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Abstract

This paper proposes a fast online multi-target trackinghoetcalled motion agree-
ment algorithm, which dynamically selects stable objegitoes to track. The appearance
of each object, here pedestrians, is represented by naultighl patches. For each patch,
the algorithm computes kocal estimate of the direction of motion. By fusion of the
agreements betweengkobal estimate of the object motion and edohal estimate, the
algorithm identifies the object stable regions and enafalbsst tracking. The proposed
patch-based appearance model was integrated into anmfficikne tracking system that
uses bipartite matching for data association. The expeaitsren recent pedestrian track-
ing benchmark sequences show that the proposed methodesitiempetitive results
compared to state-of-the-art methods, including sevéiflad@tracking techniques.

1 Introduction

The performance of pedestrian tracking systems has sgaadieased during the past few
years. Two factors mainly contributed to the improvemedma:dadvance of robust pedestrian
detectors 10] and various extensions of the data association technigjue [/, 15, 16, 17,

19, 21]. In contrast to previous work, this paper focuses on theoirtgmce of the appearance
model in an online setting, which is orthogonal to the apphes of previous studies on
multi-target tracking, but is a key problem isingle object tracking applicationsl| 4, 13].
The proposed method uses an off-the-shelf pedestriantdeféfand a standard Hungarian
bipartite matching procedure for data association. Weihice a new patch-based repre-
sentation of each target to be tracked along with a sequieptiate scheme, which we call
“motion agreement tracking” (MAT). Our multi-target MAT gdrithm is able to achieve
competitive results on widely accepted benchmark seqeemicean be implemented easily
and applied efficiently.

The development of algorithms for online tracking of pedass has experienced a slow
progress beyond applications of the particle filter. Theqgrerance for this category of
tracking algorithms is typically limited by the accuracytloé pedestrian detector used, which
is often inadequate. Developing a high-performing pedesttetector remains an unsolved
problem in computer vision. To handle the often poor quaditydetections returned by
the detector, such as false alarms and missed detectidirte tracking systems have been
implemented with ad-hoc designs. The most recent workeptefprocess the videos in a
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batch mode, where the data is first organized into sets of sfagk fragments5, 19, 21]

or represented by a graph structut&,[20]. Based on these data structures, the algorithms
typically compute a global objective function offline andaseh for the best set of tracks
to minimize this function. Various constraints such askreontinuity, mutual exclusion,
and motion smoothness have been imposed in order to nareogetirch space and correct
the errors produced in the detection stage. Online tracklggrithms, however, are not
necessarily inferior to their offline counterparts. Theg gypically more efficient and can
easily encode and filter high-order states, such as objdetitieand acceleration, or the
joint state of all objects in the scene, ettd]. Offline tracking algorithms usually require an
extensive tuning process for model selection, without Wite numerically optimal solution
to the designed objective function is not the desired souti

The work described here was motivated by an evaluation gbtbe and cons of online
versus offline tracking algorithms. We wanted to investgahether the performance re-
sults of a new, well-designed, online 2D tracker, like theTVegorithm, can measure up to
those of state-of-the-art offline algorithms. Our expeniseshow that our proposed online
MAT algorithm indeed outperforms state-of-the-art offlalgorithms for various benchmark
videos. Given its efficiency and ease-of-use, our MAT alhamiis even valuable for track-
ing scenarios where its performance is expected to be arféFhe tracks it produces online
may be used as valuable initializations for offline trackétgprithms. The main reason why
our proposed online MAT algorithm performs well lies in itspgrior object appearance
model. The proposed representation is robust to pose ieangatwhich helps maintain the
object identities and prevent track switch errors. Desigrobject appearance models for
visual tracking has been extensively explored by the rebeemmmunity forsingle-target
tracking applications. In addition to various online learning aljons proposed to up-
date the appearance model by re-training the underlyirggitieation model4, 13], patch-
based appearance representation has also been shown taeeffactive than the holistic
model B, 11, 18]. However, it is not straightforward to transfer these t@ghes to online
multi-target tracking applications, given the high computational expense of taaimg a
model for each target. Our method also adopts a patch-bapegsentation by identifying
patches whose local motion directions agree with the glotion of the object. It turns
out that the appearance of such patches remain relatiaiestith low variance throughout
the tracking period. We designed the MAT algorithm so thatdbntributions of these stable
patches lead to a collectively agreed motion estimate odlbiject, which can then be passed
on to the data association step in the multi-target trackimgework.

In summary, our contribution to online multi-target vistracking is to provide method,
called MAT, for sequentially updating the appearance madatach target by indirectly
evaluating the motion consistency among its local patciesshow that a distance measure
based on appropriately re-weighted local patches will sssfully reduce tracker errors es-
pecially that lead to track fragmentation and track switghiThe design as an online tracker
permits a real-time implementation. Its accuracy on wigkdgepted benchmarks is highly
competitive compared to the state-of-the-art techniques.

2 Method

2.1 Online Multi-target Tracking System Overview

Our Motion Agreement Tracking system is outlined below. &cier can be in any of the
four states: initialization, stable, lost and terminatdthe management of the trackers is
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determined by optimal bipartite matching of object stated detections. The motion dy-
namics are modeled by a Kalman filter. Our new component ideatify and maintain a

set of robust sub-regions (local patches) for the appearaheach object and adjust the
distance measure accordingly, which will then be used byl#te association step.

MOTION AGREEMENT TRACKING ALGORITHM

For each frame:

Given a new set of detected obje¢ts}, a list of current stable trackef$}, previously lost trackers
{L} and trackers just initialize§U }. Each tracker maintains the object’s motion model by a Kalman
filter, and an appearance model: a collect{én} of local patches along with their weighfsy; }.

Step 1 Cost computation: Compute the weighted matching casbetween detections
{X} and trackerqS}, {L}, {U} according to Eq3.

Step 2 Optimal assignment: Solve the bipartite matching problem with the Hungarian
method and find the assignments between detections anéitsack

Step 3 Tracker management: Each unassigned tracker $is declared to be lost and
added to list.. Each re-assigned tracker linis declared to be stable again and
added to lisSS. A new tracker is initialized for each unassigned detectiba new
tracker inU has not become lost for the pastframes, it is added to the stable list
S If atracker inL has been lost for, frames, it terminates itself.

Step 4 Model update: For each tracker that has received a new detection, update its
Kalman filter and its patch weightsw; }x according to Eg2. Update the appear-
ance modehli of patchk if it is not in an occlusion relationship. For every tracker,
predict the position of the object in the next frame.

2.2 Appearance Model

We designed a person-specific appearance mvdéth a collection of local image patches
by dividing the bounding box of a detected person into a gegresentation, as shown in
Fig. 1. Each local patch is described by a 64-bin color histogram in HSV space. Deffier
ways to generate these local rectangle-shaped patchesssiblp in our framework. Each
patch is associated with a weight, which is set to be uniform when the tracker is initialized.
A high weight suggests that the local patch does not chagodéisantly over time, and low
weight that the patch belongs to the background or represefdst changing part of the
pedestrian.

2.3 Region Motion Agreement and Weights Update

When a detection is assigned to the tracker after solvingaisggnment problem (Step 2
in Tracking Algorithm), the updated Kalman filter returnsleefied estimate of the object’s
global motion vectow for the current frame. At the same time, each patch compistesvin
motion vectow. It is important to make this local motion estimation stegpidpendent of the
global tracking procedure, as we prefer to update the appearmodel independent of the
global motion estimation. Here, for simplicity, we estimahe local displacement of each
patch based on a similarity measure. We compare two popuasunes in our system: the
maximum normalized cross-correlation between the featifitee patchHt and the feature
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Figure 1: The model of a tracked pedestrian consists of agftliocal image patches (mid-
dle), its global motion vectov and a local motion vector, for each patctk (right). The
angleb betweerv andvy is used to compute the influence, represented by weig(ieft),
of patchk in data association. A high weight is shown in light brown.

of the sub-imagél, ; the minimum histogram intersection distance betwdemndH,, since
both of them are chosen to be histogram features.

Given the local motion estimates, our method evaluatesgach by checking the agree-
ment betweeny and the global motior. The intuition is that ifv is similar tov, then this
local patch moves along with the pedestrian, so it is mosdylito be a stable region that does
not undergo appearance change. Disagreement can be causedllmon-rigid deformation
or the presence of background patches inside the boundigByofocusing our effort on
the most stable patches, we can construct a similarity meaisat can distinguish between
interacting objects. The level of the agreement is computed by our implementation as
follows:

1, Y%V
6 = cos'(——0)
(vl lIv]
2, ifG<y
Ok = 1, if patchis in an occlusion relationship (occluder or oceldd (1)

0, otherwise

where 6 is the angle between the two velocity vectorandvy, as shown in Figl. The
motion scorgy is defined to be symmetric on both agreement and disagreesitest; the
magnitude is not important here, as its contribution to tikwing weight update will be
normalized. A score af = 1 suggests a random guess. Usipgour algorithm updates the
weightwy associated with each patkfat timet as follows:

a(t_l)Wf(t_l) + Gk,

t p—
Wit a(t’1)+§kgk
at=b 4 2k

wherea is a self-adaptive learning rate which controls how muchdbegent estimates
influence the update. A large value ofsuggests a smooth update of the weights at the
currentframe, which happens when most local motion eséisegree with the global motion
model. Botha andw are non-negative, and is always normalized.

Finally, the distance function between an objemhd a candidate detectigns given as:

|bi ﬂ bj | #patches #bins

BUpy) T 2 k(L= 3 min(hh), ©)

G,j = (1
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where first term evaluates the number of non-overlappingnsgcomprising and j by
computing one minus the ratio of overlap between their twanating boxes (this number is
relatively small, because the speed of pedestrian is tipislaw in high-frame-rate video).
The second term in E@ measures the difference of appearandesofd j by computing the
intersection of the normalized HSV histogram bins, denasét, h?, for each corresponding
patch, and arriving at an agreement value by subtractingnttieidual contributions from
one, weighing them by, and summing them over all patches. Paramg&tbalances the
contributions of the motion and appearance terms and isoské tone empirically. This
distance function is used in the data association step #tatrdines the assignment of a
detection to its corresponding tracker, as described inSg&c

3 Experiments

We extensively tested our MAT system on recent popular d&awhich include 3 sequences
from the PETS2009 dataset3 sequences from the TUD data$gthe Towncenter datasgt
and 2 sequences from the ETH datésefor the first three datasets, we used a Matlab im
plementation of an off-the-shelf pedestrian detec#iq provide the detection candidates,
while for the ETH dataset we used publicly-available dédectesults to provide a fair com-
parisor®.

We used the standard CLEAR MOT metri€§ o evaluate the 2D tracking performance.
The Multiple Object Tracking Accuracy (MOTA) combines falgositive rate, miss rate, and
identity switch rate into a single number with ideal valu€®©%§) Multiple Object Tracking
Precision (MOTP) measures the average distance betwegnmndbed truth and the tracker
output according to the region overlap criterion, where tvese 0.5 as the standard hit/miss
threshold (the default aspect ratio of the bounding boxesrgby the detector9] is not
perfectly aligned with the ground truth, and as a result,ayranderestimate our precision
on some of the sequences). To better assess the quality,diteadlly report the numbers
of Mostly Tracked (MT, & 80%) trajectories, Mostly Lost (ML 20%) trajectories, track
fragmentations (FM), and identity switches (IDS). In orttealign with the results from the
literature, the matches between the system-generatddtaac the ground truth are deter-
mined by a greedy search. Another common implementatiom thi¢ bipartite matching
method will generally give slightly higher scores.

We first tested on the 7 most popular sequences from the réwature. Our quan-
titative results are shown in Tablé. To analyze the effect of our appearance model, we
developed a baseline method where all components are lepathe except that the model
of object appearance does not use a grid of patches but idifsgthgo be a single HSV
histogram of the entire bounding box. As a result, the modigreement computation is not
triggered. Throughout this experiment, the size of the twifix 3; o is initialized to be
0.1; and we choose histogram intersection as the similarégsure for local motion estima-
tion. The online tracking algorithm by Zhang et &2] also has a rich representation that
models the object holistically in multiple color spacesjehtthey call “template ensemble.”
The results were provided by the latest version of the tnafrken the authors, given our

Iht t p: // www. cvg. rdg. ac. uk/ PETS2009/

2http: //ww. d2. npi - i nf. npg. de/ dat aset s

Shtt p: // www. r obot s. ox. ac. uk/ Acti veVi si on/ Resear ch/ Proj ect s/
“http:// wwv. vi si on. ee. et hz. ch/ ~aess/ dat aset /
Shttp://iris.usc.edu/ peopl e/ yangbo/ downl oads. ht ni
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http://www.vision.ee.ethz.ch/~aess/dataset/
http://iris.usc.edu/people/yangbo/downloads.html
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Data Method MOTA(%) MOTP(%) MT ML FM IDS
S2L1 Baseline 90.8 743 23 0 11 10
(cropped) Our MAT 92.8 743 23 0 11 8
Zhang et al.22] 91.0 66.1 22 0 16 10
*Andriyenko et al. P 88.3 75.7 20 1 - -
S2L2 Baseline 67.8 729 51 3 149 166
(cropped) Our MAT 73.3 732 51 3 113 122
Zhang et al. 22] 58.9 67.3 27 6 168 173
*Andriyenko et al. P] 60.2 60.5 25 8 - -
S2L3 Baseline 55.6 69.9 18 8 48 58
(cropped) Our MAT 58.3 69.7 21 8 39 41
Zhang et al. 22] 42.2 649 10 14 36 34
*Andriyenko et al. P] 43.8 66.3 10 20 - -
Stadtmitte Baseline 75.1 70.0 9 0 2 3
Our MAT 75.4 70.0 9 0o 2 3
Zhang et al. 22] 75.0 59.8 6 0 1 2
*Andriyenko et al. P] 68.6 64.0 5 0 - -
Crossing Baseline 90.2 76.8 11 0 6 10
Our MAT 90.6 76.9 11 0 5 8
Zhang et al. 22] 71.3 67.5 7 0 15 11
*Breitenstein et al. T] 84.3 71.0 - - - 2
Campus Baseline 68.5 71.3 4 0 5 5
Our MAT 68.5 71.3 4 0 5 5
Zhang et al.22] 74.7 68.0 6 0 4 3
*Breitenstein et al. T] 73.3 67.0 - - - 2
Towncenter Baseline 69.4 68.7 139 18 462 222
Our MAT 69.5 68.7 139 17 453 209
Zhang et al. 22] 73.6 713 163 16 161 157
*Benfold et al. p] 64.8 80.4 - - - 259
*Pellegrini et al. [L6] 63.4 70.7 - - - 183

Table 1: Quantitative results on 7 publicly available semes. Method indicated with«"
used its own pedestrian detector, and we list their resuksttly from published literature.
Top score in each metric is highlighted in red. Note that Wiy track objects in a restricted
area on PETS sequences, which is defined by Andriyenko éal. [

detection output. We also list several recent trackingrigpkes that have reported superior
performance on the same sequence so that the readers canbiedtter view of the challenge
of the data. These state-of-the-art techniques includgnketergy minimization with an oc-
clusion model by Andriyenko et al2], a tracker that encodes social behavior by Brendel
et al., and two variants of a particle filte5,[7]. As expected, our new appearance model
mostly improves the tracking performance by reducing tfeafgmentation and ID switches,
especially for a crowd with partial visibility (S2L2, S2L3Jor “sparse situations,” where
pedestrians seldom interact, a strong appearance modetozontribute much. The MAT
algorithm also shows only marginal improvements if the pédkn is always in severe, even
complete occlusion (TUD dataset). Overall, our MAT aldgamitachieves consistently good
results across all sequences. Since it is conceptuallysiamal runs at 1-2 fp with a Matlab
implementation, we plan to convert it to a real-time tracked make it available, so it can
serve as an efficient baseline algorithm for future studies.

To remove the effect of the pedestrian detector used, weumted two additional ex-
periments with the same detections as input. We also testedystem with different pa-
rameters. In particular, we chose two grid sizeg,$and 10x 5; three initial values ofr,
0.1, 1 and 10; two similarity measures, the maximum norredlizorrelation and the min-
imum histogram intersection. In total, we analyzed the m@enformance and its standard
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Data Method MOTA(%) MOTP(%) MT ML FM IDS
S2L1-full Baseline 88.6 74.2 19 0 17 13
Our MAT 90.1¢0.2) 74.3(0.0) 19 0 17.5¢0.5) 10.5¢-0.5)
DP [17] 82.2 72.5 17 0 102 184
DCT [3] 56.8 74.4 17 0 59 56
DCT+DP [3] 77.0 74.5 16 0 63 58
S2L2-full  Baseline 37.5 72.8 17 0 123 137
Our MAT 40.1+0.4) 72.8(+0.1) 16 0 99.0¢:5.3) 119.3@4.1)
DP [17] 329 73.4 4 2 304 389
DCT [3] 16.5 69.3 2 2 353 370
DCT+DP [3] 24.5 69.6 1 1 298 334
S2L3-full Baseline 50.7 69.5 19 7 63 69
Our MAT 52.5(0.9) 69.50.1) 16.4(-0.9) 7.5(-0.6) 60.8(+4.6) 62.9(+-5.0)
DP [17] 40.0 70.7 11 18 115 156
DCT [3] 21.3 70.6 5 15 236 278
DCT+DP [3] 32.4 70.7 7 15 97 103

Table 2: Quantitative results on PETS sequences. The MATritign tracked all pedestrians
in the videos. The performance of MAT with different systeanameters is expressed in the
form of mean(std). The top score in each metric is highlighitered. Competing methods
are evaluated by code from the authors’ website with defearimeter settings.

deviation from 12 system configurations. Given the samectieteresults, we compared
our tracker with the batch energy minimization method (DGY )Andriyenko et al. ] and
the batch network-flow method (DP) by Pirsiavash et &l] pising their publicly available
code. The DCT method requires a good initialization witlckiats. We used the tracks
produced by the DP method as suggested in their paper. Thiesren the PETS dataset are
shown in Table2. Again, we withessed the consistent reduction of numbergfimhents and
ID switches compared to our baseline tracker, and the padoce is stable across different
configurations. Our online MAT method performs surprisynigétter than batch processing
methods, which are more computationally expensive. Iriqdair, the network-flow method
has an inherent bias on the length of tracks it produceslfjective function tends to favor
many small track fragments). It is also difficult to encodghibrder state such as velocity
or acceleration to the network which results in more ID shéthan from Bayesian filter-
based method. We also found the DCT energy minimization ateltias strong dependence
on the initialization step in order to reduce the search sax avoid many local minima.
Essentially, it is a trajectory-fitting method that focusesre on the smoothness of tracks.
This limits its ability to handle irregular non-smooth natipatterns, which can be modeled
more easily by the Bayesian filtering method. It also suffiens a model selection problem
during its optimization procedure. Very often we saw that $blution that achieves higher
tracking accuracy does not necessarily suggest a loweggnehnich makes parameter tun-
ing difficult.

Finally, we evaluated our trackers with detections progidg Yang et al. 21] on two se-
quences (Bahnhof and Sunny Day) from the ETH dataset. Wee@osmpeting algorithms
that report superior performance on these two sequendésratlire: the batch network-flow
method (DP) by Pirsiavash et al.q] and two batch tracklet stitching methods (PIRMPT anc
CREF) [15, 21]. To make consistent comparisons with their reported teswie computed the
metrics suggested by the authoi$,[21] using their software, which are slightly different
from CLEAR MOT metrics. The results are shown in TaBléVe again found the inherent
bias of the flow-based method to produce many track fragm@ihts two tracklet stitching
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methods learned a strong discriminate model with trainiangles extracted from a set of
reliable tracklets. Our online tracker is not expected tuee better performance than these
complicated systems in terms of ID switches, but may progiatad initialization to them.

Data Method \ Recall Precision MT(%) ML(%) FM IDS
BAHNHOF Our MAT 85.7 84.2 79.8 6.4 42 38
SUNNYDAY  Our MAT 78.9 75.8 83.3 6.7 3 7
All Our MAT 84.5 82.6 80.6 6.5 45 45
DP [17] 67.4 91.4 50.2 9.9 143 4
PIRMPT [15] 76.8 86.6 58.4 8.0 23 11
CRF 2] 79.0 90.4 68.0 72 19 11

Table 3: Quantitative results on the ETH dataset. The topesoceach metric is highlighted
in red. For details of the metrics, se&l].

a P "
Figure 2: Sample images from our tracking results. Colos mmmbers indicate tracks

corresponding to different people.

4 Conclusion

We proposed an online multi-target tracking algorithm vatdynamic appearance model.
The local regions that remain stable in time are discoveyesiiovel technique called “mo-
tion agreement tracking.” When a local motion estimate egrgith the global estimate,
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the algorithm considers such local patch to be stable andases its weight to contribute a
smaller value to the distance measure. We integrated olnigaee into an online tracking
system and tested it extensively on popular tracking beacksn Our competitive results
are particularly appealing since the technique is so efficiEhey also suggest that the role
of a proper appearance model may be more important tharrceses used to think for the
tracking application, where the majority of previous sasdfocuses on motion dynamics.
The proposed motion agreement tracking algorithm can kizadias a new baseline to help
identify the challenges of future benchmarks and the liwifitsurrent tracking techniques.
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