have been considered
in our paper, which are the Gaussian blur, the motion blur and the defocus
blur. They can be formulated as:
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where σ is the blur radius to be estimated, and R is the region of support.
R is usually set as [−3σ ,3σ ], because it contains 99.7% of the energy in
a Gaussian function [1].
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where M describes the length of motion in pixels and ω is the motion
direction with its angle to the x axis.
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where the blur radius R is proportional to the extent of defocusing.
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Figure 2: The blur images and their logarithmic spectra. (a) Image with
Gaussian blur. (b) Image with motion blur. (c) Image with out-of-focus
blur. (d) Logarithmic spectrum of Gaussian blur (σ = 2). (e) Logarithmic
spectrum of motion blur (M = 9,ω = 45). (f) Logarithmic spectrum of
out-of-focus blur. (R = 30)

In the second stage, an edge detector is applied to the motion blur and
defocus blur. Gaussian blur is not affected by this step because its Fourier
transform of the PSF barely changes with the blur radius. The processed
vectors serve as the input for the individual DBN in the next level.

Figure 3: Comparison of the three edge detection methods applied to a
training sample. From left to right: (1) the logarithmic power spectrum
of a patch; (2) the edge detected by Canny detector (automatic thresh-
olds); (3) the edge detected by the improved Canny detector using scale
multiplication; (4) the edge detected by our method.

The final stage is the parameter estimation. For Gaussian blur, we
estimate the blur radius of the Gaussian distribution. For motion blur, the
length and angle of the motion are estimated. For out-of-focus blur, the
blur radius is identified.

Our proposed method has been compared with existing blur classifi-
cation algorithms based on both handcrafted features and neural networks.
It outperforms state-of-the-art approaches significantly (up to 4%) due to
the advantages of our selected features and the proposed TDBN structure.
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