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Abstract

Most researchers agree that invariances are desirable in computer vision systems.
However, one always has to keep in mind that this is at the expense of accuracy: By
construction, all invariances inevitably discard information. The concept of morphologi-
cal invariance is a good example for this trade-off and will be in the focus of this paper.
Our goal is to develop a descriptor of local image structure that carries the maximally
possible amount of local image information under this invariance. To fulfill this require-
ment, our descriptor has to encode the full ordering of the pixel intensities in the local
neighbourhood. As a solution, we introduce the complete rank transform, which stores
the intensity rank of every pixel in the local patch. As a proof of concept, we embed our
novel descriptor in a prototypical TV−L1-type energy functional for optical flow com-
putation, which we minimise with a traditional coarse-to-fine warping scheme. In this
straightforward framework, we demonstrate that our descriptor is preferable over related
features that exhibit the same invariance. Finally, we show by means of public bench-
mark systems that our method produces - in spite of its simplicity - results of competitive
quality.

1 Introduction
Incorporating invariances is a popular tool to make computer vision systems more robust un-
der real-world conditions. Since being invariant means ignoring something, every invariance
has to come at the price of a loss of information. Thus, there is an intrinsic trade-off between
invariances and high accuracy. In our paper, we focus on severe illumination changes and
descriptors that are invariant under such challenging conditions. In particular, we consider
transforms that are morphologically invariant in the sense of being unaffected by monoton-
ically increasing greyscale transformations [1]. This class comprises all descriptors that are
based on the grey value order. A famous example is the median filter [22]. Zabih and Wood-
fill’s rank transform [25] is another prominent representative of such illumination robust
descriptors. It computes the rank of a pixel’s intensity within the local neighbourhood. Their
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transform is invariant against any monotonically increasing intensity changes. However, it is
clear that only storing the rank of the pixel also means to discard all other local information.
In the same paper [25], the census transform is proposed, which compares a pixel with all
its neighbours and stores which one is larger. Besides encoding the rank, also some spatial
information is stored in this descriptor. However, also here a lot of information is discarded.
Thus, it would be desirable to develop a robust feature with strong invariance that discards
as little information as possible.

1.1 Our Contribution
In this paper, we propose a novel descriptor that carries much more information than the
rank, but exhibits the same strong invariance. Our general idea is to not restrict ourselves
to the rank of the central pixel, but to compute the ranks of all pixels of the neighbourhood,
i.e. to store the complete local intensity order. We claim that our novel complete rank
descriptor can be used as a generally superior alternative to the census transform: It is equally
computationally efficient, as parameter-free as the census transform, and leads to clearly
improved results. We want to stress that we discuss all these descriptors from the point of
view of designing a data term for optical flow. Sparse interest point matching is not in the
focus of this paper and would examine very different aspects and properties of a descriptor.

1.2 Related Work
Independently of Zabih and Woodfill’s rank and census transforms [25], Pietikäinen et al.
performed broad research on various kinds of local binary patterns (see [16] and references
therein). Stein et al. [20] used the census transform as an efficient descriptor for structure
matching in driver assistance systems and Fröba and Ernst [7] used the modified census
transform for face recognition. More recently, several sparse interest point descriptors that
are related to intensity order-based ideas have been proposed: With their chained circular
neighbourhoods, Chan et al. [5] made a first step towards representing neighbourhood ordinal
information. The LIOP descriptor of Wang et al. [23] describes the intensity order of a very
large neighbourhood which is tailored for sparse interest point matching. A similar idea
of matching order distributions is proposed by Tang et al. [21]. Mittal and Ramesh [14]
combine order and intensity information to increase the robustness against Gaussian noise.

A classical application domain where local descriptors are matched is optical flow. A
large number of publications on this topic also consider the problem of illumination robust-
ness, e.g. the structure-texture decomposition by Wedel et al. [24] or various invariant colour
spaces in Mileva et al. [13]. There are several recent publications that incorporate the census
transform in variational optical flow or stereo methods: Müller et al. propose a census-based
data term for optical flow [15], and Ranftl et al. [18] as well as Mei et al. [12] present census-
based stereo methods. The theoretical study of Hafner et al. [10] explains the reasons why
census-based data terms for variational optical flow are successful.

1.3 Organisation of our Publication
Our paper is organised as follows: In Section 2, we review the rank and census transforms.
After that, Section 3 introduces the complete rank transform. In Section 4, we embed our
novel descriptor into a variational framework and demonstrate its benefits in the experimental
Section 5. We conclude the paper with a summary and an outlook in Section 6.
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Figure 1: Illustration of the presented intensity order transforms ((b)–(d)) with a 3×3 neigh-
bourhood patch ((a)), where the reference pixel is marked in grey.

2 Rank and Census Transform

Before describing our novel patch-based descriptor, let us briefly revisit two closely related
descriptors by Zabih and Woodfill [25] that form the basis of our proposal. Both of them
belong to the class of patch-based intensity order descriptors and share the property of being
morphologically invariant, i.e. invariant with respect to any monotonically increasing grey
value rescalings. In particular, they describe a signature vector sss that encodes how the grey
value of a reference pixel compares to its neighbours.

The rank transform (RT) encodes for each pixel the position of its grey value in the rank-
ing of all grey values in its neighbourhood. Practically, this rank is determined by counting
the number of neighbours with a smaller grey value than the reference pixel. Typically, a
neighbourhood consists of a square patch of k :=K×K pixels. Then, the rank transform for-
mally maps each pixel to its scalar rank signature sRT ∈ {0, . . . ,k−1}. Regarding our sample
intensity patch in Figure 1(a), we have

sRT = 5 , (1)

since the five neighbouring grey values 3, 4, 4, 14, and 15 are smaller than the intensity 25
of the central pixel.

The second descriptor is the census transform (CT), which has also been introduced by
Zabih and Woodfill [25]. It can be seen as an extension of the rank transform: Besides
encoding the rank, it adds a spatial component by expressing the relationship between the
central pixel and each of its neighbours explicitly. In practice, one bit of information is stored
for each pixel of the neighbourhood: If the neighbour is smaller than the reference pixel, the
bit is 1, otherwise it is 0. In the final binary signature, all bits are concatenated. While the
order of this concatenation is in general arbitrary, it must be consistent in the whole image
such that each bit can be uniquely associated with one neighbour. In mathematical terms,
each pixel in the image is mapped to a binary signature sssCT ∈ {0,1}k−1 of length k−1.
Consequently, the census signature of our example reads

sssCT = (1,1,0,1,0,1,1,0)> , (2)

where the binary digits are read out line by line, from top left to bottom right, cf. Figure 1(c).
It is obvious that the number of ones in a census signature coincides with the rank of that
pixel.
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3 Complete Rank Transform
Although the two signatures by Zabih and Woodfill [25] exhibit the same morphological
invariance, by construction the census transform obviously encodes more information than
the pure rank.

The goal of this section is to propose a novel transform that extracts as much local image
information as possible of the input data while preserving the same desired invariance against
monotonically increasing illumination changes. To this end, we make use of the following
observation: Not only the rank of the central intensity value, but even the complete intensity
order of the considered patch is morphologically invariant.

Hence, we will now modify and extend the rank transform in such a way that it incorpo-
rates this novel idea of encoding the complete intensity order instead of only encoding the
rank of the reference pixel.

3.1 Construction
The construction of our novel complete rank transform (CRT) is straightforward: First, we
compute the rank of each pixel in the considered neighbourhood patch. Practically, for each
element of the patch this comes down to determining the number of pixels with smaller
intensity. Next, we concatenate these ranks as for the census transform to obtain the complete
rank descriptor. Mathematically, for a patch size k, the complete rank transform is a mapping

sssCRT : Ω→Πk ⊂ {0, . . . ,k−1}k , (3)

where the co-domain Πk is the set of all possible rankings of k elements including multiple
occurrences of the same intensity value. The cardinality of this set is the k-th ordered Bell
number (OBN(k)). The principle of our CRT is illustrated in Figure 1(d). The corresponding
signature is given by

sssCRT = (1,3,7,1,5,8,0,4,6)> , (4)

where the digits are, as before, read out line by line.

3.2 Discussion
In each pixel, our complete rank signature contains the full local image intensity order. Obvi-
ously, this is much more information, than the rank or census signatures carry. In particular,
it is impossible to encode more local image information without leaving the class of mor-
phologically invariant descriptors. The reason for this is that the only property that cannot
be changed by a monotonic function is monotonicity, i.e. whether one pixel is larger than
the other, or not.

As already mentioned, Zabih and Woodfill’s census transform carries spatial information
which is not included in the rank transform. Instead of storing all ranks, one could alterna-
tively also apply the census transform to every pixel in the patch, i.e. compare each pixel
with each other pixel. However, in this complete case, both transforms comprise this spa-
tial information component by construction. Consequently, there is no difference between
the two complete signatures, and there even exists a bijection: Each complete rank signa-
ture uniquely induces a complete census signature, and vice versa. Hence, exactly the same
amount of information is contained in both (complete) signature types. The reason, however,
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Table 1: Comparison of the proposed intensity order transforms. The number of pixels in
the considered neighbourhood is given by k.

transform range D of
one digit

signature
length κ

spatial
informa-

tion

size of
descriptor

space

rank (RT) {0, . . . ,k−1} 1 − k

census (CT) {0,1} k−1 X 2k−1

complete rank (CRT) {0, . . . ,k−1} k X OBN(k)

complete census (CCT) {0,1} k(k−1) X OBN(k)

to prefer our proposed complete rank signature is its much more compact representation and
lower dimensionality, compared to the complete census signature.

Nevertheless, this alternative census-inspired perspective offers an unexpected insight:
As pointed out in [10], each binary digit of a census signature can be regarded as the sign of
the corresponding directional derivative (in a finite difference sense). Thus, from this point
of view, one can conclude that the complete rank transform inherently contains rich local
differential information. In this regard, dealing with derivatives of such signatures as in [17]
actually corresponds to second order image derivative information. This fact is not obvious
from just considering the rank representation and should be kept in mind.

For the sake of clarity, we summarise the discussed transforms and compare their essen-
tial properties in Table 1.

4 Variational Optical Flow Model
In this section, our goal is to embed the considered signatures into a variational energy
functional for optical flow computation [11]. To this end, we assume that the input images
have been mapped by one of the introduced transforms to a vector-valued function ccc : Ω×
[0,∞)→Dκ . For colour images, typically the signature length is tripled since we concatenate
the signatures of each channel.

4.1 Energy Formulation
We propose a generic variational model which assumes the signatures of corresponding pix-
els in the first frame and in the second frame to coincide. This assumption, together with a
prior knowledge about the spatial regularity of the flow field, is expressed in the functional

E(u,v) =
∫

Ω

(
Ψ
( 1

κ
|ccc(xxx+www)− ccc(xxx)|2

)
+ α ·Ψ

(
|∇∇∇u|2 + |∇∇∇v|2

) )
dxxx, (5)

whose minimiser is the sought flow field (u,v)>: Ω→R2 and the rectangular image domain
is denoted by Ω⊂R2. The first term (data term) penalises differences between the signature
at position xxx :=(x,y, t)> in the first frame and its corresponding one at xxx+www :=(x+u,y+
v, t+1)> in the second frame. The second term (smoothness term) penalises the magnitude
of the gradient ∇∇∇ :=(∂x,∂y)

> of the flow field. Further, the two terms are balanced by the
regularisation parameter α >0.
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We would like to point out that we intentionally choose a functional with such a transpar-
ent and generic structure: In the data term, we do not assume the constancy of any derivatives
or higher order expressions of the signature and apply a joint robustification (also in the case
of colour images). The same holds for the smoothness term, where we do not incorporate
more advanced concepts. The penaliser function [6, 19]

Ψ(s2) = 2λ

√
s2 +λ 2−2λ

2 (6)

is also the same with equal numerical parameter λ = 10−2 for both terms. As a consequence,
the influence of the various descriptors can be clearly examined. Any further model assump-
tions or more sophisticated penalisation or regularisation strategies could just obscure the
influence and effects of our robust data descriptors. This combination can be seen as a con-
tinuous and differentiable approximation to the widely-used TV−L1 model [26].

4.2 Minimisation

According to the calculus of variations, the minimiser of our energy functional has to fulfil
the Euler-Lagrange equations. Before stating them explicitly, let us introduce the following
abbreviations for the sake of readability:

cccx := ∂x ccc(xxx+www) , cccy := ∂y ccc(xxx+www) , ccct := ccc(xxx+www)− ccc(xxx) , (7)

Ψ
′
d := 1

κ
Ψ
′ ( 1

κ
|ccct |2

)
, Ψ

′
s := Ψ

′ (|∇∇∇u|2 + |∇∇∇v|2
)
. (8)

Here, the spatial derivatives of vector-valued quantities are computed componentwise. With
these abbreviations, the minimality conditions can be concisely formulated by

Ψ
′
d · ccc>t cccx−α ·div

(
Ψ
′
s ·∇∇∇u

)
= 0 , (9)

Ψ
′
d · ccc>t cccy−α ·div

(
Ψ
′
s ·∇∇∇v

)
= 0 , (10)

with nnn>∇∇∇u = 0 and nnn>∇∇∇v = 0 as boundary conditions.

4.3 Numerical Algorithm and Implementation

Our solution of the PDEs (9) and (10) essentially resembles the warping scheme by Brox et
al. [3]. However, when implementing this warping scheme it is important not to apply the
coarse-to-fine strategy to the raw input images, because any averaging in the downsampling
strategy or interpolation destroys the morphological invariance of the descriptor. To preserve
this invariance of the CRT signatures, the images must not be resampled or smoothed. The
remedy is to first compute the signatures of the original input images and subsequently apply
the coarse-to-fine warping pyramid to these computed signatures.

All components of our method and especially the Fast Jacobi solver [9] are perfectly
suited for an implementation on parallel hardware architectures such as modern GPUs. Our
reference implementation runs on an NVidia Geforce GTX 460 graphics card and is written
in CUDA. On this platform, the typical computation time of our method on image sequences
of size 640×480 is 13 seconds per flow field for the CRT descriptor.
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Figure 2: Behaviour under γ changes. The plots show the results of our method under γ

variations of the second frame of the Urban2 sequence. Left plot: Behaviour when warping
the raw images. Right plot: Behaviour when warping the signature data. Right, from top to
bottom: γ-corrected second frames with γ = {0.1,1,3}.

5 Experiments
Choice of parameters. Due to its simplicity, only very few parameters have to be chosen.
The downscaling factor of the coarse-to-fine warping scheme is fixed to 0.95 and we repeat
the incremental flow computations on each level 4 times. Furthermore, the numerical pa-
rameter for the robust function Ψ is kept constant at λ = 10−2. Practically, this means that
the only free parameter of our optical flow method is the regularisation weight α , which we
optimise for every experiment. However, throughout our experiments, the optimal α always
was in the interval [0.05,0.2] for the CRT-based data term.

Invariance to γ changes. Our first experiment examines the behaviour of the proposed
method under monotonically increasing intensity changes. To this end, we consider a typical
image sequence f : Ω→ [0,255] and apply a γ-correction to each channel of the second
frame:

fγ(xxx) := 255 · ( 1
255 f (xxx))γ (11)

In Figure 2, we illustrate the necessity of the modification of the warping scheme. As ex-
pected, if the raw images are subject to sampling and smoothing in the coarse-to-fine ap-
proach, the invariance of the signatures is lost. In contrast, by first evaluating our invariant
descriptor and then applying the coarse-to-fine scheme, the desired unconditional invari-
ance is achieved in practice. For this experiment we computed flow fields under varying
γ-corrections using the Urban2 training sequence of the Middlebury [2] benchmark. To
ensure a fair comparison, the regularisation parameter α has been optimised for each graph.

Accuracy Evaluation. In our second experiment, we compare the accuracy of the various
descriptors. To this end, we first compute flow fields for four real-world test sequences of the
KITTI benchmark [8], which exhibit severe illumination changes. We have chosen the same
set of images as selected for the GCPR 2013 - Special Session on Robust Optical Flow1.
Table 2 summarises the obtained results. The numbers for the method of Zimmer et al. [28]
and Bruhn and Weickert [4] are taken from this website. The method [4] is particularly
interesting to compare, since our regularisation and minimisation strategy follows the ideas

1http://dagm.de/index.php?Itemid=149

Citation
Citation
{Baker, Scharstein, Lewis, Roth, Black, and Szeliski} 2011

Citation
Citation
{Geiger, Lenz, and Urtasun} 2012

Citation
Citation
{Zimmer, Bruhn, and Weickert} 2011

Citation
Citation
{Bruhn and Weickert} 2005

Citation
Citation
{Bruhn and Weickert} 2005

http://dagm.de/index.php?Itemid=149


8 DEMETZ, HAFNER, WEICKERT: COMPLETE RANK TRANSFORM

Table 2: Behaviour in real-world scenarios. Errors are given in terms of the bp3 measure,
i.e. the percentage of pixels having a Euclidean error larger than 3.

KITTI image sequence: #11 #15 #44 #74 average
Zimmer et al. [28] 37.3 32.3 23.2 62.9 38.9
Bruhn/Weickert [4] 33.9 47.7 32.4 71.4 46.7
Census Transform 36.5 28.6 28.5 63.8 39.4
Complete Rank Transform 29.8 22.8 22.6 61.5 34.2

Table 3: Quantitative comparison of the rank (RT), census (CT) and complete rank transform
(CRT) on the Middlebury training images. Numbers are average endpoint errors ×10−1.

rw dimetr. grove2 grove3 hydr. urban2 urban3 yos avg
RT 1.11 0.92 1.91 7.64 1.91 4.57 10.3 2.11 3.81
CT 1.02 0.90 1.69 6.46 1.47 3.78 8.19 1.69 3.16
CRT 1.00 0.76 1.54 5.85 1.58 3.24 5.29 1.50 2.60

in this paper. As one can see, the complete rank transform consistently outperforms the
competing methods.

Next we assess the error rates on the Middlebury training images, cf. Table 3. Note that
these sequences are less demanding with respect to illumination changes. Hence, the goal of
this experiment is to show that also under normal lighting conditions reasonable flow fields
can be obtained with our CRT-based data term. Furthermore, we prove with this experiment
that our CRT is also in this setting generally preferable over the rank and census transform.
Again, for each signature type, the regularisation parameter α has been optimised and then
kept constant over all images.

Public benchmark systems. We also assess the accuracy of our method on the novel
KITTI Vision Benchmark Suite [8], which offers a large amount of training and testing
image sequences of real-world outdoor driving situations. Our method ranks 9th at the time
of submission. However, the four top-ranking methods on this benchmark (parenthesised in
Table 4) additionally rely on stereo information, which we do not need.

For the sake of completeness, we also evaluated our method on the Middlebury bench-
mark [2]. Since the test sequences of this benchmark exhibit almost no illumination changes
or other scenarios that our highly invariant descriptor is designed for, we cannot expect top-
ranking results on this benchmark. Nevertheless, it turns out that our prototypical variational
model can in fact keep up with its nearest competitors: At the time of submission, our method
ranks 43.5th whereas the method of Brox et al. [3] ranks 49.5th. Moreover, the much more
advanced method by Zimmer et al. [27] only ranks slightly higher on rank 38.7. These results
are remarkable, since they prove that the invariant data term of our simple model includes
hardly less information than the combined grey value and gradient information of [3, 27].

6 Conclusions
With the complete rank transform (CRT), we have introduced a novel descriptor of local im-
age structure that is invariant under all monotonically increasing greyscale rescalings (mor-
phological invariance). Although this descriptor is not the first one exhibiting this invariance,
it preserves that maximal amount of local image information within the class of morpholog-
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Table 4: Top 20 KITTI benchmark results. Our proposed method CRTflow is written in
boldface. Methods in brackets exploit stereo information.

Rank Method Out-Noc Out-All Avg-Noc Avg-All
(1) (PR-Sf+E) (4.08 %) (7.79 %) (0.9 px) (1.7 px)
(2) (PCBP-Flow) (4.08 %) (8.70 %) (0.9 px) (2.2 px)
(3) (MotionSLIC) (4.36 %) (10.91 %) (1.0 px) (2.7 px)
(4) (PR-Sceneflow) (4.48 %) (8.98 %) (1.3 px) (3.3 px)
5 TGV2ADCSIFT 6.55 % 15.35 % 1.6 px 4.5 px
6 Data-Flow 8.22 % 15.78 % 2.3 px 5.7 px
7 TVL1-HOG 8.31 % 19.21 % 2.0 px 6.1 px
8 MLDP-OF 8.91 % 18.95 % 2.5 px 6.7 px
9 CRTflow 9.71 % 18.88 % 2.7 px 6.5 px
10 fSGM 11.03 % 22.90 % 3.2 px 12.2 px
11 TGV2CENSUS 11.14 % 18.42 % 2.9 px 6.6 px
12 IQFlow 18.93 % 28.33 % 3.6 px 8.8 px

(13) (GC-BM-Bino) (18.93 %) (29.37 %) (5.0 px) (12.0 px)
14 C+NL-M 19.17 % 26.35 % 7.4 px 14.5 px
15 eFolki 19.34 % 28.79 % 5.2 px 10.8 px

(16) (GC-BM-Mono) (19.49 %) (29.88 %) (5.0 px) (12.1 px)
17 HS 19.92 % 28.86 % 5.8 px 11.7 px
18 RSRS-Flow 20.74 % 29.68 % 6.2 px 12.1 px
19 ALD 21.35 % 30.65 % 10.9 px 16.0 px
20 LDOF 21.86 % 31.31 % 5.5 px 12.4 px

ically invariant descriptors. This makes it particularly attractive for pattern matching appli-
cations where also high accuracy is desired such as optical flow estimation. Our embedding
of the CRT into a TV −L1-energy for computing the optical flow confirms this. The experi-
ments give two insights: First, in contrast to the plain census-based descriptor, our complete
rank does give good results even in the case that no challenging illumination changes oc-
cur. Second, the novel signature is consistently superior to the census transform, without
introducing additional computational costs. Hence, it should serve as a generally preferable
alternative to it. Currently, we are integrating our novel descriptor in more advanced mod-
els and assess its sparse feature matching capabilities. We are also interested in adaptive
strategies to decide locally between our robust descriptor and other constancy assumptions.
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