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Abstract

There exist almost as many superpixel segmentation algorithms as applications they
can be used for. So far, the choice of the right superpixel algorithm for the task at hand
is based on their ability to resemble human-made ground truth segmentations (besides
runtime and availability). We investigate the equally important question of how stable
the segmentations are under image changes as they appear in video data. Further we
propose a new quality measure that evaluates how well the segmentation algorithms cover
relevant image boundaries. Instead of relying on human-made annotations, that may
be biased by semantic knowledge, we present a completely data-driven measure that
inherently emphasizes the importance of image boundaries. Our evaluation is based on
two recently published datasets coming with ground truth optical flow fields. We discuss
how these ground optical truth fields can be used to evaluate segmentation algorithms
and compare several existing superpixel algorithms.

1 Introduction
Superpixels are the result of an image oversegmentation or - seen the other way around,
a perceptual grouping of pixels. They have become key building blocks of many image
processing and computer vision algorithms. They are used for object recognition [19], seg-
mentation [13], multi-class object segmentation [24], depth estimation [25], body model
estimation [17] and many other tasks. Inspired by this multitude of applications, a consid-
erable number of superpixel segmentation algorithms has been proposed. State of the art in
comparing and benchmarking them is to evaluate their capability to resemble human-made
figure-ground segmentations. We do not question the importance of this capability, yet we
want to identify other qualities a good superpixel segmentation algorithm should have.

At first we want to emphasize the stability of superpixel segmentations in image se-
quences or video. While superpixel borders at considerable image gradients may constantly
be detected, oversegmentation algorithms tend to create lots of spurious segment borders that
strongly vary under image changes. Even slight changes of the image, e.g. a small camera
motion or changes in lighting, can cause substantial changes of the produced segmentation.
For some applications this might be irrelevant, while others could benefit from a superpixel
algorithm with more stable segmentations. The accompanied video demonstrates what is
meant by an unstable segmentation.
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a) How stable are the
    segmentations?

Segmentation

Ground Truth Optical Flow

Segmentation

b) How well are motion -
    discontinuities represented?

Figure 1: We propose to use ground truth optical flow fields to compare superpixel segmen-
tation algorithms. On top left and right are two Sintel images with slight motion visualized
by the optical flow field between them. Motion direction is coded by hue, saturations codes
the motion magnitude, see [3] for details. Beneath the images there are example superpixel
segmentations (using ERS). While some object contours are visible, there seem to be a lot of
spurious segment borders. In this work we provide metrics to answer questions a) and b).

Furthermore, there are some concerns regarding the human-made ground truth segmen-
tations used for existing comparisons. Although there may exist multiple manual segmen-
tations for each image (like in BSDS [2]), the ground truth data depends on the semantic
interpretations of objects and their boundaries by humans. E.g., for 3D reconstruction it
would be beneficial to have a more data-driven ground truth that is independent of semantic
interpretation without relation to the actual 3D configuration. Imagine a superpixel based 3D
reconstruction of a chair (similar to [9, 25]). Of course, separating the chair from the back-
ground is necessary. But what about separating the seat from the backrest? Or separating
parts of a two-part backrest? Not all boundaries seem to be equally important. It remains
unclear how this could be introduced in a manual annotation of large datasets.

In the remainder of this paper, we propose two completely data-driven metrics that can
be used to evaluate and compare superpixel segmentation algorithms. In detail, we exploit
ground truth optical flow data provided by two recently published datasets for evaluation
of optical flow algorithms (KITTI [8] and Sintel[4]) to evaluate the following two criteria
related to questions a) and b) in Figure 1:

Stability-Criteria Does the segmentation algorithm find the same regions or object bound-
aries independent of changes in the image?

Discontinuity-Criteria How well are motion discontinuities in the image sequence repre-
sented by the algorithms segment boundaries? E.g. the motion gradient between a
moving foreground object and the background or in the interior of a non-rigid object.

We want to emphasize that we do not want to replace an evaluation of superpixel segmenta-
tion algorithms based on their ability to recover objects. But we want to provide an additional
tool to advance the choice of suitable algorithms for the task at hand, i.e. for the use on im-
age sequences and video. Section 3 gives details on the metrics we use to evaluate the above
criteria, section 4 gives results of several superpixel segmentation algorithms on the two
metrics and datasets. Details on the optical flow datasets can be found in the appendix. The
algorithms’ results, Matlab implementations of the error metrics and functions to interface
the publicly available datasets are provided on our website. 1

1http://www.tu-chemnitz.de/etit/proaut/forschung/superpixel.html
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Figure 2: The top row shows two example images of the KITTI dataset. The flow field
(bottom-left) illustrates the forward motion of the car mounted camera. Pixels with invalid
optical flow are black. The bottom-right image shows the result of applying the flow field on
the first image: Large parts of the view of the second image are recovered with pixels of the
first image. However the many missing parts emphasize the advantages of synthetic datasets
with much denser ground truth flow fields.

2 Related Work
To the best of our knowledge, this is the first attempt to evaluate superpixel segmentation
algorithms based on optical flow data. State of the art in comparing and benchmarking
superpixel segmentation algorithms is to evaluate their capability to recover human figure-
ground segmentations. E.g. the Berkeley Segmentation Dataset and Benchmark [2] is a
commonly used comparison framework for segmentation algorithms including superpixel
segmentations [1]. It consists of 500 manually segmented images where humans were asked
to outline object boundaries in the images for ground truth segmentations. Although there
exist multiple manual segmentations for each image, the ground truth data depends on the
semantic interpretations of objects and their boundaries by the human annotators. Other re-
sources for manually annotated segmentations are e.g. the PASCAL VOC challenge [6] and
the MSRC [21] dataset. To overcome the dependency on manual ground truth segmenta-
tions, Moore et. al [16] propose to use Explained Variation. This error metric describes the
proportion of image variation that is explained if all pixelvalues within a superpixel were
replaced with the superpixel mean color. Although they established a human independent
metric, Explained Variation has the drawback of penalizing segments with consistent texture
with large pixel variance. Koniusz and Mikolajczyk [10] measure the robustness of super-
pixel segmentations indirectly by the repeatability of features extracted from the segments.
Their evaluation depends on the additional processing step of feature extraction and is based
on a small dataset consisting of 48 images. Xu and Corso [23] evaluate several supervoxel
methods based on video data. A supervoxel is the video equivalent to a superpixel. It covers
a subset of the spatio-temporal lattice composed by the concatenated video frames such that
all supervoxels of a video comprise the full lattice and are pairwise disjoint. They evaluate
how well supervoxels cover human video segmentations based on combined spatio-temporal
error metrics and Explained Variation[16]. Although the range of ready to use supervoxel
algorithms is rather limited, their application should be probed whenever superpixels are
applied on video data. In our previous work [18], we presented a benchmark of various
superpixel algorithms including an evaluation of the algorithms robustness towards affine
image transformations. The regarded affine image transformations were manually chosen
and synthetically applied on the images. Affine image transformations do not cover all rele-
vant image transformations, e.g. they exclude changing lighting conditions, occlusions and
image noise. To overcome the dependence on human ground truth segmentations biased
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towards semantic interpretation and the limitations of manually transformed images we pro-
pose to use ground truth optical flow data to evaluate the performance on video data. We use
two image sequence datasets with known ground truth optical flow: the real world KITTI
dataset and the synthetic Sintel dataset. Details on both datasets are given in the appendix.

3 Two novel Criteria for Evaluating Superpixel
Segmentations based on Ground Truth Optical Flow

Given an image pair I1 and I2 from an image sequence, the optical flow is the vector field
describing the motion of each image point between I1 and I2. The following sections present
two novel criteria to evaluate superpixel segmentations based on ground truth optical flow.

3.1 Measuring the Segmentation Stability
Considering the Stability-Criteria (whether the segmentation algorithm finds the same re-
gions or object boundaries independent of changes in the image), the key idea is to segment
two images showing the same scene before and after some changes (e.g. dynamic objects,
camera motion, illumination changes) and then use ground truth optical flow data to trans-
form the segmentation of the first image into the view of the second image to make them
comparable. We propose to use the following procedure to measure the stability of a seg-
mentation between two images I1, I2:

1. Segment both images, resulting in label images L1,L2. In a label image, all pixels
belonging to the same segment have the same pixel value (see Figure 1 for examples).

2. Apply the given ground truth optical flow on the first segmentation L1 to bring it into
the second image, resulting in LF

1 . In other words, we transform the labels of segmen-
tation L1 to the pixels of image I2 (similar to the transformation in Figure 2).

3. Use the undersegmentation error to evaluate how well segmentation LF
1 can be re-

constructed by segments of segmentation L2 and vice versa. In particular, we do not
expect to have the exact same label at a pixel in L2 and LF

1 but if two pixels are in the
same segment in L2 we want them to be in the same segment in LF

1 , too.

The undersegmentation error is a repeatedly used measurement for comparing superpixel
segmentations. We use the parameter free equation of [18]. To compare two segmentations
LF

1 and L2, and being N the total number of pixels, we define the motion undersegmentation
error (MUSE) to be computed as follows:

MUSE =
1
N

 ∑
a∈LF

1

(
∑

b∈L2:a∩b6= /0
min(bin,bout)

) (1)

Each segment a of segmentation LF
1 is reconstructed with segments b of L2 that overlap with

a. MUSE accumulates the error that is introduced by b when reconstructing a either when
b is included in the reconstruction or not. If b is included, then the introduced error is the
number of pixels of b that are outside a (defined as bout ). Otherwise, if we do not include b,
there is a gap in the reconstruction of a and the error is the number of pixels in this gap (bin,
the number of pixels that are in a∩ b). Pixels without valid flow information are ignored.
Since this is not a symmetric metric (the error diverges whether comparing LF

1 to L2 or vice
versa) we compute the average of both cases. The resulting error is visualized in Figure 3
and a comparison of several algorithms based on MUSE is given in section 4.
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Figure 3: This figure complements the descriptions of the error metrics. The two left images
show segmentations of subsequent images of a Sintel sequence with high amount of motion
(using vlSlic). The flow field is visualized in the middle and together with its gradient be-
neath. Notice the high (dark) motion gradients inside objects. The image on the right is
a visualization of the motion undersegmentation error (MUSE) (including segment bound-
aries): the gray level shows how often the pixel is counted in equation 1. The grid effect on
homogeneous image regions is typical for algorithms with strong compactness constraints
and can hardly be completely avoided. However, algorithms diverge significantly in the
amount of border variation in homogeneous areas.

3.2 Measuring the Accordance with Motion Discontinuities

To evaluate the Discontinuity-Criteria (how well are motion discontinuities represented by
the algorithms segment boundaries), again, we propose to use ground truth optical flow since
motion discontinuities result in high gradients in the optical flow field. Figure 3 (bottom-mid)
shows the gradient magnitude of the optical flow field between two subsequent images of the
Sintel dataset. One can clearly see how high motion gradients (shown in dark color) appear
at boundaries of moving objects, supplemented by smoother gradients inside objects. Depen-
dent on the application, it is important to have a segment boundary near positions with high
motion gradients. The intuitive argument is that the high motion gradient indicates objects
or object parts that can move differently and thus should probably be handled individually
in the application. This formulation includes objects as well as object parts, independently
from a semantic interpretation by humans. Following this argumentation, there should be
segment borders near high motion gradients to potentially handle differently moving parts
individually. While the capability of a segmentation algorithm to generate the boundaries of
moving objects is intuitively covered by a figure-ground segmentation evaluation, this is not
the case for smooth gradients inside objects. Moreover it is unclear, at which of the smooth
gradients there should be a segment border. To avoid arbitrarily chosen thresholds to sepa-
rate important high gradients from ignored low gradients, we propose to use the following
error measure: Given F , a ground truth optical flow field from an image I to another image,
B the boundary image of a segmentation of image I, and D(B) the distance transform of B
containing for each pixel the distance to the nearest segment boundary, we define the Motion
Discontinuity Error (MDE) as follows:

MDE =
1

∑i ∑ j ‖∇F(i, j)‖2
∑

i
∑

j
‖∇F(i, j)‖2 ·D(B(i, j)) (2)

In one sentence this is the Frobenius inner product of the optical flow gradient magnitude
and the distance transform of the boundary image of the segmentation, divided by the sum of
all gradients. A more intuitive formulation is to accumulate over all image pixels a penalty,
which is the product of the strength of motion discontinuity at this pixel and its distance to
the next segment border. Finally, the measure is normalized by the total amount of motion in
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Figure 4: Results of the two metrics on several superpixel segmentation algorithms for both
datasets. See text for details.

the image. We want to penalize if there is a motion discontinuity (a high gradient magnitude
in the flow field) but no near segment border that can potentially separate the two differently
moving image parts. However, this is a slightly optimistic measure, since we do not verify
whether the nearest segment boundary really separates the two differently moving parts.
Similar to measures like boundary recall, MDE favors segmentations with many boundary
pixels (e.g. caused by strongly irregular segment borders) and should be used together with
complementing measurements (e.g. undersegmentation error). In the following section we
combine the two proposed criteria MUSE and MDE to evaluate several existing segmentation
algorithms.

4 Results
4.1 Compared Superpixel Algorithms
Compared Algorithms are: Felzenszwalb-Huttenlocher Segmentation (FH) [7]2, Edge Aug-
mented Mean Shift (EAMS) [5][12]3, Quickshift (vlQS) [22]4, Marker-Controlled Watershed
(WS) [15]5, Entropy Rate Superpixel Segmentation (ERS) [11]6 and two implementations of
Simple Linear Iterative Clustering [1] (oriSLIC7 and vlSLIC8). The oriSLIC implementa-
tion does not strictly follow the description in [1] but incorporates some simplifications for
speedup. For baseline comparison we simply divide the image into a regular grid (BOX).
The list of superpixel algorithms is not exhaustive. Requirements for an algorithm to be used

2http://www.cs.brown.edu/~pff/segment/, sigma = 1, minSize = 20
3http://www.wisdom.weizmann.ac.il/~bagon/matlab.html, hS = 8, hR = 8
4http://www.vlfeat.org/, ratio = 0.5,kernelsize = 2
5OpenCV function with uniformly distributed markers http://opencv.willowgarage.com/wiki/
6http://www.umiacs.umd.edu/~{}mingyliu/research.html#ers
7http://ivrg.epfl.ch/supplementary_material/RK_SLICSuperpixels/index.html,

compactness = 10
8http://www.vlfeat.org/, regularizer = 1000, minRegionsize = 25

Citation
Citation
{Felzenszwalb and Huttenlocher} 2004

Citation
Citation
{Comaniciu and Meer} 2002

Citation
Citation
{Meer and Georgescu} 2001

Citation
Citation
{Vedaldi and Soatto} 2008

Citation
Citation
{Meyer} 1992

Citation
Citation
{Liu, Tuzell, Ramalingam, and Chellappa} 2011

Citation
Citation
{Achanta, Shaji, Smith, Lucchi, Fua, and S{ü}sstrunk} 2012

Citation
Citation
{Achanta, Shaji, Smith, Lucchi, Fua, and S{ü}sstrunk} 2012

http://www.cs.brown.edu/~pff/segment/
http://www.wisdom.weizmann.ac.il/~bagon/matlab.html
http://www.vlfeat.org/
http://opencv.willowgarage.com/wiki/
http://www.umiacs.umd.edu/~{}mingyliu/research.html#ers
http://ivrg.epfl.ch/supplementary_material/RK_SLICSuperpixels/index.html
http://www.vlfeat.org/


NEUBERT: EVALUATING SUPERPIXELS IN VIDEO 7

here are an available open source implementation and reasonable runtime on images of size
1024×436 for application on videos (which excludes e.g. NC[20] and gPb-owt-ucm[2]).

4.2 Benchmark Results
The results are based on the KITTI and Sintel datasets described in the appendix. We evaluate
the motion undersegmentation error (MUSE) and motion discontinuity error (MDE) criteria
on both datasets independently and average over all images of each dataset. To evaluate
the algorithms performance on varying numbers of segments, we run all algorithms with
different parameter sets. For some algorithms the segment number is a direct parameter. For
the others we varied the parameter with the largest impact on the segment number. Some
algorithms have additional parameters, e.g. for balancing compactness and image gradient
affinity of superpixels. Since we can not present results for all parameter settings, we use
either the default parameters or these with best results on figure ground segmentations using
the benchmark of [18].

For the motion undersegmentation error, we can not expect an oversegmentation al-
gorithm to solely create stable segments, since they also split homogeneous image areas
without image gradient support. The effects can be seen at the grid like areas on the visu-
alization of the MUSE in Figure 3. However, we can expect algorithms to be better than
the BOX segmentation where all segment boundaries lack image gradient support. Figure 4
shows the results of the comparison. The worse performance of BOX at the KITTI dataset
also demonstrates the higher amount of systematic camera motion in KITTI images since the
camera is mounted on a driving car. It is apparent that MUSE values increase with growing
number of segments. This is contrary to the characteristic of the undersegmentation error
when comparing a superpixel segmentation to a figure-ground segmentation (like in [18]).
The intuitive reason is that when comparing two superpixel segmentations, an increasing
number of segments in the segment set used for reconstruction is connected to an increased
number of segments in the set that is reconstructed. Thus we do have smaller building blocks,
but also want to build more filigree elements. The mean shift algorithms EAMS and vlQS
can compensate this increase. Furthermore, we can distinguish three groups of algorithms:
(1) Algorithms that strongly connect to image gradients and lack regulation of the segments
size or distribution (like FH or EAMS) perform best. (2) In the middle, there is a large
group of algorithms which perform similar. In majority, these are algorithms with strong
compactness constraints. However, for Sintel this group performs worse than the baseline
BOX algorithm. (3) Although ERS also contains a compactness constraint, its borders vary
strongly in homogeneous image areas resulting in high motion undersegmentation error.

Since the average camera motion (that generates flow for all image pixels) increases in
the KITTI dataset, results of most algorithms are worse. However, compared to the perfor-
mance of the baseline BOX segmentation, almost all algorithms perform better. In particular
FH and vlQS improve compared to the other algorithms. For KITTI, also the offset of ERS
to the other algorithms decreases. While oriSlic and vlSlic implement the same algorithmic
idea, oriSlic uses some simplifications (mainly for runtime reasons) that significantly influ-
ence the stability of segmentations in low gradient image regions. This causes much higher
MUSE values on the KITTI dataset and make vlSlic preferable.

At motion discontinuity error superpixel algorithms with additional segment bound-
aries caused by compactness constraints perform superior since they decrease the average
values of the distance transform of the boundary image. On the other hand algorithms that
exclusively rely on image gradients (like FH) miss many motion discontinuities. The two
SLIC implementations that already performed well on recovering object-ground segmen-
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Figure 5: (left) Motion discontinuity error (MDE) and motion undersegmentation error
(MUSE) of vlSLIC for concatenated motion fields of varying lengths. (right) Boxplots of
motion discontinuity error on the Sintel dataset for some algorithms (whiskers at 1.5×IQR).

tations [18], also show good results on recovering motion discontinuities. The additional
information about the statistics on MDE given by the boxplots in Figure 5 show that the high
mean error of eams is mainly due to constantly high outlier rate. The median error is much
lower. Other algorithms show statistics similar to ERS: median error is smaller than the mean
and the number of outliers decreases with larger numbers of segments.

To evaluate the dependency of the algorithms performance on the amount of motion,
Figure 5 shows exemplary results of one algorithm on concatenated flow fields (combined
flow fields over multiple frames). All algorithms show similar behavior, both MUSE and
MDE uniformly increase with growing sequence lengths.

In addition to the performance of the algorithms, we can state that most results are similar
for both datasets. Reasons for variations can be the higher amount of camera motion in
the KITTI dataset as well as the different color spaces and dynamic ranges. The overall
comparison confirms the benefit of usage of a synthetic dataset.

5 Conclusions and Future Work
We proposed two novel metrics to exploit ground truth optical flow data for evaluating su-
perpixel segmentations and compared several existing algorithms. The motion underseg-
mentation error (MUSE) was proposed to evaluate the stability of segmentations and used
to identify different classes of algorithms. For larger number of superpixels the MUSE val-
ues rapidly increases and the overall stability of superpixel segmentations is questionable.
Regarding video processing, the application of supervoxels should be probed if the ratio of
framerate and image motion is sufficient.

We further proposed the Motion Discontinuity Error (MDE) to evaluate how well dif-
ferently moving image parts are separated by the segmentation algorithms. MDE is a com-
pletely data-driven criteria to measure segmentation quality without bias towards human
semantic interpretation. When comparing algorithms using these metrics, one should keep
in mind that MDE preferes small superpixels (and irregular segment boundries) and MUSE
favours large segments. With current algorithms, MDE and MUSE are somehow comple-
mentary measurements. Algorithms that perform well on one criteria often show problems
with the other, in fact there is a lack of algorithms that produce stable segmentations and
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well resemble motion discontinuities. This opens space for further improvements and new
superpixel segmentation algorithms.

Based on the results on the present comparison and their previously published perfor-
mance on figure-ground segmentations, the SLIC and Quickshift algorithms show best bal-
anced results. However, the simplifications made in the original SLIC implementation oriS-
LIC significantly decrease the segment stability in homogeneous image regions. Thus we
recommend the better balanced vlSLIC implementation from the VLFeat library. For fur-
ther evaluation of other algorithms, we provide the results, a Matlab implementation of the
metrics and functions to interface the datasets on our website (see section 1).

The results on the real world and the synthetic datasets comply in large parts. While we
wait for more real world datasets appearing in the community, the synthetic dataset showed to
be a rich source of ground truth information. Of future interest may also be a similar frame-
work for comparing supervoxel algorithms. Critical parameter for supervoxel algorithms
would be the ratios of framerate, segment size and amount of motion to have sufficient seg-
ment overlap between frames. I.e., some of the compared superpixel algorithms have direct
supervoxel equivalents or could be extended in this direction. The cross comparison between
superpixels and supervoxels would be interesting.

Appendix: Optical Flow Datasets
There exist several datasets for evaluation of optical flow algorithms. Our benchmark is
based on the KITTI [8] and the Sintel [4] datasets. While the Middlebury dataset [3] is
an established optical flow dataset, the amount of data with public ground truth is limited
to eight sequences, each with up to eight frames. Recently, several large scale real world
datasets for evaluation of optical flow algorithms have been published: KITTI [8], HCI [14]
and a collection on the Image Sequence Analysis Test Site (EISATS)9. Due to the amount of
data and the provided ground truth we decided to use the KITTI dataset for our evaluation.
Images source is a stereo camera mounted on a driving car, thus there is severe camera
motion in subsequent images. We only consider the left images of the stereo pairs. Ground
truth optical flow is available for the training subset of the original KITTI dataset, resulting in
194 gray level image pairs of size 1226×370 for our benchmark. Each image pair shows an
individual street scene. The ground truth has been generated using a 3D laser scanner. Due
to limited sensor range, occlusions and other restrictions in the ground truth computation,
there is flow information for about 25 % of the image pixels (averaged over all image pairs).
E.g., there is no flow information for sky pixels. Note that although there is camera data
available for longer sequences (20 frames per sequence), no ground truth optical flow data is
available for this extended dataset.

Beside the real world datasets, computer rendered images are a great data source due
to their near perfect ground truth information. The MPI Sintel Dataset [4] is based on the
open source animated short film Sintel produced by Ton Roosendaal and the Blender Foun-
dation. It provides naturalistic video sequences and is designed to encourage research on
long-range motion, motion blur, multi-frame analysis and non-rigid motion. Moreover, the
motion statistics of the dataset showed to be realistic [4]. MPI Sintel constitutes the second
dataset in our benchmark. It consists of 23 scenes, each with 20 to 50 color images of size
1024× 436. These longer scenes allow to combine flow fields to sequences over multiple
frames. Moreover, there is much denser ground truth flow data. I.e., there is even ground
truth motion for pixels that are occluded in one of the two scenes. This is possible since the

9http://tinyurl.com/EISATS-flow
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ground truth optical flow is directly extracted from the data used for rendering. From the
different levels of rendered details, we use the most realistic final rendering.

Finally we want to make some remarks on the usage of the ground truth optical flow
fields. We used inverse mapping with nearest neighbor interpolation to transform label im-
ages. Pixels for which there are no ground truth flow information are ignored in computation
of the metrics. The high amount of invalid pixels in the real world datasets restricts the trans-
formation of a sparse image like a boundary image. Therefore metrics based on transformed
boundary images should be avoided. However, for concatenated flows, when handling the
gradients around occlusions, we can not distinguish, which of them belong to a moving ob-
ject and whose are introduced solely by the occlusion. Therefore we combine the boundary
maps of the segmentations of the first and the last image of the concatenated sequence and
use this as input for the distance transform (this is only relevant for the results of Figure 5).

References
[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk. Slic superpixels

compared to state-of-the-art superpixel methods. IEEE Trans. on Pat. Anal. and Mach.
Intel., 34, 2012.

[2] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour detection and hierarchical
image segmentation. IEEE Trans. Pattern Anal. Mach. Intell., 33, 2011.

[3] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. Black, and R. Szeliski. A database and
evaluation methodology for optical flow. Int. J. Comput. Vision, 92, 2011.

[4] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A naturalistic open source movie
for optical flow evaluation. In European Conf. on Computer Vision (ECCV), 2012.

[5] D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space analy-
sis. IEEE Trans. on Pat. Anal. and Mach. Intel., 24, 2002.

[6] M. Everingham, L.v. Gool, C. Williams, J. Winn, and A. Zisserman. The pascal visual
object classes (VOC) challenge. Int. J. Comput. Vision, 88(2), 2010.

[7] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient graph-based image seg-
mentation. Int. J. Comput. Vision, 59(2), 2004.

[8] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? The
KITTI vision benchmark suite. In Proc. IEEE Conf. on Comp. Vision a. Pattern Recog.
(CVPR), 2012.

[9] D. Hoiem, A. A. Efros, and M. Hebert. Automatic photo pop-up. ACM Trans. Graph.,
24, 2005.

[10] P. Koniusz and K. Mikolajczyk. Segmentation based interest points and evaluation of
unsupervised image segmentation methods. In Brit. Mach. Vis. Conf. (BMVC), 2009.

[11] M.-Y. Liu, O. Tuzell, S. Ramalingam, and R. Chellappa. Entropy rate superpixel seg-
mentation. In Proc. IEEE Conf. on Comp. Vision a. Pattern Recog. (CVPR), 2011.



NEUBERT: EVALUATING SUPERPIXELS IN VIDEO 11

[12] P. Meer and B. Georgescu. Edge detection with embedded confidence. IEEE Trans. on
Pat. Anal. and Mach. Intel., 23, 2001.

[13] P. Mehrani and O. Veksler. Saliency segmentation based on learning and graph cut
refinement. In Brit. Mach. Vis. Conf.(BMVC), 2010.

[14] S. Meister, B. Jähne, and D. Kondermann. Outdoor stereo camera system for the gen-
eration of real-world benchmark data sets. Optical Engineering, 51(02), 2012.

[15] F. Meyer. Color image segmentation. In Int. Conf. Image Processing (ICIP), 1992.

[16] A. Moore, S. Prince, J. Warrell, U. Mohammed, and G. Jones. Superpixel Lattices. In
Proc. IEEE Conf. on Comp. Vision a. Pattern Recog. (CVPR), 2008.

[17] G. Mori. Guiding model search using segmentation. In Int. Conf. Comp. Vision (ICCV),
2005.

[18] P. Neubert and P. Protzel. Superpixel benchmark and comparison. In Proc. Forum
Bildverarbeitung, 2012.

[19] C. Pantofaru, C. Schmid, and M. Hebert. Object recognition by integrating multiple
image segmentations. In European Conf. on Computer Vision (ECCV), 2008.

[20] X. Ren and J. Malik. Learning a classification model for segmentation. In Int. Conf.
Comp. Vision (ICCV), 2003.

[21] J. Shotton, J. Winn, C. Rother, and A. Criminisi. Textonboost for image understanding:
Multi-class object recognition and segmentation by jointly modeling texture, layout,
and context. Int. J. Comput. Vision, 81(1), January 2009.

[22] A. Vedaldi and S. Soatto. Quick shift and kernel methods for mode seeking. In Euro-
pean Conf. on Computer Vision (ECCV), 2008.

[23] C. Xu and J. Corso. Evaluation of super-voxel methods for early video processing. In
Proc. IEEE Conf. on Comp. Vision a. Pattern Recog. (CVPR), 2012.

[24] Y. Yang, S. Hallman, D. Ramanan, and C. Fowlkes. Layered object detection for multi-
class segmentation. Proc. IEEE Conf. on Comp. Vision a. Pattern Recog. (CVPR),
2010.

[25] C. Lawrence Zitnick and Sing Bing Kang. Stereo for image-based rendering using
image over-segmentation. Int. J. Comput. Vision, 75(1), 2007.


