JUET AL.: GENERALISED PERSPECTIVE SFS WITH OREN-NAYAR REFLECTANCE 1

Supplementary Material:
Generalised Perspective Shape from Shading
with Oren-Nayar Reflectance

Yong Chul Ju' 1BTU Cottbus, Germany
ju@tu-cottbus.de

Silvia Tozza?
tozza@mat.uniromaf.it
Michael BreuR'
breuss@tu-cottbus.de
Andrés Bruhn?®
bruhn@vis.uni-stuttgart.de
Andreas Kleefeld'
kleefeld@tu-cottbus.de

2 Sapienza - University of Rome, Italy
3 University of Stuttgart, Germany

In what follows, we present intermediate steps that are helpful to understand the deriva-
tion of the normal vector and the four cases of the Hamilton-Jacobi equations that correspond
to our generalised perspective SfS model with Oren-Nayar reflectance.

1 Surface Parametrisation and Normal Vector

Starting our derivations in Cartesian coordinates, we can notice from Fig. 1 in the paper that
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where zﬁ stands for a vector notation with a starting point A and an endpoint B.
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In spherical coordinates, we can describe (2) as
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Figure 1: Illustration of parameters in spherical coordinates. r = (rj,r2,r3) represents a
vector on the sphere and r denotes the magnitude of r given by (4). Adapted from [1].

In order to obtain A, we have to solve the following quadratic equation:
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Since this requires the radial depth » to be known, we switch from Cartesian coordinates
to spherical coordinates and compute » from the input image directly. This can be done
via the brightness equation of the Oren-Nayar model that describes the relation between the
brightness values of the input image I and the normal n of the corresponding point on the
object surface. However, before we can make use of this brightness equation, we have to
express it in spherical coordinates. In particular, this requires to calculate the surface normal
n in terms of the radial depth r. Starting from (3) and using the spherical basis described in
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the paper, we obtain
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The intermediate step (a) in (6) can be explained by noting that
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In addition, we know that
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since (ey,eq,€,) constitutes a right-handed coordinate system. This in turn explains step (b).

2 Oren-Nayar Brightness Equation

Starting from Section 3 of the paper, we have to calculate the trigonometric quantities that
appear in the Oren-Nayar brightness equation in order to derive the Hamiltonians in spherical
coordinates. Based on the Fig. 1 from the paper, we know that the light source is located at
the centre of the coordinate system and thus the light direction is given by

L=—ce,. (10)
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On the other hand, the viewing direction at any surface point reads
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Knowing the surface normal n given by (6), the light direction L and the viewing direc-
tion V given by (10) and (11), respectively, and by making use of the relation

L /dr | ar
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we can reformulate all trigonometric expressions of the Oren-Nayar brightness equation as
follows:

cos(f;)) = N-L
n
n|

3 ) 2 o
(ra—éeg +rs1n(pa—q;e(p—r sm(per) (—e)

e R

2 sin@

2 2
r\/<3g> + sin® @ (%) + 12 sin® @
1




JUET AL.: GENERALISED PERSPECTIVE SFS WITH OREN-NAYAR REFLECTANCE 5
cos(6,) = N-V
_ony
]
© r%w—i—rsin(p%vz—i—(m—r)(—rzsin(p)
o Psing/|Vr2+1
(17
9ry, +sin(pﬂv +r?sin@ —v;rsin
_ Jo0 V3 Jdep V2 ¢ 1 9
rsin@y/|Vr2+1
1 dr 1dr
. rsin¢%v3+;%v2+r_vl
\/|Vr2+1
sin(6) = 1/1—(N-L)?
2
w |, 1
VIVr?+1 (18)
B ! 1 B |Vr|
Vr2+1 /[Vr2 1]
sin(6,) = 1/1—(N-V)?
1 dr +18r n
——— — Vit ——=—Wm+r—v
a) - rsin@ 00 3 rooQ 2 !
VIVrE 41 (19)
1 dr +18r N 2
——— — Vit ——=—+r—v
_ 1_ rsing 960 3 rade 2 !

V2 +1



6 JUET AL.: GENERALISED PERSPECTIVE SFS WITH OREN-NAYAR REFLECTANCE

In order to project the vectors L and V onto the (x1,x2)-plane, we have to put ¢ = 7 in
the orthonormal basis defined in the paper and we have to reduce v; and r defined in (12)
and (4) to the first two components. In this way, defining these projections of L and V as 1
and V, respectively, we can attain

cos(g;— @) =1 02\/}’%—#;’%— ci+d3. (20)

3 Hamilton-Jacobi Equations in Spherical Coordinates

In order to derive the Hamilton-Jacobi equations (HJEs) corresponding to the Oren-Nayar
brightness equation, we will use the formulas of the previous section. Thus, we obtain the
following four cases:
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and hence we attain
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Case 2: 6; < 6, and (¢;—¢,) € [0,7)U (%717,271']

Since (21) is still true, we obtain
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Case 3: 0; = 0, and ¢; = ¢,

(23)

In this particular case, we have a different implication: by defining 0 := 6, =6, = =f3,

we have
¢ = @, = max|0,cos(¢; — ¢,)] = max[0,cos(0)] = 1.

So, we obtain the HIE
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Case 4: For any 6;,6,, and (¢, — ¢,) € [5,

In this case, we have the trivial implication:
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Because of (26), we end up with the following HJE:
I(x) = %Acos 6;
r
& PI=Acos 6;
& rPI=AN-L)
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