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Abstract

This paper proposes a novel probabilistic approach for appearance-based person re-
identification in non-overlapping camera networks. It accounts for varying illumina-
tion, varying camera gain and has low computational complexity. More specifically, we
present a graphical model where we model the person’s appearance in addition to camera
illumination and gain. We analytically derive the solutions for the person’s appearance
and camera properties, and use a novel constant time Gibbs sampling scheme to estimate
the identification labels. We validate our algorithm on two indoor datasets and perform
a comparative analysis with existing algorithms. We demonstrate significantly increased
re-identification accuracy in addition to significantly reducing the computational com-
plexity on our datasets.

1 Introduction

Person re-identification, or inter-camera data association, is the task of identifying people in
different camera views in a network. With the recent interest in security and surveillance,
camera networks are widely deployed with non-overlapping field of views (FOV). Conse-
quently, person re-identification in non-overlapping camera networks has gained prominent
attention in the vision community. Typically, visual information corresponding to people
are extracted from the video sequences as features or signatures for person re-identification.
Such visual information based methods are referred to as appearance-based methods and are
either single shot, designed for single video frames, or multiple shot methods, designed for
video sequences [12][4]. Appearance-based methods, though widely used, exhibit several
challenging issues including spatio-temporal appearance variations, changing lighting con-
ditions across different camera views, camera response variations and high computational
complexity. The high computational complexity arises from the need to compare a unknown
query person, or observation, with all other observations in the network. In the work by
Pasula et al. [12], the Metropolis-Hastings algorithm is used to approximate the distribution
of person identity labels, with the appearance model being marginalised and observations
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considered to be dependent. Consequently, the computation of the conditional posterior dis-
tribution is shown to scale super-exponentially with the number of observations [ 11].

In this paper, we propose a novel appearance-based multiple shot person re-identification
algorithm that addresses the issues of illumination variation, camera gain variation, and high
computational complexity in non-overlapping camera networks. In literature, researchers
have sought to address the issues with illumination and camera response variation by using
illumination invariant feature descriptors [2, 3, 8], by modeling the inter-camera variations
in the network [1, 7, 9, 10, 14, 15] or by colour calibration algorithms [13]. In our work,
belonging to the second literature class, we model the appearance with the illumination vari-
ation and camera gain in the network. Consequently, we highlight the key literature involved
in modeling the network variations. Firstly, in the work by Javed et al. [ 10], the authors
learn a inter-camera brightness transfer function in a low-dimensional subspace to account
for the illumination variation. More specifically, probabilistic PCA is used to learn the sub-
space of Brightness Transfer Functions (BTF) for a set of known training pairs. To perform
re-identification, the BTF for the candidate pair is learnt and mapped to the subspace for
matching. While reporting good accuracy, the main drawback of their approach is the need
for a large training dataset, which each person being sufficiently represented with diverse
brightness values [14]. This issue is addressed by Prosser et al. [14], where the authors pro-
pose a modified BTF, the cumulative BTF (CBTF), by accumulating the brightness value of
the entire training dataset, before learning the BTF. Consequently, they report better model
estimation with comparatively sparser training dataset, without the full range of brightness
values. However, the authors employ a greedy search-based re-identification scheme re-
sulting in very high computational complexity. A similar high computational complexity is
reported in the work by Gilbert et al. [7], where the inter-camera variations are modeled
using an adaptive transformation matrix with a very large training dataset.

Unlike the works discussed so far [7, 10, 14, 15], which model the inter-camera vari-
ations, we model the person’s appearance in terms of the absolute illumination and gain
associated with each camera in the network using a graphical model. A novel constant time
Gibbs sampling framework is proposed to perform person re-identification, and subsequently
the person’s appearance and camera properties are learnt in closed form. Our main contribu-
tion to literature are the following: modeling the absolute illumination variation and camera
gain in the network, unlike the inter-camera network variations; efficient constant time Gibbs
sampling reducing the computational complexity. The structure of the paper is as follows,
we present our algorithm in Section 3. In Section 4, we discuss our experimental results,
before presenting our conclusion with direction to future work in Section 5.

2 The Model

Given a set of observations X = {xi}Ni=1 across multiple camera views, where each ob-
servation corresponds to a person’s complete trajectory within a camera’s FOV, person re-
identification can be defined as the problem of identifying the set of indicator variables
z = {zi}Ni=1 identifying the person associated with each observation in X . To identify the
label zi ∈ [1, . . . ,Z] associated with each trajectory, we use a combination of appearance fea-
tures and transition probabilities between the cameras. To address the issues associated with
appearance-based methods (Section 1) in our proposed person re-identification algorithm,
we model each person’s appearance using camera-specific illumination and camera gain.
We identify the indicator labels by performing Bayesian inference using Gibbs sampling.
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Figure 1: (a) Full graphical model of our probabilistic person re-identification algorithm and
(b) Graphical model if the latent variables zi are known.

Each observation xi = {li,ei, ti,ai} consists of: li ∈ [1, . . . ,L] the camera that records the
observation; the time of entry ei in a camera’s FOV; the time of leaving the camera’s FOV t i;
and the observed appearance features a i corresponding to the raw RGB colour values within
the bounding box of the detected person averaged over the entire trajectory. We model the
appearance of a person in a camera’s view as a function of the camera’s properties and the
person’s “absolute” appearance, and we model the transition of a person from one camera to
the next in terms of transition probabilities between cameras and the time it takes to move
from one camera to another. For the purpose of this paper, the people’s appearance and the
cameras’ properties are learnt online, while the transitions between cameras are a function of
the environment and are provided a priori. Additionally, the number of people (Z) are also
provided a priori. The corresponding graphical model is depicted in Fig. 1. The likelihood
is defined as

p({xi}Ni=1|{zi}Ni=1) =
N

∏
j=1

p(l j|{li} j−1
i=1 ,{zi} j

i=1) p(e j|{ti} j−1
i=1 ,{zi} j

i=1) p(a j|z j , l j) . (1)

Here, p(a j|z j, l j) is modelled as a j = gl j (rz j +wl j ), where gl is the multiplicative gain con-
stant of camera l, rz is the RGB-based appearance model, averaged over the entire trajectory,
wl is the illumination noise associated with camera l, and the terms are distributed as:

gl ∼ Gamma(αg
l ,β

g
l ), which we approximate as N (μ g

l ,(Λ
g
l )
−1) (2)

rz ∼N (μz,(Λz)
−1) (3)

wl ∼N (μw
l ,(Λ

w
l )
−1) (4)

The transitions between cameras are modelled as

l j | {li} j−1
i=1 ,{zi} j−1

i=1 ∼Mult(l j;θli), i : zi = z j ∧ zk �= z j, i < k < j (5)

e j | {ti} j−1
i=1 ,{zi} j

i=1 ∼N (e j− ti; μli,l j ,Λ
−1
li,l j

), i : zi = z j ∧ zk �= z j , i < k < j (6)

It is clear from its structure that this model does not allow for efficient inference, since
the Markov blanket of any observation is the complete set of observations and indicator
variables preceding it. Yet if the latent indicator variables are known, the observations of
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a person become independent of all other persons, and the model becomes much simpler
(see Fig. 1(b)). Note that the conditional dependencies in Fig. 1(b) are valid when the cor-
responding observations have the same person label. We therefore use sampling to estimate
z.

3 Gibbs Sampling-based Person Re-identification

Gibbs sampling [6] is a form of MCMC sampling where each dimension of the sample z
is sampled in alternation, according to the proposal distribution p(z i|z¬i,X ) we use z¬i to
denote z\ zi, the set of all labels except label i. This proposal distribution leads to accepting
samples with a probability of one, thereby leading to a very efficient sampling mechanism.
Typically, the proposal distribution is computed as follows.

p(zi|z¬i,X ) = p(X|z) p(z)

∑N
zi=1 p(X|z) p(z)

, (7)

, where p(X|z) and p(z) can be computed in linear time of the number of observations, and
the probability p(zi|z¬i,X ) can also be computed in linear time. This leads to a scheme
where the cost of obtaining a new sample is quadratic in the number of observations, since
we need to look at all dimensions of z. However, if the prior probability over the object
associations can be computed in constant time, the conditional probability p(z i|X ,z¬i) can
also be computed in constant time with a little bookkeeping.

3.1 Constant time Gibbs Sampling

The faster sampling mechanism works as follows. Let z denote the set of persons associated
with the observations X , and bi be the index of the previous observation associated with the
same person zi. Similarly, let fi indicate the next observation associated with that person.
That is,

bi � argmax
j<i

(z j = zi) and (8)

fi � argmin
j>i

(z j = zi). (9)

If we know p(X|z), we can compute the probability of the observations given a different
label z′i for observation i, p(X|z¬i,z′i), in constant time as follows:

p(X|z¬i,z
′
i) = p(X|z)×

p(xi|z′i,xb′i)p(x fi |z fi ,xbi)p(x f ′i |z′i,xi)

p(xi|zi,xbi)p(x fi |z fi ,xi)p(x f ′i |z′i,xb f ′i
)
. (10)

Here, we take the probability of the sequence of observations given the associated labels,
divide out the terms that were affected by zi and multiply in the terms that are affected
by z′i. In practice, of course, one would work with log-probabilities, so that the division
operations would become subtractions and the multiplications become additions. Sampling
from the conditional probability distribution p(z i|X ,z¬i) is an O(Z) operation, constant in N.
Each sample therefore consists of the sequence of labels, z, the sequence of “back pointers”,
{bi}Ni=1, and the sequence of “forward pointers”, { f i}Ni=1. When we sample the value of the
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Figure 2: Illustration of the bookkeeping used for constant-time sampling. For clarity, only
the modified bookkeeping variables are shown; all other variables remain unchanged

label for observation i, we first compute the quantities that need be divided out and then
modify forward and backward pointers, in order, as follows:

fbi ← fi b fi ← bi fi← f ′i bi← b fi b fi ← i fbi ← i (11)

This is illustrated in Fig. 2, and requires one computation: for the next occurrence of
the new label f ′i . We do this in constant time by maintaining a list of the next occurrence
of any label at time i, but in practice it could also be implemented as a linear search, since
the next occurrence of a label will typically be much closer than the last observation. Notice
that extra care must be taken for the first and last observations associated with an object,
where the backward and forward pointer, respectively, cannot point to anything meaningful.
Sampling the label of an observation is constant in the number of observations, and linear in
the number of objects. The time complexity of updating z is therefore O(NZ).

Initialisation.MCMC methods require a “burn-in” period, in order to converge to the
equilibrium distribution of the chain. During this period, we sample from the chain and
discard the samples, which is time-consuming. How long we need to sample is hard to as-
sess and depends both on the convergence rate of the chain and on the distribution of the
initial samples. If the initial sample is close to the high-probability region of the space, less
sampling will be required for the chain to converge to the desired distribution. Although
we cannot sample from the “smoothed” distribution for the labels, p(z|X ), we can however
easily sample from the “forward” distribution, p(z j|{zi} j−1

i=1 ,X ), by similarly summing over
all possible values of z j. The forward distribution does not take future observations into ac-
count, but it is typically close enough to the smoothed distribution that a few tens of sampling
iterations are sufficient to converge to the smoothing distribution.

3.2 Gain Conditional Distribution

For a given sample of latent indicator variables, efficient Bayesian inference can be per-
formed in our graphical model. Firstly, using the Markov blanket in the graphical model in
Fig. 1, the conditional distribution over the gain parameters for each independent camera l
in the network is defined in terms of the likelihood and prior distribution in Eq. 12,

p(μg
l ,λ

g
l |Al ,μw

l ,Λ
w
l ,μz,Λz, l,z) ∝ p(Al |μg

l ,λ
g
l ,μ

w
l ,Λ

w
l ,μz,Λz,z, l) p(μg

l ,λ
g
l ) , (12)

where Al = {ai}i:li=l represents the set of appearance observations seen in camera l. The
likelihood distribution in Eq. 12 is formulated as a Gaussian distribution given as,

p(Al |μg
l ,λ

g
l ,μ

w
l ,Λ

w
l ,μz,Λz,z, l) = ∏

i:li=l

N(ai|μg
l (ν

z
l ),λ

g
l (ε

z
l )) (13)
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, where ν z
l = μz + μw

l and ε z
l = Λz +Λw

l . Given the Gaussian likelihood distribution
with unknown mean and unknown precision, the normal-gamma distribution is chosen as
the conjugate prior distribution (Eq. 14).

p(μg
l ,λ

g
l |αg

0 ,κ
g
0 ,β

g
0 ,μ

g
0 ) ∝ λ g(1/2)

l exp(−κg
0 λ g

l /2(μg
l − μg

0 )
2)λ g(αg

0−1)
l e−λ g

l β g
0 (14)

where, αg
0 ,κ

g
0 ,β

g
0 ,μ

g
0 represent the prior hyper-parameters. Since the posterior distribu-

tion for a conjugate prior share the same functional form, α g
n ,κg

n ,β g
n ,μg

n is used to represent
the posterior parameters. To solve for the conditional posterior distribution, the likelihood
distribution is factorised according to each person’s appearance and then multiplied with the
prior distribution (Eq. 14) yielding the posterior distribution. Next, we algebraically com-
plete the square with respect to μ g

l , as described in [5], and derive the analytical solutions
for the posterior parameters, given as,

μg
n =

∑z nz
l a

T (λ g
l (ε

z
l ))μz +∑z nz

l a
T (λ g

l (ε
z
l ))μ

w
l +κg

0 λ g
l μg

0

∑z nz
l (μT

z (λ
g
l (ε

z
l ))μz + μwT

l (λ g
l (ε

z
l ))μ

w
l + 2μT

z (λ
g
l (ε

z
l ))μ

w
l )+κg

0λ g
l

(15)

κg
n = ∑

z
nz

l (μ
T
z (λ

g
l (ε

z
l ))μz + μw

l
T (εz

l )μ
w
l + 2μT

z (ε
z
l )μ

w
l )+κg

0 (16)

β g
n = β g

0 +
∑z S2

z (n
z
l − 1)(εz

l )

2
+

κg
0 μg2

0

(
∑z nz

l (ν
z
l )

T (εz
l )(ν

z
l )
)
...

2(∑z nz
l (μT

z (εz
l )μz + μw

l
T (εz

l )μ
w
l + 2μT

z (εz
l )μ

w
l )+κg

0)

(17)

+κg
0

(
∑z nx

l za
T (εz

l )a− 2μg
0 ∑z nz

l a
T (εz

l )μ
w
l − 2μg

0 ∑z nz
l a

T (εz
l )μz

)
2(∑z nz

l (μT
z (εz

l )μz + μw
l

T (εz
l )μ

w
l + 2μT

z (εz
l )μ

w
l )+κg

0)

αg
n = αg

0 +
3Nl

2
(18)

where nz
l represents the number of trajectories for each person, Nl represents the number

of trajectories observed by camera l, ā = ∑i ai/n corresponds to the empirical mean and
S2 = (∑n

i=1(ai− ā)T (ai− ā))/n represents each person’s empirical covariance matrix.

3.3 Illumination Variation Conditional Distribution

The conditional distribution over the illumination variation per camera is defined, for easier
analytical derivation, by modeling the conditional distribution separately for the mean and
precision components. The conditional distribution for the illumination precision, in terms
of the likelihood and prior distributions, using the Markov blanket in Fig. 1, is given by

p(Λw
l |A,μg

l ,λ
g
l ,μ

w
l ,μz, l,z) = p(A|μg

l ,λ
g
l ,μ

w
l ,Λ

w
l ,μz,Λz,z, l)p(Λw

l ) , (19)

where the likelihood distribution is the same as defined in Eq. 13. The conjugate prior and
the subsequent posterior for unknown precision and known mean is given by the Wishart
distribution, as

p(Λw
l |αw

0 ,β
w
0 ) ∝ |Λw

l |
(αw

0 −4)
2 exp

(
−1

2
tr(β w

0 Λw
l )

)
(20)
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where αw
0 ,β

w
0 represent the prior hyper-parameters and α w

n ,β w
n are used to represent the

posterior parameters. To solve for the conditional distribution, we factorize the likelihood
in terms of the appearance, multiply the resultant distribution with the prior and follow the
algebraic derivations in [5] to derive the precision hyper-parameters, given as,

αw
n = αw

0 +Nl + 1 (21)

β w
n = β w

0 +∑
z
(

nl
z

∑
i=1

(ai− a)T (λ g
l )(ai− a)+ nz

la
T λ g

l a− nz
l2aT (λ g

l )μ
g
l μz

. . .− nz
l2aT (λ g

l )μ
g
l .μ

w
l + nz

l μ
g
l

2μT
z (λ

g
l )μz + nz

l μ
g2
l μw

l
T (λ g

l )μ
w
l + nz

l2μg2
l μT

z (λ
g
l )μ

w
l )
(22)

Illumination Mean. The conditional distribution for the illumination mean is modeled
using the Markov blanket (Fig. 1), as

p(μw
l |a,μg

l ,λ
g
l ,Λ

w
l ,μz, l,z) = p(a|μg

l ,λ
g
l ,μ

w
l ,Λ

w
l ,μz,Λz,z, l)p(μw

l ) (23)

with the likelihood distribution being defined in Eq. 13. The conjugate prior and the
subsequent posterior for unknown mean and known precision is given by the multivariate
Gaussian distribution as

p(μw
l |μw

0 ,Λ
w
0 ) ∝ |Λw

0 |
1
2 exp

(
−1

2
(μw

l − μw
0 )

T Λw
0 (μ

w
l − μw

0 )

)
(24)

where μw
0 ,Λ

w
0 represent the prior hyper-parameters and μ w

n ,Λw
n is used to represent the

posterior hyper-parameters. Again, following the algebra in [ 5], we factorise the likelihood
in terms of each person’s appearance, multiply with the prior, complete the squares with
respect to μw

l and derive the analytical solution for the mean hyper-parameters, given as,

μw
n =

∑z nz
l λ

g
l μg

l Λza+∑z nz
l μ

g
l λ g

l Λw
l a−∑z nz

l μ
g
l

2λ g
l Λzμz−∑z nz

l 2μλ g
l Λw

l μz +Λw
0 μw

0

∑z nz
l μ

g
l

2λ g
l Λz +∑z nz

l μ
g
l

2λ g
l Λw

l +Λw
0

(25)

Λw
n = ∑

z
nz

l μ
g
l

2λ g
l Λz +∑

z
nz

l μ
g
l

2λ g
l Λw

l +Λw
0 (26)

3.4 Appearance Conditional Distribution

Similar to the derivation of illumination variation, we model the conditional distribution
separately for the mean and precision components using the Markov blanket in the graph-
ical model (Fig. 1). The choice of conjugate priors for the appearance mean and precision
derivations are also similar to the illumination variation derivations (multi-variate Gaussian
and Wishart distribution), resulting in similar analytic derivations. Thus, we directly give the
hyper-parameter solutions. First, the analytic solution for the appearance precision hyper-
parameters p(Λz|αz

n,β z
n) are given in Eq. 27 and Eq. 28, where Nz represents the number of

trajectories corresponding to person z. While the analytic solution for the appearance mean
hyper-parameters p(μz|μ z

n,Λz
n) are given in Eq. 30.

αz
n = αz

0 +Nz + 1 (27)
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β z
n = β z

0 +∑
l

(
nl

z

∑
i=1

λ g
l (ai− a)T (ai− a)+ nl

za
T λ g

l a− nl
z2aT λ g

l μg
l μz

. . .− nl
z2aT λ g

l μg
l μw

l + nl
zμ

g
l

2μT
z λ g

l μz + nl
zμ

g
l

2μw
l

T λ g
l μw
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z2μg
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2μT

z λ g
l μw

l ) (28)

μ z
n =

∑l nl
zλ

g
l μg

l Λza+∑l nl
zμ

g
l λ g

l Λw
l a−∑l n

l
zμ

g
l

2λ g
l Λzμw

l −∑l n
l
zμ

g2
l λ g

l Λw
l μw

l +Λz
0μ z

0

∑l nl
zμ

g
l

2λ g
l Λz +∑l nl

zμ
g
l

2λ g
l Λw

l +Λz
0

(29)

Λz
n = ∑

l

nl
zμ

g2
l λ g

l Λz +∑
l

nl
zμ

g2
l λ g

l Λw
l +Λz

0 (30)

4 Experiments

We evaluated our method on two real-world datasets and compared our performance with the
algorithm proposed by Pasula et al. [12]. Additionally, we evaluate the importance modeling
the camera parameters by comparing it to direct modeling of the appearance. We show that
our algorithm demonstrates better re-identification accuracy and computational complexity
than [12]. We also show that our proposed appearance model with gain and illumination
components performs better than the naive appearance model. More details on the naive
appearance model are provided below.

Dataset. In our experiments, we acquired two indoor studio datasets of multiple walk-
ing subjects, named, dataset-1 and dataset-2 using ceiling mounted colour depth cameras
@15Hz. dataset-1 consists of two video sequences with 5 and 10 subjects acquired with 5
cameras, while dataset-2 consists of one video sequence with 5 subjects acquired with 13
cameras. We implemented our algorithm in C++ in Linux with 3.49GHz processor. Exam-
ples of subjects and the camera FOV from dataset-2 are shown in Fig. 3(b-c). The obser-
vation tracks used in our algorithm were obtained using our in-house multi-person tracking
algorithm.

Comparative Result. We compare the performance of our algorithm with the algorithm
proposed by Pasula et al. [12], which we re-implemented. As shown in Table 1, we can
see that our proposed algorithm performs significantly better than [ 12] across all three test
sequences. The re-identification accuracy is measured as the percentage of observations that
have been assigned to the correct label. Table 1 shows the mean and standard deviation of
the re-identification accuracy averaged over 5 trials, since the algorithms are stochastic in
nature. To evaluate the computational complexity, we consider the sequence with 10 sub-
jects in dataset-2 with varying number of people and measure the computational time of our
proposed algorithm and [12], shown in Fig. 3. We can clearly see the significant improve-
ment in computational complexity with our proposed algorithm. Moreover, as discussed in
[11], the exponential scaling of the computational complexity of [ 12] is also observed.

Camera Parameters In our second experiment, we evaluate the algorithm’s performance
without camera model. More specifically, we directly use the raw RGB (a i) (Sec. 3) observa-
tions without modeling the camera-specific gain and illumination parameters, which we refer
to as the naive appearance model. The algorithms are then evaluated on the test sequences
and the results are shown in Table 1, where our proposed algorithm performs significantly
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Proposed Algo Naive App Model [12]

DataSet-1 87.5+4.3% 75+5.1% 67.5+6.1%

DataSet-2 (Seq: 5 sub) 86+5.2% 74.3+4.6% 65+8.1%

DataSet-2 (Seq: 10 sub) 84+4.1% 73.2+5.3% 62.5+7.3%

Table 1: The mean and std. dev of the re-identification accuracy over the three test sequences
are shown. Please refer to the text for details about the naive appearance model.
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Figure 3: (a) Computational Complexity with varying number of people. (b) Sample sub-
jects from dataset-2. (c) Sample images from different cameras in dataset-2 with varying
illumination.

better than the standard appearance model. Next, we evaluate our proposed algorithm with
varied number of frames on the 10 subject sequence in dataset-2 and measure the correspond-
ing accuracy. As shown in Table 2(b), we can see that our proposed algorithm demonstrates
a steady increase in re-identification accuracy with increased number of frames, which can
be attributed to the improved estimate of the appearance model with the increasing number
of frames.

5 Conclusion

We have proposed a novel appearance-based person re-identification algorithm for a camera
network addressing the challenging issues of camera gain variation, illumination variation
and high computational complexity. In our proposed solution, we have modeled our ap-
pearance model incorporating the network gain and illumination variation. Additionally,
we have proposed a novel sampling approach by maintaining a little bookkeeping for re-
identification. We have evaluated our algorithm on two real-world datasets and demonstrate
that our proposed algorithm performs better than comparative algorithms both in terms of
re-identification accuracy and computational complexity. Additionally, we demonstrate the
advantage of incorporating the network gain and illumination component within the appear-

Frames 200 600 1000 1400 2000

Accuracy (%) 72.5+5.6% 77+5.2% 81.6+4.6% 82.1+3.9% 84+4.1%

Table 2: Mean and std.dev of the re-identification accuracy with varying number of frames
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ance model. In our future work, we would like to test our algorithm with a larger dataset and
outdoor sequences. Additionally, we would like to learn the transitions between cameras in
the network automatically.
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