Spectral Imaging Using Basis Lights
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The spectral reflectance (SR) of objects provides innate information about
material properties that have proven useful in applications such as classi-
fication, synthetic relighting, and medical imaging to name a few. General
approaches to hyperspectral (HS) imaging include brute force capture of
narrowband image stacks at consecutive wavelengths, use of conventional
cameras with computational techniques for estimation of SR, use of spe-
cialized optics or filters, and active lighting. In particular, active lighting
methods are fast and accurate. However, to our knowledge, past active
lighting methods have not shown their illuminants to be optimal for SR
recovery.

In our paper, we propose a new HS imaging method that utilizes op-
timally derived active illuminants with a standard monochrome camera.
Our method is accurate and works even in the presence of unknown am-
bient lighting. Specifically, we make use of the well-known observation
that spectra can be compactly represented by basis functions [1, 2, 3, 4].
We then show that spectral reflectance is analogous to a dot product be-
tween the light source spectrum and the surface’s spectral reflectance dis-
tribution. This means that if we had a set of light sources with spectral
distributions analogous to a set of basis vectors, the observed reflectance
from projecting these lights onto the surface would give us coefficients.
Such coefficients could then be used in conjunction with the basis vectors
to recover the SR distributions of the surface.

Let us start with a definition of the reflectance model for a single
surface point. Diffuse reflectance is modeled by the equation
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where s(A) is the SR of the surface point at wavelength A and /(1) is
the illuminant at wavelength A. From Eq. (1), we see that s and [ are
analogous to vectors and computation of its reflectance is analogous to
a dot product. This means that if illuminant / were a basis vector, the
observed reflectance / would be the projection of s onto /. In other words,
I would be a basis coefficient.

So if we could project different illuminants /,, where each /,, would
be equivalent to a different vector from the same basis, we could observe
all the coefficients via reflectance. Having obtained all the coefficients, it
would be possible to use the basis to reconstruct the SR s at the surface
point. For the case of an entire surface, the same argument applies. If we
could project such “basis lights” onto an entire surface and observe the
reflected light using a camera, it would be possible to capture coefficients
for all pixels in the scene. This would in turn permit us to recover the SR
of all pixels.

The next question is, what conditions do the basis lights need to sat-
isfy for optimal recovery using a camera? To answer this question we first
define two relations.

The SR of a surface point can be expressed in terms of basis vectors
as
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where s(A) is the SR at wavelength A, b,(A) is the n'" basis vector at
wavelength A, and o), is the coefficient associated with basis vector b;

Next, we note that the the brightness I, ,, of a given pixel p in an
image taken using a grayscale camera and under lighting /,, follows the
relation
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Figure 1: Flowchart of our Method
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where s), is the spectral distribution at pixel p in the scene and c is the
response of the camera. This is basically the same as Eq. (1) except the
camera response is also taken into account.

If we substitute s, from Eq. (3), with Eq. (2) we get the relation
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The intensities I, = [Ip1...1, m]" of pixel p under all lightings 1,, from
1 to M can also be expressed in matrix form as
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From Eq. (5), we see the basis coefficients Q can be solved for from the
pixel intensities I:, and G. Ideally, if matrix G, has a condition number
of 1, Q can be solved for reliably. We show in the paper that one way to
satisfy this requirement is to use an orthonormal basis.

One issue is that an orthonormal basis would typically contain neg-
ative values, which are not physically plausible as light sources. In our
paper, we show that negative light can be simulated and as an added ben-
efit of this procedure, the effects of unknown ambient light can be can-
celed out. The experimental results also confirm that our method is able
to accurately recover the spectral reflectance of entire scenes even under
unknown ambient light.

[1] Te-Won Lee, Thomas Wachtler, and Terrence J. Sejnowski. The spec-
tral independent components of natural scenes. In First IEEE Intl.
Workshop on Biologically Motivated Computer Vision, BMVC, pages
527-534, London, UK, 2000. Springer-Verlag. ISBN 3-540-67560-4.
Laurence T. Maloney. Evaluation of linear models of surface spectral
reflectance with small numbers of parameters. JOSA A, 3(10):1673—
1683, Oct 1986.

David H. Marimont and Brian A. Wandell. Linear models of surface
and illuminant spectra. JOSA A, 9(11):1905-1913, Nov 1992.

J. P. S. Parkkinen, J. Hallikainen, and T. Jaaskelainen. Characteristic
spectra of munsell colors. JOSA A, 6:318-322, 1989.

(2]

(3]

(4]



