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Person segmentation is a key computer vision problem in a number of
application domains, such as image editing, surveillance and intelligent
vehicles. This paper presents an iterative, EM-like framework for ac-
curate pedestrian segmentation, combining generative shape models and
multiple data cues. It is able to cope with a large variation of pedestrian
appearances across cluttered backgrounds. In the E-step, shape priors
are introduced in the unary terms of a Conditional Random Field (CRF)
formulation, joining other data terms derived from color, texture and dis-
parity cues. In the M-step, the resulting segmentation is used to adapt
an Active Shape Model (ASM) [2]. The EM process alternates until the
CRF-based segmentation does not appreciably change any more or a max-
imum number of iterations is reached. Fig. 1 illustrates our framework.

Figure 1: Our EM-like segmentation framework, alternating CRF seg-
mentation (E-step) and SSM fitting (M-step), given shape initialisation.

Shape initialisation Input is an image region of interest (i.e. a bound-
ing box) provided by a pedestrian detector front-end. As ASMs can get
stuck in local minima, we obtain our initial shape by matching a set of
pedestrian shape exemplars from a training set. We use chamfer match-
ing differentiated by gradient direction (four discretization intervals, not
encoding the gradient sign), as in [3]. The best matching shape exemplar
is converted to its Statistical Shape Model (SSM) representation (we use
several SSMs to model various pose clusters [4], e.g. feet apart/closed); it
acts as a shape prior in the following CRF segmentation step.

CRF segmentation Let I and D be the color and disparity values of
the image region. We use Semi Global Matching [5] for disparity compu-
tation. Furthermore, let S be the superpixel feature vectors of the region.

We specify four unary potentials for the CRF: 1) the sigmoid con-
verted output (ΨBDT ) of a Boosted Decision Tree ensemble trained with
dense SIFT and Texton features on the image region, 2) a shape poten-
tial (ΨSP) calculated on a distance transformation obtained from the cur-
rent shape contour Ω, 3) a GMM-based color potential (ΨCP) similar to
the GrabCut framework [6] based on the current segmentation and 4) a
GMM-based disparity potential (ΨDP) based on the median disparity over
the current segmentation.

We further specify two pairwise potentials, which take the form of
generalized Potts models [1]: 1) a color-sensitive potential (ΦC

P), specified
such, that it increases the costs of an edge inversely proportional to the
color difference in Lab color space of two neighbored pixels i and j, and
2) a contour-sensitive potential (ΦE

P ), which increases the cost inversely
proportional to the edge magnitude between pixels i and j, weighted based
on the disparity information.

Given the unary and pairwise terms we minimize an energy functional
defined on the index set V with an eight-connected edge neighborhood E ,
of the following form:
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Figure 2: Results after four iterations. First row: input images with ini-
tial/final SSM fit (red/white). Second row: correct/missing/excessive seg-
mentation (white/red/cyan). a)-c): Penn-Fudan dataset (BDT+SP+CP);
d)-f): Our dataset (BDT+SP+CP+DP)
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Main CRF parameters ω are the weights for the specified unary and pair-
wise terms (ωBDT , ωSP, ωCP, ωDP, ωC

P and ωE
P ). As our pairwise terms

stay submodular, we can perform inference with Graph Cut [1] methods.

SSM fitting We use an ASM approach [2] for fitting the SSM model
to the obtained CRF segmentation. Point correspondences between SSM
and image are given by chamfer matching [3]. As in shape initialisation,
we can differentiate chamfer matching by gradient direction. Since we
have a binary segmentation, we can here utilize information about the
gradient sign to improve matching (i.e. eight discretization intervals for
gradient direction).

Results We show the benefit of different cue combinations and the abil-
ity of the framework to improve results with each additional cue. On the
public Penn-Fudan dataset [7] (Fig. 2 a-c), we outperform the state-of-the-
art by more than 5% on foreground accuracy while remaining ahead on
background accuracy. Further we provide results on our own pedestrian
dataset (Fig. 2 d-f), captured from on-board a vehicle, which includes
disparity data. This dataset is made public for non-commercial research
purposes to facilitate benchmarking.
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